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Bayesian Networks (BNs) in 2 ways: 
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From a distribution to a BN:
Å A Bayesian network is factorize probability distribution along an ordering.
Å The DAG emerging is a  Bayesian network of the distribution
Å The factorization is guided by a set of Markov assumption that transform 

the chain product formula into a Bayesian network.

From a BN to a distribution: 
Å Generate a DAG with its Markov assumptions.
Å Parameterize the DAG yielding a Bayesian network which corresponds to a 

single probability distribution obtained by product.

Å The BN distribution obeys additional independence assumption read from the DAG 
and can be proved using the Graphoid axioms.
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P(B,E,A,J,M)=?

P(B)P(E|B)P(A|B,E)P(J|B,E,A)P(M|B,E,A,J) =

P(B)P(E|B)P(A|B,E)P(J|A)P(M|A) =

pa(B) = {}, pa(E)={B},P(A)= {B,E}, pa(J) = {A}, pa(M) = {A}
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The causal interpretation
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But influences can be indirect as well.

For exampleé
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Graphs Convey Independence Statements

ÂDirected graphs by graphôs d-separation

Â Undirected graphs by graph separation

Â Goal: capture probabilistic conditional 
independence by graphs.

Â We focus on directed graphs first.
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What are the Markov assumptions here?



slides2 COMPSCI 2021

What are the Markov assumptions here?





slides2 COMPSCI 2021



Outline

Â Bayesian Networks, DAGS, Markov(G)

Â From a distribution to a BN

Â From BN to distributions, DAGs, Markov(G)

Â Parameterization

Â Graphoidsaxioms for Conditional 
Independence

Â D-separation: Inferring  CIs in graphs

class1  compsci2021



slides2 COMPSCI 2021



slides2 COMPSCI 2021



slides2 COMPSCI 2021



slides2 COMPSCI 2021



slides2 COMPSCI 2021

Use GeNie/Smile
To create this network




