Reasoning with graphical models

Slides Set 10 (part a):
Sampling Techniques for Probabilistic and Deterministic Graphical models

Rina Dechter

(Reading” Darwiche chapter 15, related papers)
Overview

1. Basics of sampling
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation, cutset sampling
Overview

1. Basics of sampling
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation, cutset sampling
Types of queries

- **Max-Inference**:
 \[f(x^*) = \max_x \prod_{\alpha} f_\alpha(x_\alpha) \]

- **Sum-Inference**:
 \[Z = \sum_x \prod_{\alpha} f_\alpha(x_\alpha) \]

- **Mixed-Inference**:
 \[f(x^*_M) = \max_{x_M} \sum_{x_S} \prod_{\alpha} f_\alpha(x_\alpha) \]

- **NP-hard**: exponentially many terms
- **We will focus on approximation algorithms**
 - **Anytime**: very fast & very approximate
 - Slower & more accurate
Monte Carlo estimators

• Most basic form: empirical estimate of probability

\[\mathbb{E}[u(x)] = \int p(x)u(x) \approx U = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x) \]

• Relevant considerations
 – Able to sample from the target distribution \(p(x) \)?
 – Able to evaluate \(p(x) \) explicitly, or only up to a constant?

• “Any-time” properties

\[\mathbb{E}[U] = \mathbb{E}[u(x)] \]

 – Unbiased estimator,
 or asymptotically unbiased, \(\mathbb{E}[U] \to \mathbb{E}[u(x)] \) as \(m \to \infty \)

 – Variance of the estimator decreases with \(m \)
Monte Carlo estimators

• Most basic form: empirical estimate of probability

\[\mathbb{E}[u(x)] = \int p(x)u(x) \approx U = \frac{1}{m} \sum_i u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x) \]

• Central limit theorem
 – \(p(U) \) is asymptotically Gaussian:

 \[\begin{array}{ccc}
 m=1: & m=5: & m=15:
 \end{array} \]

• Finite sample confidence intervals
 – If \(u(x) \) or its variance are bounded, e.g., \(u(x^{(i)}) \in [0,1] \)
 probability concentrates rapidly around the expectation:

\[\Pr\left[|U - \mathbb{E}[U]| > \epsilon \right] \leq O\left(\exp(-m\epsilon^2) \right) \]
Estimating an Expectation: Monte Carlo Simulation

Since the sample mean is a function of the sample space, it has its own expectation and variance

Let $A\bar{v}_n(f)$ be a sample mean, where the function f has expectation μ and variance σ^2. The expectation of the sample mean $A\bar{v}_n(f)$ is μ and its variance is σ^2/n.

The estimate $A\bar{v}_n(f)$ is said to be **unbiased** since the expectation of the estimate equals the quantity we are trying to estimate.

The variance of this estimate is inversely proportional to the sample size n.
Central Limit Theorem

Let $\text{Av}_n(f)$ be a sample mean, where the function f has expectation μ and variance σ^2. As the sample size n tends to infinity, the distribution of $\sqrt{n}(\text{Av}_n(f) - \mu)$ converges to a Normal with mean 0 and variance σ^2. We say in this case that the estimate $\text{Av}_n(f)$ is asymptotically Normal.

Continues to hold if we replace σ^2 by the sample variance:

$$S^2_n(f) \overset{def}{=} \frac{1}{n-1} \sum_{i=1}^{n} (f(x^i) - \text{Av}_n(f))^2$$

Allows us to compute confidence intervals, even when we do not know the value of variance σ^2.
Given a set of variables $X=\{X_1,\ldots,X_n\}$, a sample, denoted by S^t is an instantiation of all variables:

$$S^t = (x_1^t, x_2^t, \ldots, x_n^t)$$
How to Draw a Sample?
Univariate Distribution

• Example: Given random variable X having domain $\{0, 1\}$ and a distribution $P(X) = (0.3, 0.7)$.

• Task: Generate samples of X from P.
• How?
 – draw random number $r \in [0, 1]$
 – If $(r < 0.3)$ then set $X=0$
 – Else set $X=1$

So, how to draw a sample from a multi-dimensional distribution?
How to Draw a Sample? Multi-Variate Distribution

• Let $X = \{X_1, \ldots, X_n\}$ be a set of variables

• Express the distribution in product form

$$P(X) = P(X_1) \times P(X_2 | X_1) \times \ldots \times P(X_n | X_1, \ldots, X_{n-1})$$

• Sample variables one by one from left to right, along the ordering dictated by the product form.

• Bayesian network literature: Logic sampling or Forward Sampling.
Sampling in Bayes nets (Forward Sampling)

• No evidence: “causal” form makes sampling easy
 – Follow variable ordering defined by parents
 – Starting from root(s), sample downward
 – When sampling each variable, condition on values of parents

\[p(A, B, C, D) = p(A) \cdot p(B) \cdot p(C \mid A, B) \cdot p(D \mid B, C) \]

Sample:
\[a \sim p(A) \]
\[b \sim p(B) \]
\[c \sim p(C \mid A = a, B = b) \]
\[d \sim p(D \mid C = c, B = b) \]
Froward Sampling: No Evidence (Henrion 1988)

Input: Bayesian network

\[X = \{X_1, \ldots, X_N\}, \text{N-#nodes, T - # samples} \]

Output: T samples

Process nodes in topological order – first process the ancestors of a node, then the node itself:

1. For \(t = 0 \) to \(T \)
2. For \(i = 0 \) to \(N \)
3. \[X_i \leftarrow \text{sample } x_i^t \text{ from } P(x_i \mid \text{pa}_i) \]
Forward Sampling (example)

\[P(X_1, X_2, X_3, X_4) = P(X_1) \times P(X_2 \mid X_1) \times P(X_3 \mid X_1) \times P(X_4 \mid X_2, X_3) \]

No Evidence

// generate sample \(k \)

1. Sample \(x_1 \) from \(P(x_1) \)
2. Sample \(x_2 \) from \(P(x_2 \mid X_1 = x_1) \)
3. Sample \(x_3 \) from \(P(x_3 \mid X_1 = x_1) \)
4. Sample \(x_4 \) from \(P(x_4 \mid X_2 = x_2, X_3 = x_3) \)

No evidence!
Forward Sampling w/ Evidence

Input: Bayesian network
\[X = \{X_1, \ldots, X_N\}, \text{ N- # nodes} \]
E – evidence, T - # samples

Output: T samples consistent with E

1. For \(t = 1 \) to \(T \)
2. For \(i = 1 \) to \(N \)
3. \(X_i \leftarrow \text{sample } x_i^t \text{ from } P(x_i \mid \text{pa}_i) \)
4. If \(X_i \text{ in E and } X_i \neq x_i \), reject sample:
5. Goto Step 1.
Forward Sampling (example)

\[P(x_1) \]

\[P(x_2 | x_1) \]

\[P(x_3 | x_1) \]

\[P(x_4 | x_2, x_3) \]

Evidence: \(X_3 = 0 \)

// generate sample \(k \)
1. Sample \(x_1 \) from \(P(x_1) \)
2. Sample \(x_2 \) from \(P(x_2 | x_1) \)
3. Sample \(x_3 \) from \(P(x_3 | x_1) \)
4. If \(x_3 \neq 0 \), reject sample and start from 1, otherwise
5. Sample \(x_4 \) from \(P(x_4 | x_2, x_3) \)
How to answer queries with sampling?

Expected value and Variance

Many queries can be phrased as computing expectation of some functions

Expected value: Given a probability distribution $P(X)$ and a function $g(X)$ defined over a set of variables $X = \{X_1, X_2, \ldots, X_n\}$, the expected value of g w.r.t. P is

$$E_P[g(x)] = \sum_x g(x)P(x)$$

Variance: The variance of g w.r.t. P is:

$$\text{Var}_P[g(x)] = \sum_x \left[g(x) - E_P[g(x)] \right]^2 P(x)$$

slides10a F2021
Monte Carlo Estimate

• **Estimator:**

 – An estimator is a function of the samples.

 – It produces an estimate of the unknown parameter of the sampling *distribution*.

Given i.i.d. samples $S^1, S^2, \ldots S^T$ drawn from P, the Monte carlo estimate of $\mathbb{E}_P[g(x)]$ is given by:

$$
\hat{g} = \frac{1}{T} \sum_{t=1}^{T} g(S^t)
$$
Example: Monte Carlo estimate

• Given:
 – A distribution $P(X) = (0.3, 0.7)$.
 – $g(X) = 40$ if X equals 0
 = 50 if X equals 1.
• Estimate $E_P[g(X)] = (40 \times 0.3 + 50 \times 0.7) = 47$.
• Generate k samples from P: 0,1,1,1,0,1,1,0,1,0

\[
\hat{g} = \frac{40 \times \# \text{samples}(X = 0) + 50 \times \# \text{samples}(X = 1)}{\# \text{samples}}
\]

\[
= \frac{40 \times 4 + 50 \times 6}{10} = 46
\]
Bayes Networks with Evidence

• Estimating posterior probabilities, \(P[A = a | E=e] \)?

• Rejection sampling
 – Draw \(x \sim p(x) \), but discard if \(E \neq e \)
 – Resulting samples are from \(p(x | E=e) \); use as before
 – Problem: keeps only \(P[E=e] \) fraction of the samples!
 – Performs poorly when evidence probability is small

• Estimate the ratio: \(P[A=a,E=e] / P[E=e] \)
 – Two estimates (numerator & denominator)
 – Good finite \textit{sample bounds} require low \textit{relative} error!
 – Again, performs poorly when evidence probability is small
 – \textbf{What bounds can we get?}
Bayes Networks With Evidence

- Estimating the probability of evidence, $P[E=e]$ (absolute error):

 $$P[E = e] = \mathbb{E}[\mathbb{1}[E = e]] \approx U = \frac{1}{m} \sum_{i} \mathbb{1}[\bar{e}^{(i)} = e]$$

 - Finite sample bounds: $u(x) \in [0,1]$ [e.g., Hoeffding]
 $$\Pr\left[|U - \mathbb{E}[U]| > \epsilon\right] \leq 2 \exp(-2m\epsilon^2)$$

 - Relative error bounds [Dagum & Luby 1997]
 $$\Pr\left[\frac{|U - \mathbb{E}[U]|}{\mathbb{E}[U]} > \epsilon\right] \leq \delta \quad \text{if} \quad m \geq \frac{4}{\mathbb{E}[U] \epsilon^2} \log \frac{2}{\delta}$$

So, if U, the probability of evidence is very small we would need many samples that are not rejected.
Overview

1. Basics of sampling
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation, cutset sampling
Importance Sampling: Main Idea

• Express query as the expected value of a random variable w.r.t. to a distribution Q.
• Generate random samples from Q.
• Estimate the expected value from the generated samples using a monte carlo estimator (average).
Importance Sampling

\[\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x) \]

\[\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m} \sum_{i} \frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})} u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim q(x) \]
Importance Sampling

\[\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_i u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x) \]

\[\int p(x)u(x) = \int q(x) \frac{p(x)}{q(x)} u(x) \approx \frac{1}{m} \sum_i \frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})} u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim q(x) \]

“importance weights”

\[w^{(i)} = \frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})} \]
Estimating $P(E)$ and $P(X|e)$
Importance Sampling For $P(e)$
(for discrete variables)

Let $Z = X \setminus E$,

Let $Q(Z)$ be a (proposal) distribution, satisfying

$P(z, e) > 0 \Rightarrow Q(z) > 0$

Then, we can rewrite $P(e)$ as:

$$P(e) = \sum_{z} P(z, e) = \sum_{z} P(z, e) \frac{Q(z)}{Q(z)} = E_Q \left[\frac{P(z, e)}{Q(z)} \right] = E_Q[w(z)]$$

Monte Carlo estimate:

$$\hat{P}(e) = \frac{1}{T} \sum_{t=1}^{T} w(z'^{t}), \text{ where } z'^{t} \leftarrow Q(Z)$$
Properties of IS Estimate of $P(e)$

- **Convergence:** by law of large numbers
 \[
 \hat{P}(e) = \frac{1}{T} \sum_{i=1}^{T} w(z^i) \xrightarrow{a.s.} P(e) \text{ for } T \to \infty
 \]

- **Unbiased.**
 \[
 E_Q[\hat{P}(e)] = P(e)
 \]

- **Variance:**
 \[
 \text{Var}_Q[\hat{P}(e)] = \text{Var}_Q\left[\frac{1}{T} \sum_{i=1}^{N} w(z^i)\right] = \frac{\text{Var}_Q[w(z)]}{T}
 \]
Properties of IS Estimate of $P(e)$

- Mean Squared Error of the estimator

\[
MSE_Q[\hat{P}(e)] = E_Q\left[\left(\hat{P}(e) - P(e)\right)^2\right]
\]

\[
= \left(P(e) - E_Q[\hat{P}(e)]\right)^2 + Var_Q[\hat{P}(e)]
\]

\[
= Var_Q[\hat{P}(e)]
\]

\[
= \frac{Var_Q[w(x)]}{T}
\]

This quantity enclosed in the brackets is zero because the expected value of the estimator equals the expected value of $g(x)$.
Estimating $P(X_i \mid e)$

Let $\delta_{x_i}(z)$ be a dirac-delta function, which is 1 if z contains x_i and 0 otherwise.

\[
P(x_i \mid e) = \frac{P(x_i, e)}{P(e)} = \frac{\sum z \delta_{x_i}(z)P(z, e)}{\sum z P(z, e)} = E_Q \left[\frac{\delta_{x_i}(z)P(z, e)}{Q(z)} \right]
\]

Idea: Estimate numerator and denominator by IS.

Ratio estimate: $\overline{P}(x_i \mid e) = \frac{\hat{P}(x_i, e)}{\hat{P}(e)} = \frac{\sum_{k=1}^{T} \delta_{x_i}(z^k)w(z^k, e)}{\sum_{k=1}^{T} w(z^k, e)}$

Estimate is biased: $E[\overline{P}(x_i \mid e)] \neq P(x_i \mid e)$
Properties of the IS estimator for $P(X_i | e)$

- Convergence: By Weak law of large numbers
 \[
 \bar{P}(x_i | e) \to P(x_i | e) \quad \text{as } T \to \infty
 \]

- Asymptotically unbiased
 \[
 \lim_{T \to \infty} E_P[\bar{P}(x_i | e)] = P(x_i | e)
 \]

- Variance
 - Harder to analyze
 - Liu suggests a measure called “Effective sample size”
End of class
Generating Samples From Q

• No restrictions on “how to”
• Typically, express Q in product form:
 – Q(Z)=Q(Z₁)×Q(Z₂|Z₁)×...×Q(Zₙ|Z₁,...,Zₙ₋₁)
• Sample along the order Z₁,...,Zₙ
• Example:
 – Z₁ ← Q(Z₁)=(0.2,0.8)
 – Z₂ ← Q(Z₂|Z₁)=(0.1,0.9,0.2,0.8)
 – Z₃ ← Q(Z₃|Z₁,Z₂)=Q(Z₃)=(0.5,0.5)
More on Properties of IS

- Importance sampling:
 \[\int p(x)u(x) = \int q(x) \frac{p(x)}{q(x)} u(x) \approx \frac{1}{m} \sum_i \frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})} u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim q(x) \]

- IS is unbiased and fast if \(q(.) \) is easy to sample from

- IS can have lower variance if \(q(.) \) is chosen well
 - Ex: \(q(x) \) puts more probability mass where \(u(x) \) is large
 - Optimal: \(q(x) \propto |u(x) p(x)| \)

- IS can also give poor performance
 - If \(q(x) << u(x) p(x) \): rare but very high weights!
 - Then, empirical variance is also unreliable!
 - For guarantees, need to analytically bound weights / variance...

How to get a good proposal?
Likelihood Weighting
(Fung and Chang, 1990; Shachter and Peot, 1990)

Is an instance of importance sampling!

“Clamping” evidence+
logic sampling (Forward sampling)+
weighing samples by evidence likelihood

Works well for likely evidence!
Likelihood Weighting: Sampling

Sample in topological order over X!

 Clamp evidence, Sample $x_i \leftarrow P(X_i|pa_i)$, $P(X_i|pa_i)$ is a look-up in CPT!
Likelihood Weighting: Proposal Distribution

\[Q(X \setminus E) = \prod_{X_i \in X \setminus E} P(X_i | pa_i, e) \]

Notice: \(Q\) is another Bayesian network

Example:
Given a Bayesian network: \(P(X_1, X_2, X_3) = P(X_1) \times P(X_2 | X_1) \times P(X_3 | X_1, X_2)\) and evidence \(X_2 = x_2\).

\[Q(X_1, X_3) = P(X_1) \times P(X_3 | X_1, X_2 = x_2) \]

Weights:

Given a sample: \(x = (x_1, \ldots, x_n)\)

\[w = \frac{P(x, e)}{Q(x)} = \frac{\prod_{X_i \in X \setminus E} P(x_i | pa_i, e) \times \prod_{E_j \in E} P(e_j | pa_j)}{\prod_{X_i \in X \setminus E} P(x_i | pa_i, e)} \]

\[= \prod_{E_j \in E} P(e_j | pa_j) \]
Likelihood Weighting: Estimates

Estimate $P(e)$:

$$\hat{P}(e) = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

Estimate Posterior Marginals:

$$\hat{P}(x_i \mid e) = \frac{\hat{P}(x_i, e)}{\hat{P}(e)} = \frac{\sum_{t=1}^{T} w^{(t)} g_{x_i}(x^{(t)})}{\sum_{t=1}^{T} w^{(t)}}$$

$$g_{x_i}(x^{(t)}) = 1 \text{ if } x_i = x_i^t \text{ and equals zero otherwise}$$
Properties of Likelihood Weighting

• Converges to exact posterior marginals
• Generates Samples Fast
• Sampling distribution is close to prior (especially if E ⊆ Leaf Nodes)
• Increasing sampling variance
 ⇒ Convergence may be slow
 ⇒ Many samples with $P(x^{(t)})=0$ rejected (because weight is zero)
Outline

• Definitions and Background on Statistics
• Theory of importance sampling
• Likelihood weighting
• State-of-the-art importance sampling techniques
Proposal selection

• One should try to select a proposal that is as close as possible to the posterior distribution.

\[
\text{Var}_Q[\hat{P}(e)] = \frac{\text{Var}_Q[w(z)]}{T} = \frac{1}{N} \sum_{z \in Z} \left(\frac{P(z, e)}{Q(z)} - P(e) \right)^2 Q(z)
\]

\[
\frac{P(z, e)}{Q(z)} - P(e) = 0, \text{ to have a zero - variance estimator}
\]

\[
\therefore \frac{P(z, e)}{P(e)} = Q(z)
\]

\[
\therefore Q(z) = P(z | e)
\]
Perfect sampling using Bucket Elimination

• Algorithm:
 – Run Bucket elimination on the problem along an ordering \(d=(X_N,\ldots,X_1) \).
 – Sample along the reverse ordering: \((X_1,\ldots,X_N) \).
 – At each variable \(X_i \), recover the probability \(P(X_i | x_1,\ldots,x_{i-1}) \) by referring to the bucket.
How to sample from a Markov network?

Exact sampling via inference

• Draw samples from \(P[A | E=e] \) directly?
 – Model defines un-normalized \(p(a, ..., e) \)
 – Build (oriented) tree decomposition & sample

\[
\begin{align*}
\tilde{b} &\sim f(\tilde{a}, b) \cdot f(b, \tilde{c}) \cdot f(b, \tilde{d}) \cdot f(b, \tilde{e}) / \lambda_{B \rightarrow C} \\
\tilde{c} &\sim f(c, \tilde{a}) \cdot f(c, \tilde{e}) \cdot \lambda_{B \rightarrow C}(\tilde{a}, c, \tilde{d}, \tilde{e}) / \lambda_{C \rightarrow D} \\
\tilde{d} &\sim f(\tilde{a}, d) \cdot \lambda_{B \rightarrow D}(d, \tilde{e}) / \lambda_{D \rightarrow E}(\tilde{a}, \tilde{e}) \\
\tilde{e} &\sim \lambda_{D \rightarrow E}(\tilde{a}, e) / \lambda_{E \rightarrow A}(\tilde{a}) \\
\tilde{a} &\sim p(A) = f(a) \cdot \lambda_{E \rightarrow A}(a) / Z
\end{align*}
\]

Downward message normalizes bucket; ratio is a conditional distribution

Work: \(O(\exp(w)) \) to build distribution
\(O(n \ d) \) to draw each sample
Bucket elimination (BE)

bucket B: \(P(B|A) \), \(P(D|B,A) \), \(P(e|B,C) \)

bucket C: \(P(C|A) \), \(h_b^B(A,D,C,e) \)

bucket D: \(h_c^C(A,D,e) \)

bucket E: \(h_d^D(A,e) \)

bucket A: \(P(a) \), \(h_e^E(a) \)

\(P(e) \)

\[\sum \prod_b \]

Elimination operator
Sampling from the output of BE
(Dechter 2002)

Set $A = a$, $D = d$, $C = c$ in the bucket
Sample: $B = b \leftarrow Q(B \mid a, e, d) \propto P(B \mid a)P(d \mid B, a)P(e \mid b, c)$

bucket B: $P(B \mid A)$ $P(D \mid B, A)$ $P(e \mid B, C)$

bucket C: $P(C \mid A)$ $h^B(A, D, C, e)$

bucket D: $h^C(A, D, e)$

bucket E: $h^D(A, e)$

Evidence bucket: ignore

bucket A: $P(A)$ $h^E(A)$

$Q(A) \propto P(A) \times h^E(A)$

Sample: $A = a \leftarrow Q(A)$
Mini-Bucket Elimination

Space and Time constraints: Maximum scope size of the new function generated should be bounded by 2

BE generates a function having scope size 3. So it cannot be used.

Approximation of $P(e)$
Sampling from the output of MBE

- **bucket B:**
 - $P(e|B,C)$
 - $P(B|A) P(D|B,A)$
- **bucket C:**
 - $P(C|A)$
 - $h^B(C,e)$
- **bucket D:**
 - $h^B(A,D)$
- **bucket E:**
 - $h^C(A,e)$
- **bucket A:**
 - $h^E(A)$
 - $h^D(A)$

Sampling is same as in BE-sampling except that now we construct Q from a randomly selected “mini-bucket”
IJGP-Sampling
(Gogate and Dechter, 2005)

- Iterative Join Graph Propagation (IJGP)
 - A Generalized Belief Propagation scheme (Yedidia et al., 2002)
- IJGP yields better approximations of $P(X|E)$ than MBE (Dechter, Kask and Mateescu, 2002)
- Output of IJGP is same as mini-bucket “clusters”
- Currently one of the best performing IS scheme!
Choosing a proposal (wmb-IS)

- Can use WMB upper bound to define a proposal $q(x)$:

 $$\tilde{b} \sim w_1 q_1(b|\tilde{a}, \tilde{c}) + w_2 q_2(b|\tilde{d}, \tilde{e})$$

 Weighted mixture:
 - use minibucket 1 with probability w_1
 - or, minibucket 2 with probability $w_2 = 1 - w_1$

 where

 $$q_1(b|a, c) = \left[\frac{f(a, b) \cdot f(b, c)}{\lambda_{B \rightarrow C}(a, c)} \right] \frac{1}{w_1}$$

 $$\vdots$$

 $$\tilde{a} \sim q(A) = f(a) \cdot \lambda_{E \rightarrow A}(a) / U$$

 Key insight: provides bounded importance weights!

 $$0 \leq \frac{F(x)}{q(x)} \leq U \quad \forall x$$

[slides10a F2021]
WMB-IS Bounds

- Finite sample bounds on the average
 \[\Pr\left[|\hat{Z} - Z| > \epsilon\right] \leq 1 - \delta \]

- Compare to forward sampling

\[\epsilon = \sqrt{\frac{2\hat{V} \log(4/\delta)}{m}} + \frac{7U \log(4/\delta)}{3(m-1)} \]

“Empirical Bernstein” bounds
Other Choices of Proposals

- **Belief propagation**
 - BP-based proposal [Changhe & Druzdzel 2003]
 - Join-graph BP proposal [Gogate & Dechter 2005]
 - Mean field proposal [Wexler & Geiger 2007]

- **Adaptive importance sampling**
 - Use already-drawn samples to update q(x)
 - Ex: [Cheng & Druzdzel 2000] [Lapeyre & Boyd 2010]
 - Lose “iid”-ness of samples
Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling