### Reasoning with Graphical Models

# Class 1: Overview Rina Dechter

Darwiche chapters 1,3 Dechter-Morgan&claypool book: Chapters 1-2 Pearl chapter 1-2

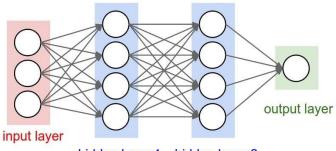
# Congressional Breifing: Al at UCI



#### The Primary AI Challenges

- Machine Learning focuses on replicating humans learning
- **Automated reasoning** focuses on replicating how people reason.

#### A neural network



hidden layer 1 hidden layer 2



#### **Automated Reasoning**

#### **Medical Doctor**



Lawyer



Policy Maker



#### **Queries:**

- Prediction: what will happen?
- Diagnosis: what happened?
- Situation assessment: What is going on?
- Planning, decision making: what to do?

### **Automated Reasoning**



#### **Queries:**

- Prediction
- Diagnosis
- Situation assessment
- Planning, decision making

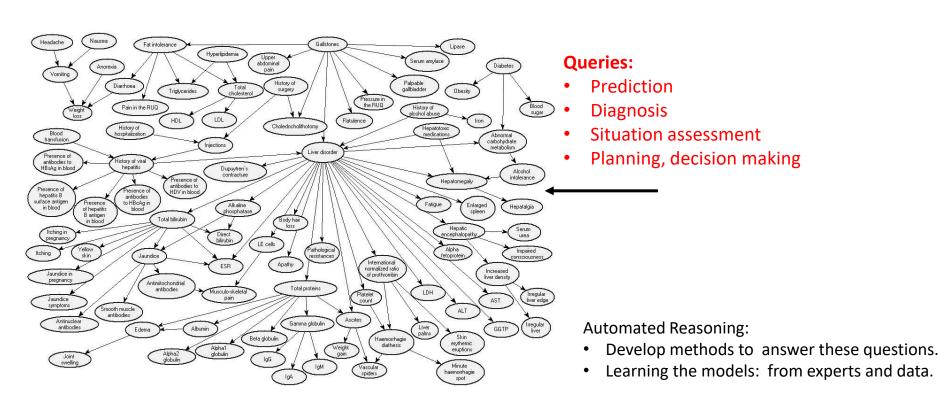
Knowledge is huge, so How to identify what's relevant?

**Graphical Models** 

\*\*The field of Automated Reasoning is focused to a large part on developing general purpose formalisms that enable us to represent knowledge in such a way that we can exploit the relevance relationship quickly.

### **Graphical Models**

Example diagnosing liver disease (Onisko et al., 1999)

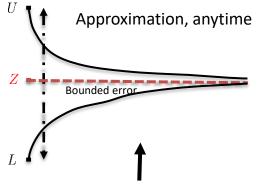


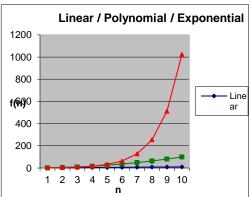
#### Complexity of Automated Reasoning

- Prediction
- Diagnosis
- Planning and scheduling
- Probabilistic Inference
- Explanation
- Decision-making

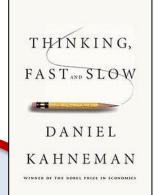
Reasoning is computationally hard

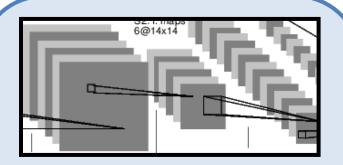
Complexity is exponential





### Al Renaissance

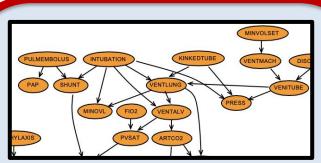




- Deep learning
  - Fast predictions
  - "Instinctive"

#### Tools:

Tensorflow, PyTorch, ...

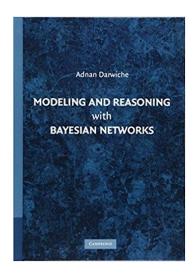


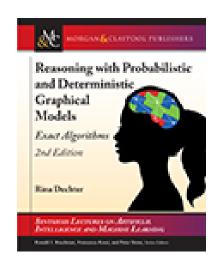
- Probabilistic models
  - Slow reasoning
  - "Logical / deliberative"

#### Tools:

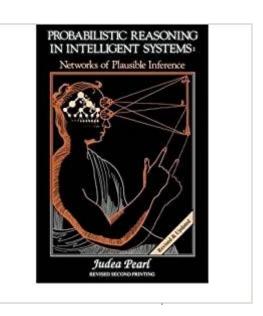
Graphical Models,
Probabilistic programming,
Markov Logic, ...

# Text Books, Outline, Requirements





Class page



# Probabilistic Graphical models

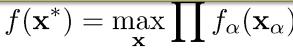
- Describe structure in large problems
  - Large complex system F(X)
  - Made of "smaller", "local" interactions  $f_{lpha}(x_{lpha})$
  - Complexity emerges through interdependence

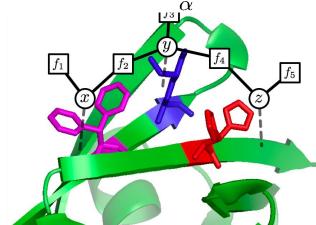
# Probabilistic Graphical models

- Describe structure in large problems
  - Large complex system F(X)
    - Protein Structure **prediction**: predicting the 3d structure from given sequences
    - CPD: Computational Protein design (backbone) algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC).

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

[Yanover & Weiss 2002]
[Bruce R. Donald et. Al. 2016]





# Probabilistic Graphical models

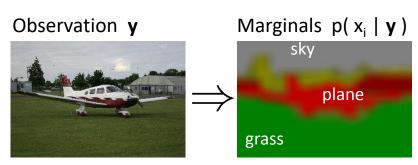
- Describe structure in large problems
  - Large complex system F(X)
  - Made of "smaller", "local" interactions  $f_{\alpha}(x_{\alpha})$
  - Complexity emerges through interdependence
- **Examples & Tasks** 
  - Summation & marginalization

$$p(x_i) = rac{1}{Z} \sum_{\mathbf{x} \setminus x_i} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$
 and  $Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$ 

"partition function"

$$Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

#### Image segmentation and classification:



Observation **y** Marginals  $p(x_i | y)$ cow grass

e.g., [Plath et al. 2009]

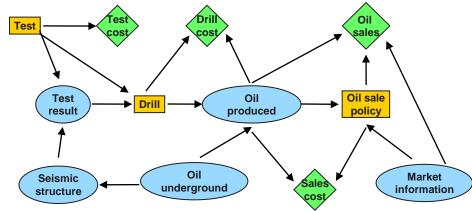
# Graphical models

- Describe structure in large problems
  - Large complex system F(X)
  - Made of "smaller", "local" interactions  $f_{lpha}(x_{lpha})$
  - Complexity emerges through interdependence
- Examples & Tasks
  - Mixed inference (marginal MAP, MEU, ...)

$$f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

Influence diagrams & optimal decision-making

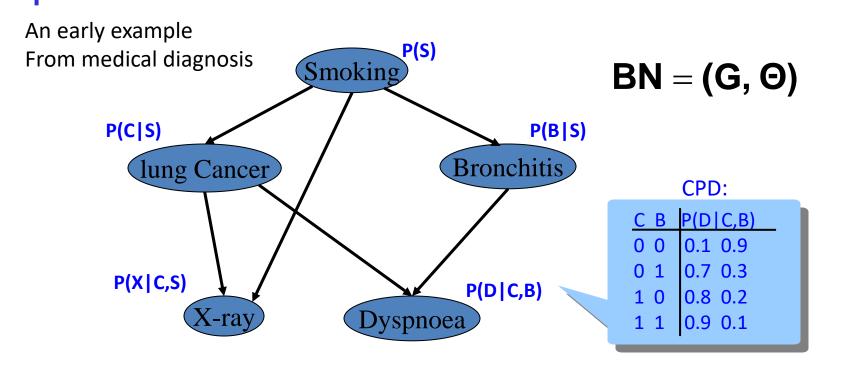
(the "oil wildcatter" problem)



e.g., [Raiffa 1968; Shachter 1986]

#### In more details...

### Bayesian Networks (Pearl 1988)



P(S, C, B, X, D) = P(S) P(C/S) P(B/S) P(X/C,S) P(D/C,B)

Combination: Product Marginalization: sum/max

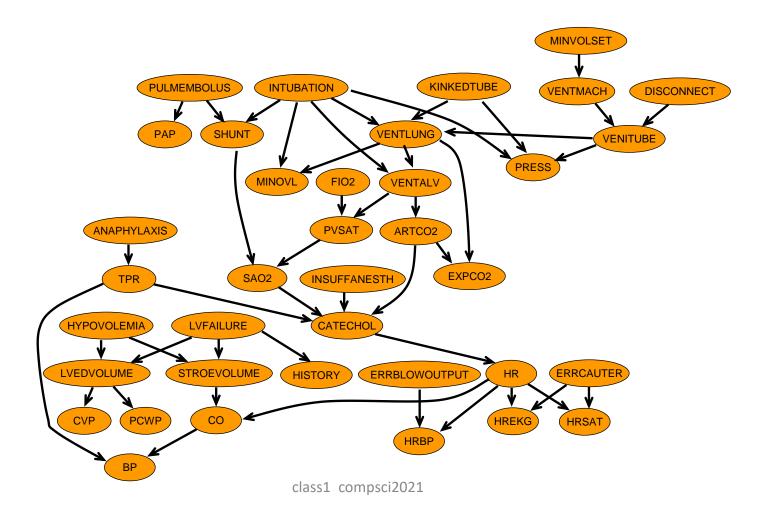
- Posterior marginals, probability of evidence, MPE
- P( D= 0) =  $\sum_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$ MAP(P)=  $\max_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$

### Alarm network

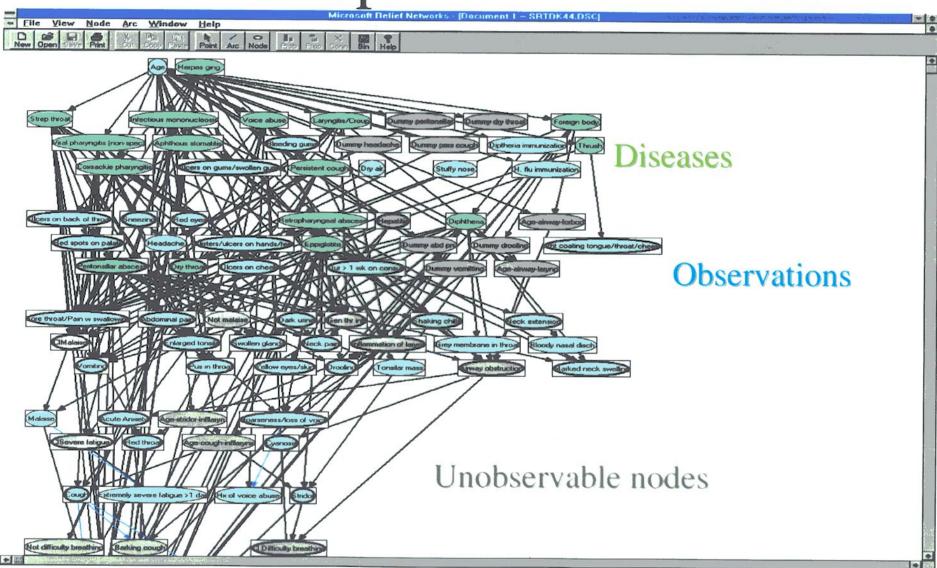
[Beinlich et al., 1989]

Bayes nets: compact representation of large joint distributions

The "alarm" network: 37 variables, 509 parameters (rather than  $2^{37} = 10^{11}$ !)



# Chief Complaint: Sore Throat



### **Constraint Networks**

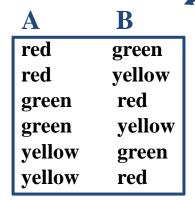
#### **Example:** map coloring

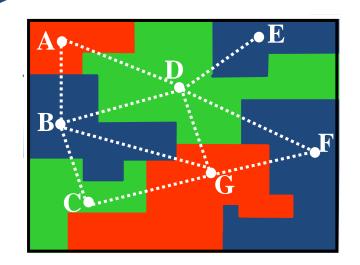
Variables - countries (A,B,C,etc.)

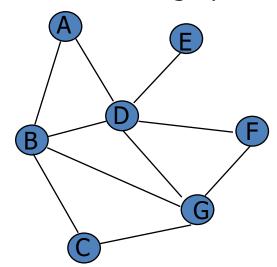
Values - colors (red, green, blue)

Constraints:

 $A \neq B$ ,  $A \neq D$ ,  $D \neq E$ , etc.



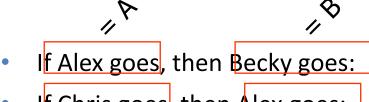




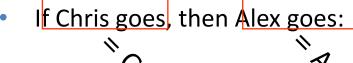
Constraint graph

### **Propositional Reasoning**

#### **Example: party problem**



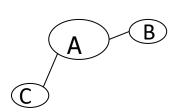
$$A \rightarrow B$$



$$C \rightarrow A$$

#### Question:

Is it possible that Chris goes to the party but Becky does not?



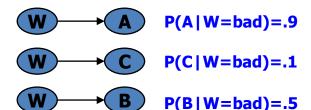
Is the propositional theory

$$\varphi = \{A \rightarrow B, C \rightarrow A, \neg B, C\}$$
 satisfiable?

# Probabilistic reasoning (directed)

#### Party example: the weather effect

- Alex is-<u>likely</u>-to-go in bad weather
- Chris <u>rarely</u>-goes in bad weather
- Becky is indifferent but <u>unpredictable</u>



P(W)

#### **Questions:**

• Given bad weather, which group of individuals is most likely to show up at the party?

What is the probability that Chris goes to the party but Becky does not?

|   | W    | Α | P(A W) |
|---|------|---|--------|
|   | good | 0 | .01    |
|   | good | 1 | .99    |
|   | bad  | 0 | .1     |
|   | bad  | 1 | .9     |
| - |      |   |        |

$$P(W,A,C,B) = P(B|W) \cdot P(C|W) \cdot P(A|W) \cdot P(W)$$

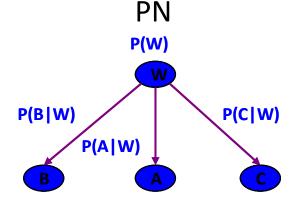
$$P(A,C,B|W=bad) = 0.9 \cdot 0.1 \cdot 0.5$$

$$P(B|W)$$

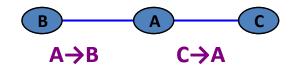
$$P(C|W)$$

#### **Mixed Probabilistic and Deterministic networks**

Alex is-<u>likely</u>-to-go in bad weather Chris <u>rarely</u>-goes in bad weather Becky is indifferent but <u>unpredictable</u>



CN



#### **Query:**

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)$$

### Example domains for graphical models

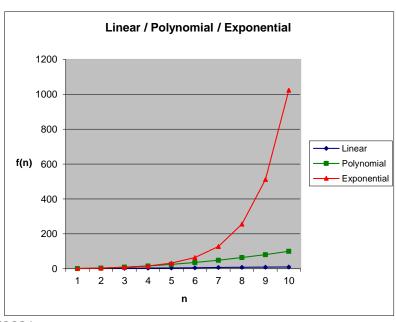
- Natural Language processing
  - Information extraction, semantic parsing, translation, topic models, ...
- Computer vision
  - Object recognition, scene analysis, segmentation, tracking, ...
- Computational biology
  - Pedigree analysis, protein folding and binding, sequence matching, ...
- Networks
  - Webpage link analysis, social networks, communications, citations, ....
- Robotics
  - Planning & decision making

### Complexity of Reasoning Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning

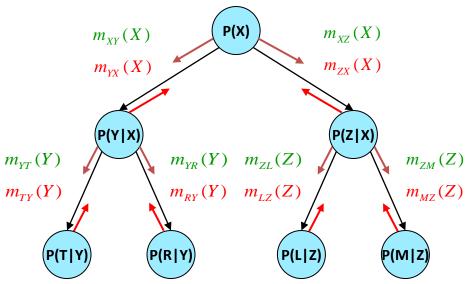
# Reasoning is computationally hard

Complexity is Time and space(memory)



# Tree-solving is easy

Belief updating (sum-prod)



CSP – consistency (projection-join)

MPE (max-prod)

**#CSP** (sum-prod)

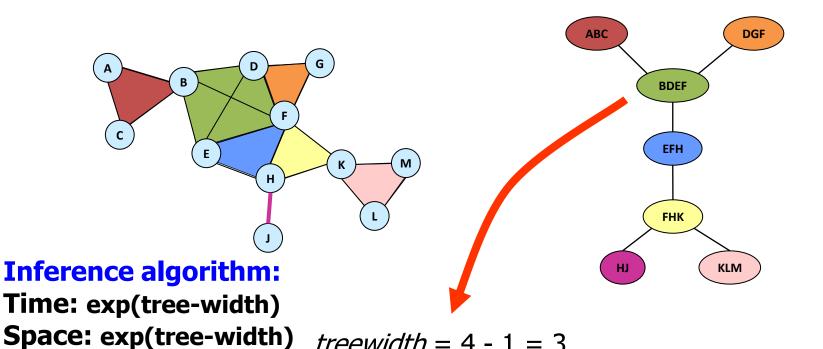
Trees are processed in linear time and memory

# Transforming into a Tree

- By Inference (thinking)
  - Transform into a single, equivalent tree of subproblems

- By Conditioning (guessing)
  - Transform into many tree-like sub-problems.

### Inference and Treewidth

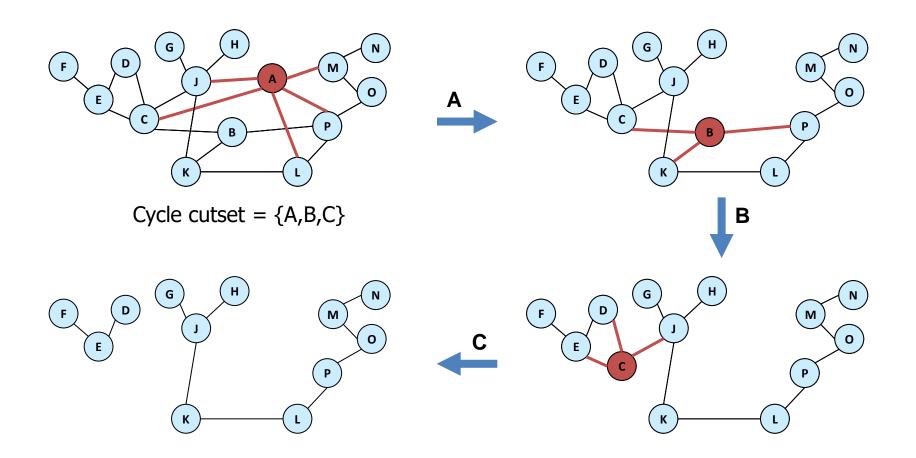


class1 compsci2021

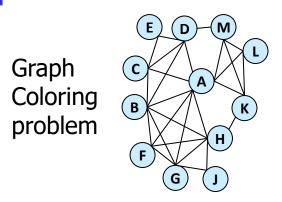
treewidth = 4 - 1 = 3

treewidth = (maximum cluster size) - 1

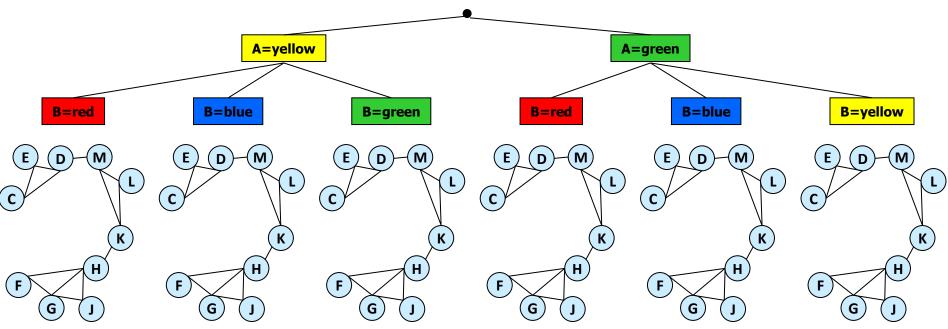
# Conditioning and Cycle cutset



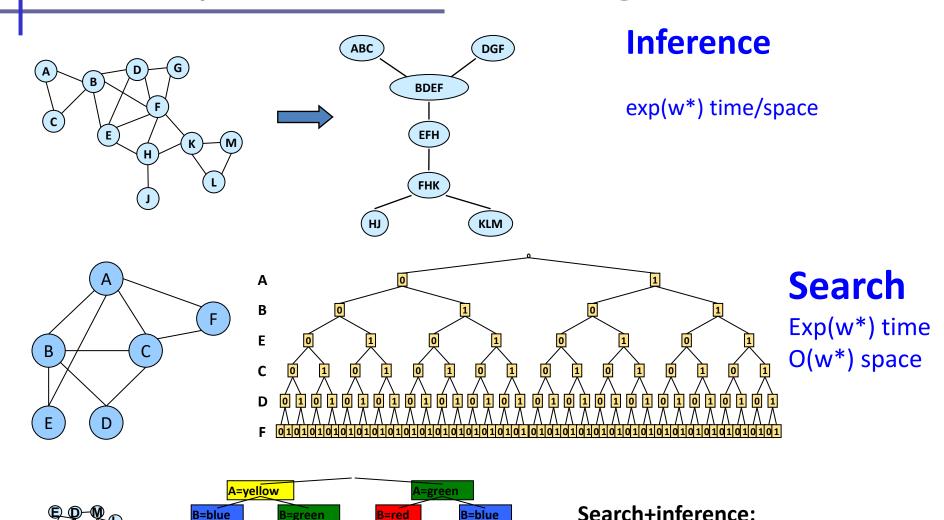
### Search over the Cutset



- Inference may require too much memory
- Condition on some of the variables



### Bird's-eye View of Exact Algorithms



class1 compsci2021

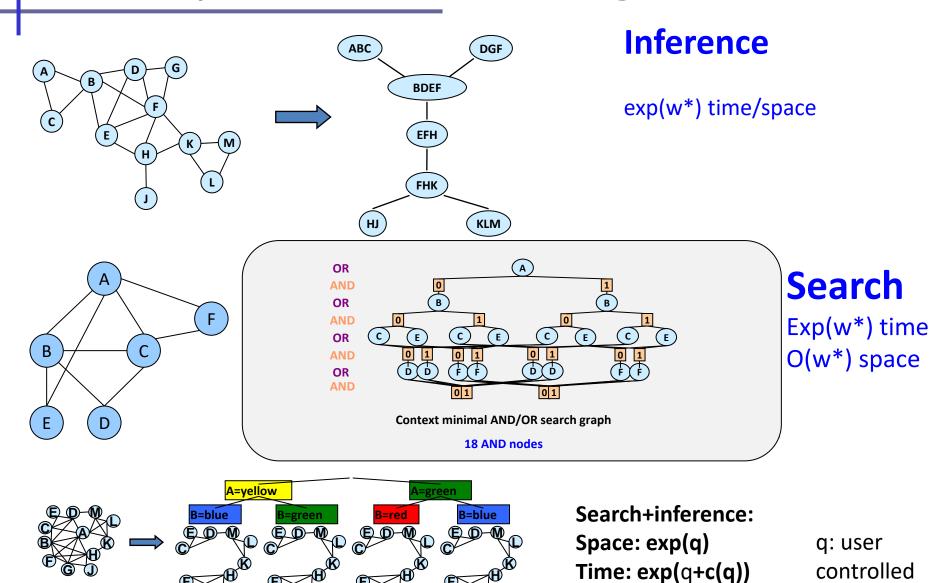
Space: exp(q)

Time: exp(q+c(q))

q: user

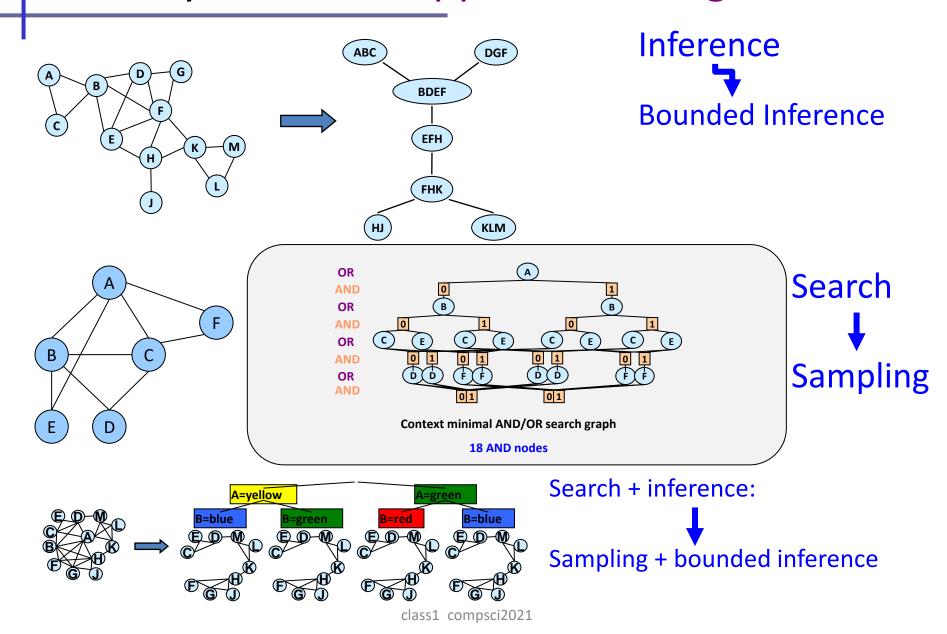
controlled

### Bird's-eye View of Exact Algorithms



class1 compsci2021

## Bird's-eye View of Approximate Algorithms



### **Examples: Common Sense Reasoning**

- **Figuring time on a plane** Sep 2021): window view show night time, yest arrival in an hour to an bright afternoon. How would night become a day all of a sudden?
- **Zebra on Pajama**: (7:30 pm): I told Susannah: you have a nice pajama, but it was just a dress. Why jump to that conclusion?: 1. because time is night time. 2. certain designs look like pajama.
- Cars going out of a parking lot: You enter a parking lot which is quite full (UCI), you see a car coming: you think ah... now there is a space (vacated), OR... there is no space and this guy is looking and leaving to another parking lot. What other clues can we have?
- **Robot gets out at a wrong level:** A robot goes down the elevator. stops at 2<sup>nd</sup> floor instead of ground floor. It steps out and should immediately recognize not being in the right level, and go back inside.

#### Turing quotes

- If machines will not be allowed to be fallible they cannot be intelligent
- (Mathematicians are wrong from time to time so a machine should also be allowed)

# Why Uncertainty?

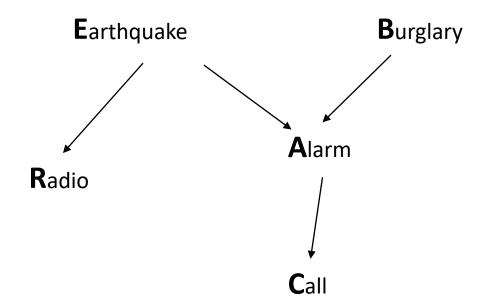
- Al goal: to have a declarative, model-based, framework that allows computer system to reason.
- People reason with partial information
- Sources of uncertainty:
  - Limitation in observing the world: e.g., a physician see symptoms and not exactly what goes in the body when he performs diagnosis. Observations are noisy (test results are inaccurate)
  - Limitation in modeling the world,
  - maybe the world is not deterministic.

# Why/What/How Uncertainty?

- Why Uncertainty?
  - Answer: It is abundant
- What formalism to use?
  - Answer: Probability theory
- How to overcome exponential representation?
  - Answer: Graphs, graphs, graphs... to capture irrelevance, independence, causality



# The Burglary Example



## Degrees of Belief

- Assign a degree of belief or probability in [0, 1] to each world  $\omega$  and denote it by  $\Pr(\omega)$ .
- The belief in, or probability of, a sentence  $\alpha$ :

$$\Pr(\alpha) \stackrel{\text{def}}{=} \sum_{\omega \models \alpha} \Pr(\omega).$$

| world        | Earthquake | Burglary | Alarm | Pr(.) |
|--------------|------------|----------|-------|-------|
| $\omega_{1}$ | true       | true     | true  | .0190 |
| $\omega_2$   | true       | true     | false | .0010 |
| $\omega_3$   | true       | false    | true  | .0560 |
| $\omega_{4}$ | true       | false    | false | .0240 |
| $\omega_{5}$ | false      | true     | true  | .1620 |
| $\omega_6$   | false      | true     | false | .0180 |
| $\omega_7$   | false      | false    | true  | .0072 |
| $\omega_8$   | false      | false    | false | .7128 |

A bound on the belief in any sentence:

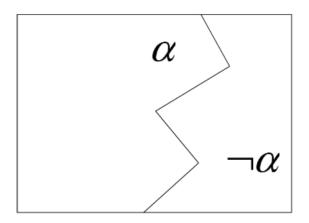
$$0 \leq \Pr(\alpha) \leq 1$$
 for any sentence  $\alpha$ .

A baseline for inconsistent sentences:

$$Pr(\alpha) = 0$$
 when  $\alpha$  is inconsistent.

A baseline for valid sentences:

$$Pr(\alpha) = 1$$
 when  $\alpha$  is valid.



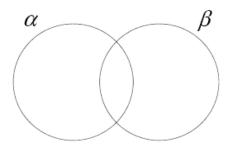
• The belief in a sentence given the belief in its negation:

$$Pr(\alpha) + Pr(\neg \alpha) = 1.$$

### Example

$$\begin{array}{lll} \Pr(\mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_5) + \Pr(\omega_6) = .2 \\ \Pr(\neg \mathsf{Burglary}) &=& \Pr(\omega_3) + \Pr(\omega_4) + \Pr(\omega_7) + \Pr(\omega_8) = .8 \end{array}$$



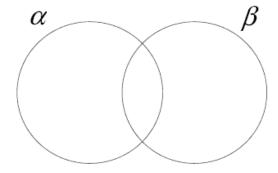


• The belief in a disjunction:

$$Pr(\alpha \vee \beta) = Pr(\alpha) + Pr(\beta) - Pr(\alpha \wedge \beta).$$

• Example:

$$\begin{array}{rcl} \Pr(\mathsf{Earthquake}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_3) + \Pr(\omega_4) = .1 \\ & \Pr(\mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_5) + \Pr(\omega_6) = .2 \\ \Pr(\mathsf{Earthquake} \wedge \mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) = .02 \\ \Pr(\mathsf{Earthquake} \vee \mathsf{Burglary}) &=& .1 + .2 - .02 = .28 \end{array}$$



• The belief in a disjunction:

 $\Pr(\alpha \vee \beta) = \Pr(\alpha) + \Pr(\beta)$  when  $\alpha$  and  $\beta$  are mutually exclusive.

# Entropy

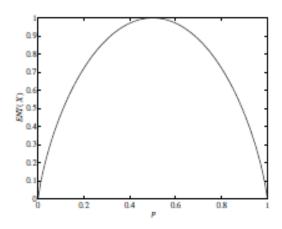
Quantify uncertainty about a variable X using the notion of entropy:

$$\operatorname{ENT}(X) \stackrel{def}{=} -\sum_{x} \Pr(x) \log_2 \Pr(x),$$

where  $0 \log 0 = 0$  by convention.

|        | Earthquake | Burglary | Alarm |
|--------|------------|----------|-------|
| true   | .1         | .2       | .2442 |
| false  | .9         | .8       | .7558 |
| ENT(.) | .469       | .722     | .802  |

## Entropy



- The entropy for a binary variable X and varying p = Pr(X).
- Entropy is non-negative.
- When p = 0 or p = 1, the entropy of X is zero and at a minimum, indicating no uncertainty about the value of X.
- When  $p = \frac{1}{2}$ , we have  $\Pr(X) = \Pr(\neg X)$  and the entropy is at a maximum (indicating complete uncertainty).

# Bayes Conditioning

Alpha and beta are events

### Closed form for Bayes conditioning:

$$\Pr(\alpha|\beta) = \frac{\Pr(\alpha \wedge \beta)}{\Pr(\beta)}.$$

Defined only when  $Pr(\beta) \neq 0$ .

# Degrees of Belief

| world        | Earthquake | Burglary | Alarm | Pr(.) |
|--------------|------------|----------|-------|-------|
| $\omega_1$   | true       | true     | true  | .0190 |
| $\omega_2$   | true       | true     | false | .0010 |
| $\omega_3$   | true       | false    | true  | .0560 |
| $\omega_{4}$ | true       | false    | false | .0240 |
| $\omega_{5}$ | false      | true     | true  | .1620 |
| $\omega_6$   | false      | true     | false | .0180 |
| $\omega_7$   | false      | false    | true  | .0072 |
| $\omega_8$   | false      | false    | false | .7128 |

$$\begin{array}{lll} \Pr(\mathsf{Earthquake}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_3) + \Pr(\omega_4) = .1 \\ \Pr(\mathsf{Burglary}) &=& .2 \\ \Pr(\neg \mathsf{Burglary}) &=& .8 \\ \Pr(\mathsf{Alarm}) &=& .2442 \end{array}$$

## Belief Change

#### Burglary is independent of Earthquake

### Conditioning on evidence Earthquake:

```
\Pr(\mathsf{Burglary}) = .2

\Pr(\mathsf{Burglary}|\mathsf{Earthquake}) = .2

\Pr(\mathsf{Alarm}) = .2442

\Pr(\mathsf{Alarm}|\mathsf{Earthquake}) \approx .75 \uparrow
```

The belief in Burglary is not changed, but the belief in Alarm increases.

## Belief Change

#### Earthquake is independent of burglary

### Conditioning on evidence Burglary:

```
\Pr(\mathsf{Alarm}) = .2442
\Pr(\mathsf{Alarm}|\mathsf{Burglary}) \approx .905 \uparrow
\Pr(\mathsf{Earthquake}) = .1
\Pr(\mathsf{Earthquake}|\mathsf{Burglary}) = .1
```

The belief in Alarm increases in this case, but the belief in Earthquake stays the same.

## Belief Change

The belief in Burglary increases when accepting the evidence Alarm. How would such a belief change further upon obtaining more evidence?

Confirming that an Earthquake took place:

$$\Pr(\mathsf{Burglary}|\mathsf{Alarm}) \approx .741$$
  
 $\Pr(\mathsf{Burglary}|\mathsf{Alarm} \land \mathsf{Earthquake}) \approx .253 \downarrow$ 

We now have an explanation of Alarm.

Confirming that there was no Earthquake:

$$\Pr(\mathsf{Burglary}|\mathsf{Alarm}) \approx .741$$
  
 $\Pr(\mathsf{Burglary}|\mathsf{Alarm} \land \neg \mathsf{Earthquake}) \approx .957 \uparrow$ 

New evidence will further establish burglary as an explanation.

## Conditional Independence

### $\Pr$ finds $\alpha$ conditionally independent of $\beta$ given $\gamma$ iff

$$\Pr(\alpha|\beta \wedge \gamma) = \Pr(\alpha|\gamma) \quad \text{or } \Pr(\beta \wedge \gamma) = 0.$$

#### Another definition

$$\Pr(\alpha \wedge \beta | \gamma) = \Pr(\alpha | \gamma) \Pr(\beta | \gamma)$$
 or  $\Pr(\gamma) = 0$ .

### Variable Independence

 $\Pr$  finds **X** independent of **Y** given **Z**, denoted  $I_{\Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ , means that  $\Pr$  finds **x** independent of **y** given **z** for all instantiations **x**, **y** and **z**.

### Example

 $\mathbf{X} = \{A, B\}$ ,  $\mathbf{Y} = \{C\}$  and  $\mathbf{Z} = \{D, E\}$ , where A, B, C, D and E are all propositional variables. The statement  $I_{Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$  is then a compact notation for a number of statements about independence:

```
A \wedge B is independent of C given D \wedge E;

A \wedge \neg B is independent of C given D \wedge E;

A \wedge \neg B is independent of A \wedge \neg B is independent of A \wedge \neg B given A \wedge \neg B is independent of A \wedge \neg B given A \wedge \neg B
```

That is,  $I_{Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$  is a compact notation for  $4 \times 2 \times 4 = 32$  independence statements of the above form.

### Further Properties of Beliefs

#### Chain rule

$$\Pr(\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n)$$

$$= \Pr(\alpha_1 | \alpha_2 \wedge \ldots \wedge \alpha_n) \Pr(\alpha_2 | \alpha_3 \wedge \ldots \wedge \alpha_n) \ldots \Pr(\alpha_n).$$

### Case analysis (law of total probability)

$$\Pr(\alpha) = \sum_{i=1}^{n} \Pr(\alpha \wedge \beta_i),$$

where the events  $\beta_1, \ldots, \beta_n$  are mutually exclusive and exhaustive.

## Further Properties of Beliefs

#### Another version of case analysis

$$\Pr(\alpha) = \sum_{i=1}^{n} \Pr(\alpha|\beta_i) \Pr(\beta_i),$$

where the events  $\beta_1, \ldots, \beta_n$  are mutually exclusive and exhaustive.

Two simple and useful forms of case analysis are these:

$$Pr(\alpha) = Pr(\alpha \wedge \beta) + Pr(\alpha \wedge \neg \beta)$$
  

$$Pr(\alpha) = Pr(\alpha|\beta)Pr(\beta) + Pr(\alpha|\neg\beta)Pr(\neg\beta).$$

The main value of case analysis is that, in many situations, computing our beliefs in the cases is easier than computing our beliefs in  $\alpha$ . We shall see many examples of this phenomena in later chapters.

## Further Properties of Beliefs

#### Bayes rule

$$\Pr(\alpha|\beta) = \frac{\Pr(\beta|\alpha)\Pr(\alpha)}{\Pr(\beta)}.$$

- Classical usage:  $\alpha$  is perceived to be a cause of  $\beta$ .
- Example:  $\alpha$  is a disease and  $\beta$  is a symptom-
- Assess our belief in the cause given the effect.
- Belief in an effect given its cause,  $\Pr(\beta|\alpha)$ , is usually more readily available than the belief in a cause given one of its effects,  $\Pr(\alpha|\beta)$ .

