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Bayesian Networks (BNs) in 2 ways:

From a distribution to a BN:
A A Bayesian network is factorize probability distribution along an ordering.

A The DAG emerging is a Bayesian network of the distribution
A The factorization is guided by a set of Markov assumption that transform

the chain product formula into a Bayesian network.
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Probabilistic Madeling with Joint Distribution

Difficulty: Complexity in model construction and inference

m In Alarm example:

m 31 numbers needed,
m Quite unnatural to assess: e.g.

PB=y.E=y, A=y, J=y,M=y)

m Computing P(B=y|M=y) takes 29 additions.
m In general,

m P(X1, Xz, ..., X,) needs at least 2" — 1 numbers to specify the joint
probability. Exponential model size.
m Knowledge acquisition difficult (complex, unnatural),

m Exponential storage and inference,
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Conditional Independence and Factorization

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

m [he chain rule of probabilities:

P(X1,X2) = P(X1)P(X2|X1)
P(X1, X2, X3) = P(X1)P(Xz|X1)P(X5] X1, X3)

m No gains yet. The number of parameters required by the factors is:
pn=lgon=l4  +1=2"-1.
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Conditional Independence and Factorization

Conditional Independence

m About P(X;|X1,...,Xi—1):

m Domain knowledge usually allows one to identify a subset
pa(X;) € {X1,...,Xj—1} such that

m Given pa(X;), X; is independent of all variables in
[ X1, ..., Xic1}\ pa(Xi), ie.

P{X,.|X1 ..... X,.'_]_:I = P{X,|pa(%}}
m [hen

m Joint distribution factorized.

B [he number of parameters might have been substantially reduced.
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- Conditional Independence and Factorization
Example continued
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Example continued

m Conditional probabilities tables (CPT)

E FIiE
E__P(B) = F(E) L B E FP(A|B, E)
¥ 01 T 02
. " o5 ¥ Y Y .85
H L98 " N Y ¥ N5
¥ ¥ H .04
N Y N .06
M A P(M|A) J A PB(J|A) Y N v .29
¥ Y .9 ¥ ¥ -7 H N ¥ L.T1
N Y .1 H ¥ .3 ¥ N N LO01
Y N .05 ¥ N .01 N N N .999
N N .3t N N .99
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Conditional Independence and Factorization

Example continued

m Model size reduced from 31 to 1+1+4+242=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to d55€55.€.8.

P(B=Y),P(E=Y),P(A=Y|B=Y,E=Y),

P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier. Will see this later.
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Bayvesian Metwaorls

From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

m construct a directed graph by drawing an arc from X; to X; iff Xj € pa(X;)
pa(B) = {}, pa(E) = {}, pa(A) = {B,E}, pa(J) = {A}, pa(M) = {A}.

{-—B—--:} PiB) .;::::n :::::. P(E}
< a > P(A|B, E)

I

C 1 D pa|m C ® 3 p(u|a)

m Also attach the conditional probability (table) P(X;|pa(X;)) to node X;.

m What results in is a Bayesian network.Also known as belief network,
probabilistic network.
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Capturing Independence Graphically

The causal interpretation

@rthqual@ Gur{g;rys
e — Assume that edges in this

graph represent direct causal
influences among these
variables.

The alarm triggering (A) is a direct cause of receiving a call from a
neighbor (C).




Capturing Independence Graphically

But influences can be indirect as well.
exampl eée
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We expect our belief in C to be
influenced by evidence on K.

If we get a radio report that an
earthquake took place in our
neighborhood, our belief in the
alarm triggering would probably
Increase, which would also
increase our belief in receiving
a call from our neighbor.




Capturing Independence Graphically
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We would not change this
belief, however, if we knew for
sure that the alarm did not
trigger. That is, we would find
C independent of R given —A
iIn the context of this causal
structure.



Capturing Independence Graphically

7 Visitto Asia? N

_/

/’/-— Tuberculosis?

Tuberculosis or Cancer?

We would clearly find a visit to
Asia relevant to our belief in
the X-Ray test coming out
positive, but we would find the
visit irrelevant if we know for
sure that the patient does not
have Tuberculosis. That is, X
is dependent on A, but is
independent of A given —T.



Graphs Convey Independence Statements

+

ADI rected gr ap-kBeparaion
A Undirected graphs by graph separation

A Goal: capture probabillistic conditional
Independence by graphs.

A We focus on directed graphs first.



Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Given a variable V in a DAG G:

Parents(V') are the parents of V in DAG G, that is, the set of
variables N with an edge from N to V.

Descendants(V') are the descendants of V' in DAG G, that is, the
set of variables N with a directed path from V to N
(we also say that V is an ancestor of N in this case).

Non Descendants( V) are all variables in DAG G other than V,
Parents(V') and Descendants(V'). We will call these
variables the non-descendants of V' in DAG G.



Capturing Independence Graphically

We will formally interpret each DAG G as a compact
representation of the following independence statements

(Markovian assumptions):

[(V,Parents(V), Non Descendants(V)),

for all variables V' in DAG G. )

@ If we view the DAG as a causal structure, then Parents( V)
denotes the direct causes of V' and Descendants(V') denotes

the effects of V.

@ Given the direct causes of a variable, our beliefs in that
variable will no longer be influenced by any other variable
except possibly by its effects.



Capturing Independence Graphically

What are the Markov assumptions here?

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.
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Capturing Independence Graphically

What are the Markov assumptions here?

Earthquakef“ ]gl;lg aryN
(B ) <JB_-/ I(C.A {B,E.R})
I(R,E.{A.B,C})
- I(A. {B,E},R)
Al(éfljll‘l)ll'?/l /(B, @., {E., R})
T I(E. (. B)
cilﬁ
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Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.



Capturing Independence Graphically

The formal interpretation of a DAG as a set of conditional
independence statements makes no reference to the notion of
causality, even though we have used causality to motivate this
Interpretation.

If one constructs the DAG based on causal perceptions, then one
would tend to agree with the independencies declared by the DAG.

It is perfectly possible to have a DAG that does not match our
causal perceptions, yet we agree with the independencies declared

by the DAG.
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Capturing Independence Graphically

-
/

/ Radio? ™

N ®)

rd

I-'arlhqu 1kn,\

(E ) __”

N féu_r;l;;?\
\____@___f,/

N @
|

l
/T can
&

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.
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Parameterizing the Independence Structure

@ The DAG G is a partial
specification of our state of belief

 Farthquake? ™ ~ Burglary? ™ Pr.
N B ~® S . .
/T @ By constructing G, we are saying
/ . that the distribution Pr must
.;(Rf;;if‘? ) C Alg;“?/. satisfy the independence
o T assumptions in Markov(G).
| : : :

™ @ This clearly constrains the possible
_© choices for the distribution Pr, but

does not uniquely define it.

We can augment the DAG G by a set of conditional probabilities
that together with Markov(G) are guaranteed to define the
distribution Pr uniquely.




Parameterizing the Independence Structure

'<Eart'1qg‘;ak6?>- (fur{,e]?r}}) For every variable X in the DAG G,
/ 7 and its parents U, we need to provide
i . the prol::fa bility Pr(x|u) for. every Yallue
N N x of variable X and every instantiation
T| u of parents U.
<D

We need to provide the following conditional probabilities:

Pr(c|a), Pr(rle), Pr(alb,e), Pr(e), Pr(b),

where a, b, ¢, e and r are values of variables A, B, C. E and R.




Parameterizing the Independence Structure

The conditional probabilities required for

- variable C:
_:r;,_-_ 1;1_*1 ' Eurg]ar ;\
<E ﬂqu) ke> \u.__'f]j_.../ A C Pr(cl|a)
a /"" true true | .80
e \ - true false | .20
(" Radio? ™ ( A‘a““?<. false true | .001
R \“‘"-{AT)--*"/ false false | .999
/|l The above table is known as a Conditional
C Probability Table (CPT) for variable C.

Pr(c|a) + Pr(c|a) = 1 and Pr(c|a) + Pr(c|a) = 1.

Two of the probabilities in the above CPT are redundant and can
be inferred from the other two. We only need 10 independent
probabilities to completely specify the CP Ts for this DAG.




Parameterizing the Independence Structure

A Bayesian network for variables Z is a pair (G, ©), where

@ G is a directed acyclic graph over variables Z, called the
network structure.

@ © is a set of conditional probability tables (CPTs), one for
each variable in Z, called the network parametrization.

@ Ox|y: the CPT for variable X and its parents U.
@ XU: a network family.

@ ,u: the value assigned by CPT © x|y to the conditional
probability Pr(x|u). Called a network parameter.

We must have ) 0,), = 1 for every parent instantiation u.



Parameterizing the Independence Structure
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To create this network






