Reasoning with Graphical Models

Class 1: Overview Rina Dechter

Darwiche chapters 1,3 Dechter-Morgan&claypool book: Chapters 1-2 Pearl chapter 1-2

Congressional Breifing: Al at UCI

The Primary AI Challenges

- Machine Learning focuses on replicating humans learning
- **Automated reasoning** focuses on replicating how people reason.

A neural network

hidden layer 1 hidden layer 2

Automated Reasoning

Medical Doctor

Lawyer

Policy Maker

Queries:

- Prediction: what will happen?
- Diagnosis: what happened?
- Situation assessment: What is going on?
- Planning, decision making: what to do?

Automated Reasoning

Queries:

- Prediction
- Diagnosis
- Situation assessment
- Planning, decision making

Knowledge is huge, so How to identify what's relevant?

Graphical Models

**The field of Automated Reasoning is focused to a large part on developing general purpose formalisms that enable us to represent knowledge in such a way that we can exploit the relevance relationship quickly.

Graphical Models

Example diagnosing liver disease (Onisko et al., 1999)

Complexity of Automated Reasoning

- Prediction
- Diagnosis
- Planning and scheduling
- Probabilistic Inference
- Explanation
- Decision-making

Reasoning is computationally hard

Complexity is exponential

Al Renaissance

- Deep learning
 - Fast predictions
 - "Instinctive"

Tools:

Tensorflow, PyTorch, ...

- Probabilistic models
 - Slow reasoning
 - "Logical / deliberative"

Tools:

Graphical Models,
Probabilistic programming,
Markov Logic, ...

Text Books, Outline, Requirements

Class page

Probabilistic Graphical models

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence

Probabilistic Graphical models

- Describe structure in large problems
 - Large complex system F(X)
 - Protein Structure **prediction**: predicting the 3d structure from given sequences
 - CPD: Computational Protein design (backbone) algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC).

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

[Yanover & Weiss 2002]
[Bruce R. Donald et. Al. 2016]

Probabilistic Graphical models

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{\alpha}(x_{\alpha})$
 - Complexity emerges through interdependence
- **Examples & Tasks**
 - Summation & marginalization

$$p(x_i) = rac{1}{Z} \sum_{\mathbf{x} \setminus x_i} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$
 and $Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

"partition function"

$$Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

Image segmentation and classification:

Observation **y** Marginals $p(x_i | y)$ cow grass

e.g., [Plath et al. 2009]

Graphical models

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence
- Examples & Tasks
 - Mixed inference (marginal MAP, MEU, ...)

$$f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

Influence diagrams & optimal decision-making

(the "oil wildcatter" problem)

e.g., [Raiffa 1968; Shachter 1986]

In more details...

Bayesian Networks (Pearl 1988)

P(S, C, B, X, D) = P(S) P(C/S) P(B/S) P(X/C,S) P(D/C,B)

Combination: Product Marginalization: sum/max

- Posterior marginals, probability of evidence, MPE
- P(D= 0) = $\sum_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$ MAP(P)= $\max_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$

Alarm network

[Beinlich et al., 1989]

Bayes nets: compact representation of large joint distributions

The "alarm" network: 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)

Chief Complaint: Sore Throat

Constraint Networks

Example: map coloring

Variables - countries (A,B,C,etc.)

Values - colors (red, green, blue)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

Constraint graph

Propositional Reasoning

Example: party problem

$$A \rightarrow B$$

$$C \rightarrow A$$

Question:

Is it possible that Chris goes to the party but Becky does not?

Is the propositional theory

$$\varphi = \{A \rightarrow B, C \rightarrow A, \neg B, C\}$$
 satisfiable?

Probabilistic reasoning (directed)

Party example: the weather effect

- Alex is-<u>likely</u>-to-go in bad weather
- Chris <u>rarely</u>-goes in bad weather
- Becky is indifferent but <u>unpredictable</u>

P(W)

Questions:

• Given bad weather, which group of individuals is most likely to show up at the party?

What is the probability that Chris goes to the party but Becky does not?

	W	Α	P(A W)
	good	0	.01
	good	1	.99
	bad	0	.1
	bad	1	.9
-			

$$P(W,A,C,B) = P(B|W) \cdot P(C|W) \cdot P(A|W) \cdot P(W)$$

$$P(A,C,B|W=bad) = 0.9 \cdot 0.1 \cdot 0.5$$

$$P(B|W)$$

$$P(C|W)$$

Mixed Probabilistic and Deterministic networks

Alex is-<u>likely</u>-to-go in bad weather Chris <u>rarely</u>-goes in bad weather Becky is indifferent but <u>unpredictable</u>

CN

Query:

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)$$

Example domains for graphical models

- Natural Language processing
 - Information extraction, semantic parsing, translation, topic models, ...
- Computer vision
 - Object recognition, scene analysis, segmentation, tracking, ...
- Computational biology
 - Pedigree analysis, protein folding and binding, sequence matching, ...
- Networks
 - Webpage link analysis, social networks, communications, citations,
- Robotics
 - Planning & decision making

Complexity of Reasoning Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning

Reasoning is computationally hard

Complexity is Time and space(memory)

Tree-solving is easy

Belief updating (sum-prod)

CSP – consistency (projection-join)

MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory

Transforming into a Tree

- By Inference (thinking)
 - Transform into a single, equivalent tree of subproblems

- By Conditioning (guessing)
 - Transform into many tree-like sub-problems.

Inference and Treewidth

class1 compsci2021

treewidth = 4 - 1 = 3

treewidth = (maximum cluster size) - 1

Conditioning and Cycle cutset

Search over the Cutset

- Inference may require too much memory
- Condition on some of the variables

Bird's-eye View of Exact Algorithms

class1 compsci2021

Space: exp(q)

Time: exp(q+c(q))

q: user

controlled

Bird's-eye View of Exact Algorithms

class1 compsci2021

Bird's-eye View of Approximate Algorithms

Examples: Common Sense Reasoning

- **Figuring time on a plane** Sep 2021): window view show night time, yest arrival in an hour to an bright afternoon. How would night become a day all of a sudden?
- **Zebra on Pajama**: (7:30 pm): I told Susannah: you have a nice pajama, but it was just a dress. Why jump to that conclusion?: 1. because time is night time. 2. certain designs look like pajama.
- Cars going out of a parking lot: You enter a parking lot which is quite full (UCI), you see a car coming: you think ah... now there is a space (vacated), OR... there is no space and this guy is looking and leaving to another parking lot. What other clues can we have?
- **Robot gets out at a wrong level:** A robot goes down the elevator. stops at 2nd floor instead of ground floor. It steps out and should immediately recognize not being in the right level, and go back inside.

Turing quotes

- If machines will not be allowed to be fallible they cannot be intelligent
- (Mathematicians are wrong from time to time so a machine should also be allowed)

Why Uncertainty?

- Al goal: to have a declarative, model-based, framework that allows computer system to reason.
- People reason with partial information
- Sources of uncertainty:
 - Limitation in observing the world: e.g., a physician see symptoms and not exactly what goes in the body when he performs diagnosis. Observations are noisy (test results are inaccurate)
 - Limitation in modeling the world,
 - maybe the world is not deterministic.

Why/What/How Uncertainty?

- Why Uncertainty?
 - Answer: It is abundant
- What formalism to use?
 - Answer: Probability theory
- How to overcome exponential representation?
 - Answer: Graphs, graphs, graphs... to capture irrelevance, independence, causality

The Burglary Example

Degrees of Belief

- Assign a degree of belief or probability in [0, 1] to each world ω and denote it by $\Pr(\omega)$.
- The belief in, or probability of, a sentence α :

$$\Pr(\alpha) \stackrel{\text{def}}{=} \sum_{\omega \models \alpha} \Pr(\omega).$$

world	Earthquake	Burglary	Alarm	Pr(.)
ω_{1}	true	true	true	.0190
ω_2	true	true	false	.0010
ω_3	true	false	true	.0560
ω_{4}	true	false	false	.0240
ω_{5}	false	true	true	.1620
ω_6	false	true	false	.0180
ω_7	false	false	true	.0072
ω_8	false	false	false	.7128

A bound on the belief in any sentence:

$$0 \leq \Pr(\alpha) \leq 1$$
 for any sentence α .

A baseline for inconsistent sentences:

$$Pr(\alpha) = 0$$
 when α is inconsistent.

A baseline for valid sentences:

$$Pr(\alpha) = 1$$
 when α is valid.

• The belief in a sentence given the belief in its negation:

$$Pr(\alpha) + Pr(\neg \alpha) = 1.$$

Example

$$\begin{array}{lll} \Pr(\mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_5) + \Pr(\omega_6) = .2 \\ \Pr(\neg \mathsf{Burglary}) &=& \Pr(\omega_3) + \Pr(\omega_4) + \Pr(\omega_7) + \Pr(\omega_8) = .8 \end{array}$$

• The belief in a disjunction:

$$Pr(\alpha \vee \beta) = Pr(\alpha) + Pr(\beta) - Pr(\alpha \wedge \beta).$$

• Example:

$$\begin{array}{rcl} \Pr(\mathsf{Earthquake}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_3) + \Pr(\omega_4) = .1 \\ & \Pr(\mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_5) + \Pr(\omega_6) = .2 \\ \Pr(\mathsf{Earthquake} \wedge \mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) = .02 \\ \Pr(\mathsf{Earthquake} \vee \mathsf{Burglary}) &=& .1 + .2 - .02 = .28 \end{array}$$

• The belief in a disjunction:

 $\Pr(\alpha \vee \beta) = \Pr(\alpha) + \Pr(\beta)$ when α and β are mutually exclusive.

Entropy

Quantify uncertainty about a variable X using the notion of entropy:

$$\operatorname{ENT}(X) \stackrel{def}{=} -\sum_{x} \Pr(x) \log_2 \Pr(x),$$

where $0 \log 0 = 0$ by convention.

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558
ENT(.)	.469	.722	.802

Entropy

- The entropy for a binary variable X and varying p = Pr(X).
- Entropy is non-negative.
- When p = 0 or p = 1, the entropy of X is zero and at a minimum, indicating no uncertainty about the value of X.
- When $p = \frac{1}{2}$, we have $\Pr(X) = \Pr(\neg X)$ and the entropy is at a maximum (indicating complete uncertainty).

Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

$$\Pr(\alpha|\beta) = \frac{\Pr(\alpha \wedge \beta)}{\Pr(\beta)}.$$

Defined only when $Pr(\beta) \neq 0$.

Degrees of Belief

world	Earthquake	Burglary	Alarm	Pr(.)
ω_1	true	true	true	.0190
ω_2	true	true	false	.0010
ω_3	true	false	true	.0560
ω_{4}	true	false	false	.0240
ω_{5}	false	true	true	.1620
ω_6	false	true	false	.0180
ω_7	false	false	true	.0072
ω_8	false	false	false	.7128

$$\begin{array}{lll} \Pr(\mathsf{Earthquake}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_3) + \Pr(\omega_4) = .1 \\ \Pr(\mathsf{Burglary}) &=& .2 \\ \Pr(\neg \mathsf{Burglary}) &=& .8 \\ \Pr(\mathsf{Alarm}) &=& .2442 \end{array}$$

Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

```
\Pr(\mathsf{Burglary}) = .2

\Pr(\mathsf{Burglary}|\mathsf{Earthquake}) = .2

\Pr(\mathsf{Alarm}) = .2442

\Pr(\mathsf{Alarm}|\mathsf{Earthquake}) \approx .75 \uparrow
```

The belief in Burglary is not changed, but the belief in Alarm increases.

Belief Change

Earthquake is independent of burglary

Conditioning on evidence Burglary:

```
\Pr(\mathsf{Alarm}) = .2442
\Pr(\mathsf{Alarm}|\mathsf{Burglary}) \approx .905 \uparrow
\Pr(\mathsf{Earthquake}) = .1
\Pr(\mathsf{Earthquake}|\mathsf{Burglary}) = .1
```

The belief in Alarm increases in this case, but the belief in Earthquake stays the same.

Belief Change

The belief in Burglary increases when accepting the evidence Alarm. How would such a belief change further upon obtaining more evidence?

Confirming that an Earthquake took place:

$$\Pr(\mathsf{Burglary}|\mathsf{Alarm}) \approx .741$$

 $\Pr(\mathsf{Burglary}|\mathsf{Alarm} \land \mathsf{Earthquake}) \approx .253 \downarrow$

We now have an explanation of Alarm.

Confirming that there was no Earthquake:

$$\Pr(\mathsf{Burglary}|\mathsf{Alarm}) \approx .741$$

 $\Pr(\mathsf{Burglary}|\mathsf{Alarm} \land \neg \mathsf{Earthquake}) \approx .957 \uparrow$

New evidence will further establish burglary as an explanation.

Conditional Independence

\Pr finds α conditionally independent of β given γ iff

$$\Pr(\alpha|\beta \wedge \gamma) = \Pr(\alpha|\gamma) \quad \text{or } \Pr(\beta \wedge \gamma) = 0.$$

Another definition

$$\Pr(\alpha \wedge \beta | \gamma) = \Pr(\alpha | \gamma) \Pr(\beta | \gamma)$$
 or $\Pr(\gamma) = 0$.

Variable Independence

 \Pr finds **X** independent of **Y** given **Z**, denoted $I_{\Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$, means that \Pr finds **x** independent of **y** given **z** for all instantiations **x**, **y** and **z**.

Example

 $\mathbf{X} = \{A, B\}$, $\mathbf{Y} = \{C\}$ and $\mathbf{Z} = \{D, E\}$, where A, B, C, D and E are all propositional variables. The statement $I_{Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ is then a compact notation for a number of statements about independence:

```
A \wedge B is independent of C given D \wedge E;

A \wedge \neg B is independent of C given D \wedge E;

A \wedge \neg B is independent of A \wedge \neg B is independent of A \wedge \neg B given A \wedge \neg B is independent of A \wedge \neg B given A \wedge \neg B
```

That is, $I_{Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ is a compact notation for $4 \times 2 \times 4 = 32$ independence statements of the above form.

Further Properties of Beliefs

Chain rule

$$\Pr(\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n)$$

$$= \Pr(\alpha_1 | \alpha_2 \wedge \ldots \wedge \alpha_n) \Pr(\alpha_2 | \alpha_3 \wedge \ldots \wedge \alpha_n) \ldots \Pr(\alpha_n).$$

Case analysis (law of total probability)

$$\Pr(\alpha) = \sum_{i=1}^{n} \Pr(\alpha \wedge \beta_i),$$

where the events β_1, \ldots, β_n are mutually exclusive and exhaustive.

Further Properties of Beliefs

Another version of case analysis

$$\Pr(\alpha) = \sum_{i=1}^{n} \Pr(\alpha|\beta_i) \Pr(\beta_i),$$

where the events β_1, \ldots, β_n are mutually exclusive and exhaustive.

Two simple and useful forms of case analysis are these:

$$Pr(\alpha) = Pr(\alpha \wedge \beta) + Pr(\alpha \wedge \neg \beta)$$

$$Pr(\alpha) = Pr(\alpha|\beta)Pr(\beta) + Pr(\alpha|\neg\beta)Pr(\neg\beta).$$

The main value of case analysis is that, in many situations, computing our beliefs in the cases is easier than computing our beliefs in α . We shall see many examples of this phenomena in later chapters.

Further Properties of Beliefs

Bayes rule

$$\Pr(\alpha|\beta) = \frac{\Pr(\beta|\alpha)\Pr(\alpha)}{\Pr(\beta)}.$$

- Classical usage: α is perceived to be a cause of β .
- Example: α is a disease and β is a symptom-
- Assess our belief in the cause given the effect.
- Belief in an effect given its cause, $\Pr(\beta|\alpha)$, is usually more readily available than the belief in a cause given one of its effects, $\Pr(\alpha|\beta)$.

