

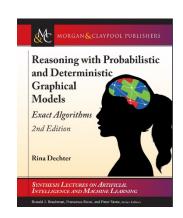
Reasoning with Graphical Models

Slides Set 5:

Exact Inference Algorithms Bucket-elimination

Rina Dechter

(Dechter chapter 4, Darwiche chapter 6)



Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE (→MAP)
 - for MAP (→ Marginal Map)
 - Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

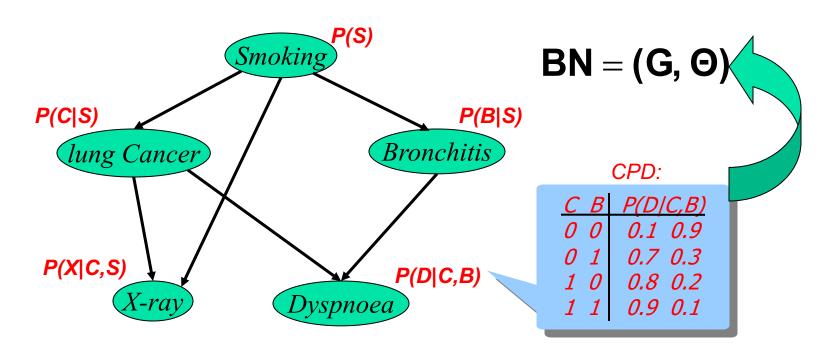
Inference for probabilistic networks

- Bucket elimination
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE $(\rightarrow MAP)$
 - for MAP (→ Marginal Map)
- Induced-Width

4

Bayesian Networks: Example

(Pearl, 1988)

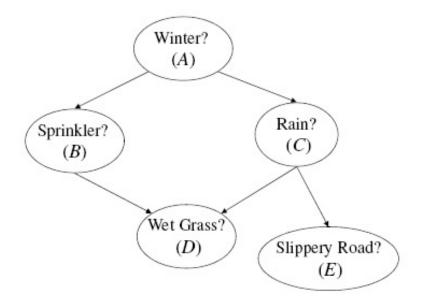


P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Belief Updating:

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network



Α	Θ_A
true	.6
false	.4

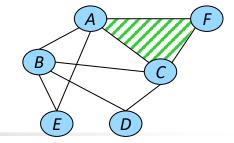
Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	C	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Types of queries



Max-Inference	$f(\mathbf{x}^*) = \max_{\mathbf{x}} \left(\prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha}) \right)$	
> Sum-Inference	$Z = \sum_{\mathbf{x}} \prod_{lpha} f_{lpha}(\mathbf{x}_{lpha})$	<i>Harder</i>
Mixed-Inference	$f(\mathbf{x}_M^*) = \max \sum \int \int f_{\alpha}(\mathbf{x}_{\alpha})$	

 \mathbf{x}_M

- NP-hard: exponentially many terms
- We will focus on exact and then on approximation algorithms
 - Anytime: very fast & very approximate! Slower & more accurate

Belief Updating is NP-hard

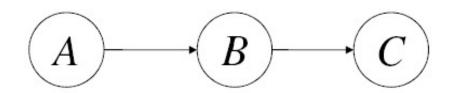
- Each SAT formula can be mapped into a belief updating query in a Bayesian network
- Example

$$(\neg u \lor \neg w \lor y) \land (u \lor \neg v \lor w)$$

AS

A Simple Network

- How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
- Brute force $O(k^4)$
- Maybe $O(4k^2)$



Α	Θ_A
true	.6
false	.4

Α	В	$\Theta_{B A}$
true	true	.9
true	false	.1
false	true	.2
false	false	.8

В	C	$\Theta_{C B}$
true	true	.3
true	false	.7
false	true	.5
false	false	.5

To compute the prior marginal on variable C, Pr(C)

we first eliminate variable A and then variable B

- There are two factors that mention variable A, Θ_A and $\Theta_{B|A}$
- We multiply these factors first and then sum out variable A from the resulting factor.
- Multiplying Θ_A and $\Theta_{B|A}$:

Α	В	$\Theta_A\Theta_{B A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

Summing out variable A:

В	$\sum_A \Theta_A \Theta_{B A}$
true	.62 = .54 + .08
false	.38 = .06 + .32

- We now have two factors, $\sum_A \Theta_A \Theta_{B|A}$ and $\Theta_{C|B}$, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	C	$\Theta_{C B}\sum_{A}\Theta_{A}\Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

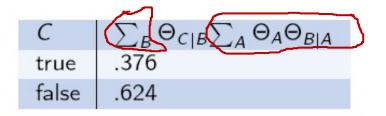
• Summing out:

C	$\sum_{B} \Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	.376
false	.624

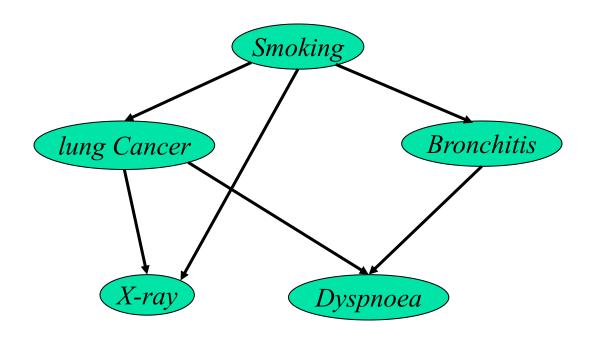
- We now have two factors, $\sum_A \Theta_A \Theta_{B|A}$ and $\Theta_{C|B}$, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	C	$\Theta_{C B} \Box_A \Theta_A \Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

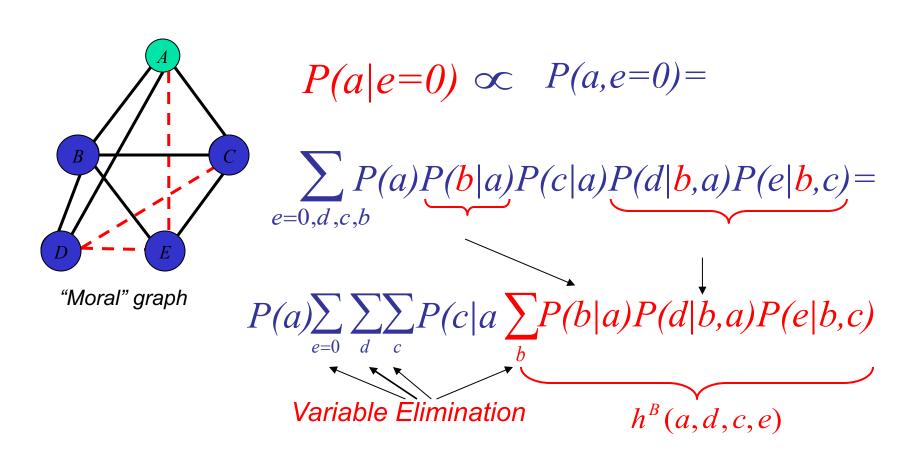


Belief Updating



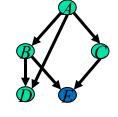
P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

Belief updating: P(X|evidence)=?



Bucket elimination

Algorithm BE-bel (Dechter 1996)



$$P(A | E = 0) = \alpha \sum_{E=0,D,C,B} P(A) \cdot P(B | A) \cdot P(C | A) \cdot P(D | A,B) \cdot P(E | B,C)$$

$$Elimination operator$$

$$bucket B: P(b|a) P(d|b,a) P(e|b,c)$$

$$bucket C: P(c|a) \lambda^{B}(a,d,c,e)$$

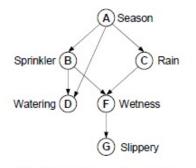
$$bucket D: \lambda^{C}(a,d,e)$$

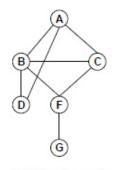
$$bucket E: e=0 \lambda^{D}(a,e)$$

$$bucket A: P(a) \lambda^{E}(a) \text{"induced width"} \text{(max clique size)}$$

$$P(a|e=0) = P(a,e=0)$$

A Bayesian Network Ordering: A,C,B,E,D,G





(a) Directed acyclic graph

(b) Moral graph

$$P(a,g=1) = \sum_{c,b,e,d,g=1} P(a,b,c,d,e,g) = \sum_{c,b,f,d,g=1} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a).$$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f). \tag{4.1}$$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \lambda_{G}(f) \sum_{d} P(d|b, a).$$
 (4.2)

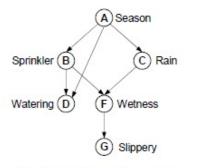
$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_{D}(a, b) \sum_{f} P(f|b, c) \lambda_{G}(f)$$
 (4.3)

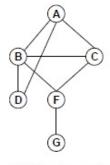
$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_D(a, b) \lambda_F(b, c)$$
 (4.4)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \lambda_B(a, c)$$

$$(4.5)$$

A Bayesian Network Ordering: A,C,B,E,D,G





(a) Directed acyclic graph

(b) Moral graph

$$P(a,g=1) = \sum_{c,b,e,d,g=1} P(a,b,c,d,e,g) = \sum_{c,b,f,d,g=1} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a).$$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f).$$
(4.1)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \lambda_{G}(f) \sum_{d} P(d|b, a).$$
(4.2)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_D(a, b) \sum_{f} P(f|b, c) \lambda_G(f)$$

$$(4.3)$$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_{D}(a, b) \lambda_{F}(b, c)$$

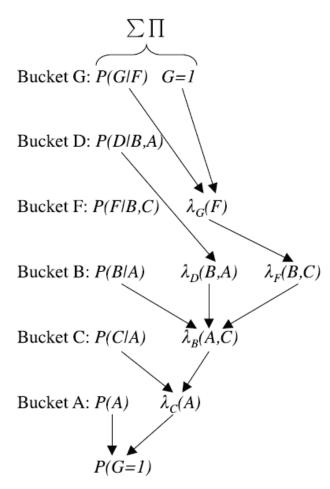
$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \lambda_{B}(a, c)$$

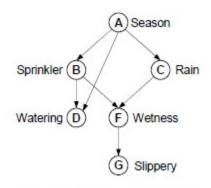
$$(4.4)$$

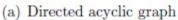
$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \lambda_B(a, c)$$

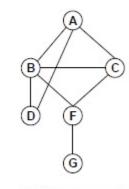
$$(4.5)$$

A Bayesian Network Ordering: A,C,B,F,D,G



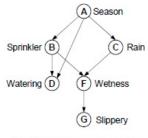


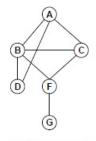




(b) Moral graph

A Different Ordering





(a) Directed acyclic graph

(b) Moral graph

Ordering: A,F,D,C,B,G

 $= P(a)\lambda_F(a)$

$$P(a, g = 1) = P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c) \sum_{g=1} P(g|f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a, d, c, f)$$

$$= P(a) \sum_{f} \lambda_{g}(f) \sum_{d} \lambda_{C}(a, d, f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a, f)$$

$$\sum_{f} \prod_{g \in F} \sum_{f} \lambda_{G}(f) \lambda_{D}(a, f)$$

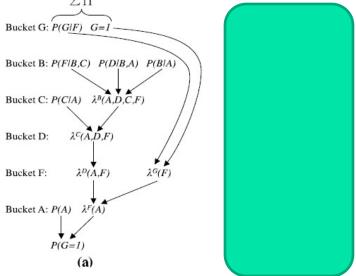
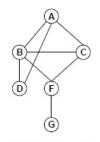


Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

A Different Ordering





(a) Directed acyclic graph

(b)

(b) Moral graph

Ordering: A,F,D,C,B,G

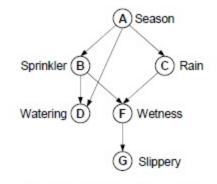
$$\begin{split} P(a,g=1) &= P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \sum_{g=1} P(g|f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a,d,c,f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \lambda_{C}(a,d,f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a,f) \\ &= P(a) \lambda_{F}(a) \end{split}$$

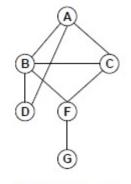
Bucket A: P(A) $\lambda^F(A)$

P(G=1)
(a)

Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

A Bayesian Network Processed Along 2 Orderings



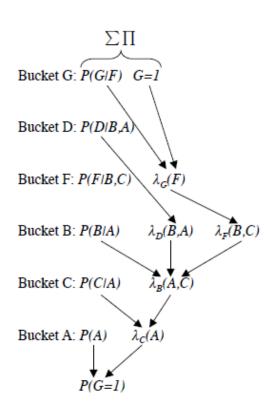


(a) Directed acyclic graph

(b) Moral graph

 \boldsymbol{G}

 \boldsymbol{B}



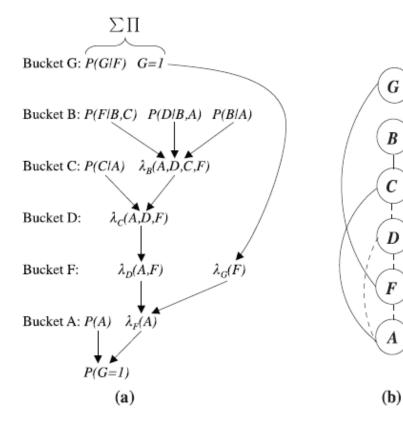


Figure 4.4: The bucket's output when processing along $d_2 = A, F, D, C, B, G$.

d1=A,C,B,F,D,G

The Operation In a Bucket

- Multiplying functions
- Marginalizing (summing-out) functions

Combination of Cost Functions

A	В	f(A,B)
b	b	0.4
b	g	0.1
g	b	0
g	g	0.5

Α	В	С	f(A,B,C)
b	b	b	0.1
b	b	g	0
b	g	b	0
b	g	g	0.08
g	b	b	0
g	b	g	0
g	g	b	0
g	g	g	0.4

В	С	f(B,C)
b	b	0.2
b	g	0
g	b	0
g	g	0.8

$$= 0.1 \times 0.8$$

Factors: Sum-Out Operation

The result of summing out variable X from factor f(X)

is another factor over variables $\mathbf{Y} = \mathbf{X} \setminus \{X\}$:

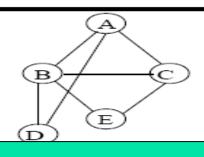
$$\left(\sum_{X} f\right)(\mathbf{y}) \stackrel{def}{=} \sum_{X} f(X, \mathbf{y})$$

В	С	D	f_1
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

В	С	$\sum_{D} f_1$
true	true	1
true	false	1
false	true	1
false	false	1

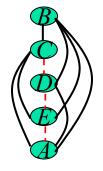
$$\begin{array}{ccc}
& \sum_{B} \sum_{C} \sum_{D} f_{1} \\
\top & 4
\end{array}$$

Bucket Elimination and Induced Width



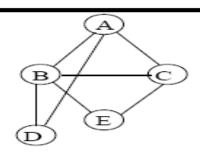
Ordering: a, e, d, c, b $\begin{array}{ll} bucket(B) = & P(e|b,c), P(d|a,b), P(b|a) \\ bucket(C) = & P(c|a) \mid \lambda_B(a,c,d,e) \\ bucket(D) = & \mid \lambda_C(a,d,e) \\ bucket(E) = & e = 0 \mid \mid \lambda_D(a,c) \end{array}$

 $bucket(A) = P(a) \mid\mid \lambda_E(a)$



W*=4

Bucket Elimination and Induced Width



Ordering: a, b, c, d, e

bucket(E) = P(e|b,c), e = 0 bucket(D) = P(d|a,b)

bucket(C) = P(c|a) | P(e = 0|b,c)

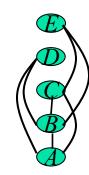
 $bucket(B) = P(b|a) \mid \lambda_D(a,b), \lambda_C(b,c)$

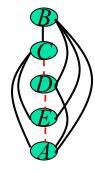
 $bucket(A) = P(a) \parallel \lambda_B(a)$

 $\begin{array}{ll} bucket(B) = & P(e|b,c), P(d|a,b), P(b|a) \\ bucket(C) = & P(c|a) \mid \lambda_B(a,c,d,e) \\ bucket(D) = & \mid \lambda_C(a,d,e) \end{array}$

 $bucket(E) = e = 0 \mid |\lambda_D(a,c)|$

 $bucket(A) = P(a) \mid\mid \lambda_E(a)$





ALGORITHM BE-BEL

Input: A belief network $\mathcal{B} = \langle X, D, P_G, \prod \rangle$, an ordering $d = (X_1, \dots, X_n)$; evidence e output: The belief $P(X_1|e)$ and probability of evidence P(e)

- Partition the input functions (CPTs) into bucket₁, ..., bucketn as follows: for i ← n downto 1, put in bucketi all unplaced functions mentioning Xi.
 Put each observed variable in its bucket. Denote by ψi the product of input functions in bucketi.
- backward: for p ← n downto 1 do
- 3. for all the functions ψ_{S0}, λ_{S1},...,λ_{Sj} in bucket_p do
 If (observed variable) X_p = x_p appears in bucket_p,
 assign X_p = x_p to each function in bucket_p and then
 put each resulting function in the bucket of the closest variable in its scope.
 else,

4.
$$\lambda_p \leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \lambda_{S_i}$$

- 5. place λ_p in bucket of the latest variable in scope(λ_p),
- return (as a result of processing bucket₁):

$$P(e) = \alpha = \sum_{X_1} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$

$$P(X_1|e) = \frac{1}{\alpha} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

Belief Updating

Algorithm BE-bel [Dechter 1996]

$$\overline{p(A|E} = 0) = \alpha \sum_{e,d,c,b} p(A) \, p(b|A) \, p(c|A) \, p(d|A,b) \, p(e|b,c) \, \mathbb{1}[e=0]$$

— Elimination & combination operators p(b|A) p(d|b,A) p(e|b,c)

bucket B:

bucket C:

bucket D:

bucket E:

 $1[E=0] \lambda_{D\to E}(A,e)$

 $p(c|A) \quad \lambda_{B \to C}(A, d, c, e)$

 $\lambda_{C \to D}(A, d, e)$

bucket A:

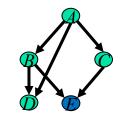
p(A) $\lambda_{E \to A}(A)$ p(E = 0)

W*=4

"induced width" (max clique size)

$$p(A|E=0)=p(A,E=0)\,/\,p(E=0)\,$$
 slides5 COMPSCI 2021

Bucket Elimination

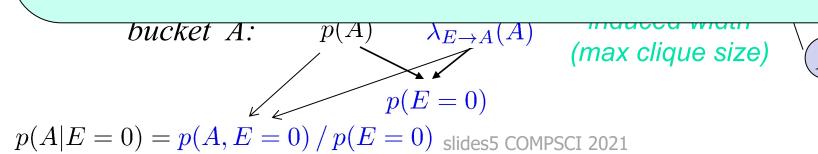


Algorithm BE-bel [Dechter 1996]

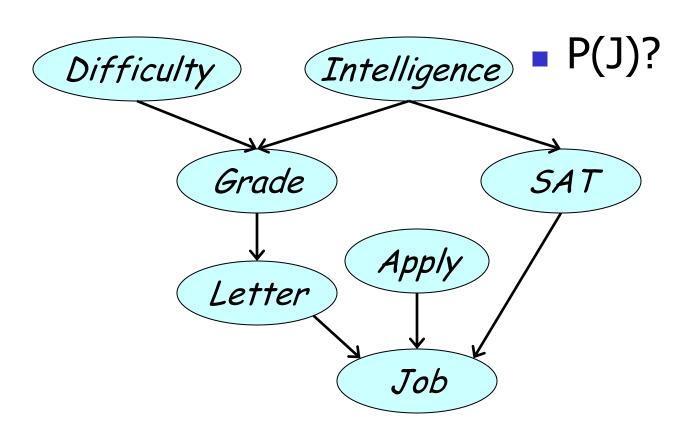
$$\overline{p(A|E=0)} = \alpha \sum_{e,d,c,b} p(A) \, p(b|A) \, p(c|A) \, p(d|A,b) \, p(e|b,c) \, \mathbb{1}[e=0]$$

$$\sum_b \prod \longleftarrow \text{Elimination & combination operators}$$

Time and space exponential in the induced-width / treewidth



Student Network Example

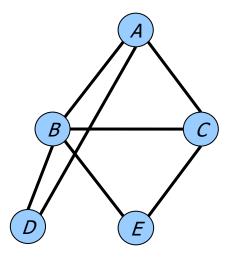


4

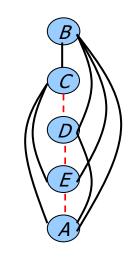
Induced Width (continued)

 $w^*(d)$ – the induced width of the primal graph along ordering d

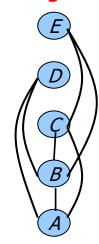
The effect of the ordering:



Primal (moraal) graph



$$w^*(d_1) = 4$$



$$w^*(d_2) = 2$$

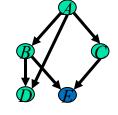
Inference for Probabilistic Networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE $(\rightarrow MAP)$
- for MAP (→ Marginal Map)
- Induced-Width

The Impact of Evidence?

Algorithm BE-bel



$$P(A | E = 0) = \alpha \sum_{E=0,D,C,B} P(A) \cdot P(B | A) \cdot P(C | A) \cdot P(D | A,B) \cdot P(E | B,C)$$

$$Elimination operator$$

$$bucket B: P(b|a) P(d|b,a) P(e|b,c) B=1$$

$$bucket C: P(c|a) \lambda^{B}(a,d,c,e)$$

$$bucket D: \lambda^{C}(a,d,e)$$

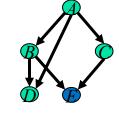
$$bucket E: e=0 \lambda^{D}(a,e)$$

$$bucket A: P(a) \lambda^{E}(a) \text{"induced width"} \text{(max clique size)}$$

slides5 COMPSCI 2021

The Impact of Evidence?

Algorithm BE-bel



$$P(A \mid E = 0) = \alpha \sum_{E=0,D,C,B} P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid A,B) \cdot P(E \mid B,C)$$

$$P(A \mid E = 0,B=1)? \qquad \sum_{E=0,D,C,B} \prod_{E=0,D,C,B} Elimination operator$$

bucket B:

$$P(b|a)$$
 $P(d|b,a)$ $P(e|b,c)$

√ P(e|b=1,c)

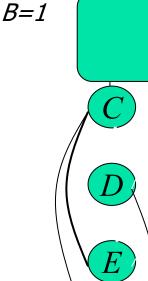
bucket
$$D$$
: $P(d/b=1,a)$

$$e=0$$

$$P(a)$$
 $P(b=1/a)$

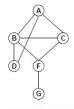
$$\mathbf{p}(a|a=0)$$

$$P(a|e=0) = \frac{P(a,e=0)}{P(e=0)}$$
slides 5 COMPSCI 2021



The Impact of Observations





(a) Directed acyclic graph

(b) Moral graph

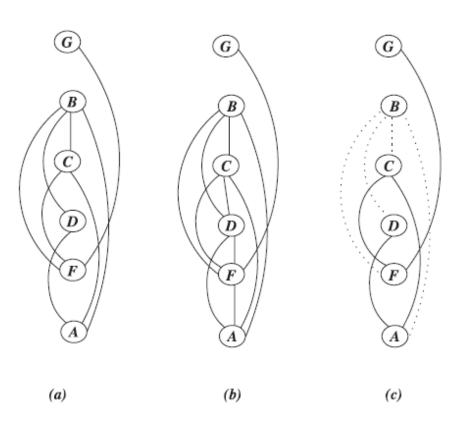
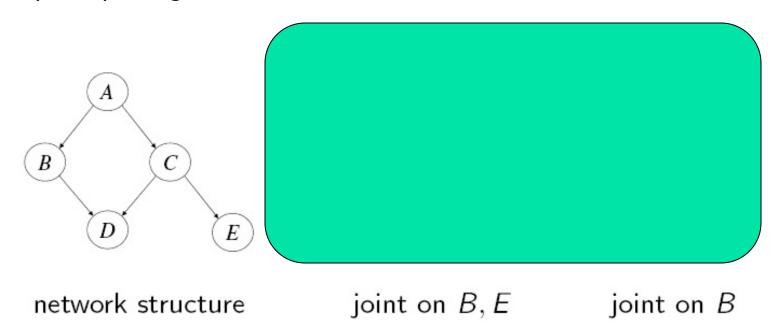


Figure 4.9: Adjusted induced graph relative to observing *B*.

Pruning Nodes: Example

Example of pruning irrelevant subnetworks



Pruning Nodes

Given a Bayesian network \mathcal{N} and query (\mathbf{Q}, \mathbf{e})

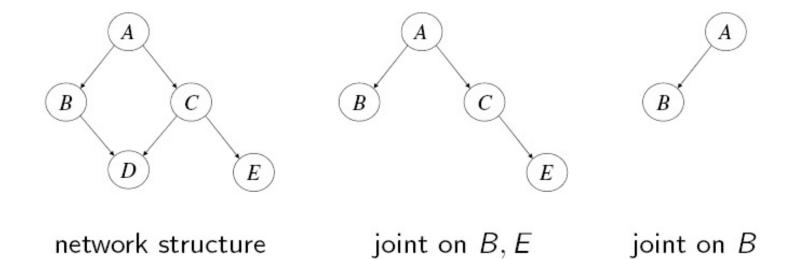
one can remove any leaf node (with its CPT) from the network as long as it does not belong to variables $\mathbf{Q} \cup \mathbf{E}$, yet not affect the ability of the network to answer the query correctly.

If $\mathcal{N}' = \text{pruneNodes}(\mathcal{N}, \mathbf{Q} \cup \mathbf{E})$

then $\Pr(\mathbf{Q}, \mathbf{e}) = \Pr'(\mathbf{Q}, \mathbf{e})$, where \Pr and \Pr' are the probability distributions induced by networks \mathcal{N} and \mathcal{N}' , respectively.

Pruning Nodes: Example

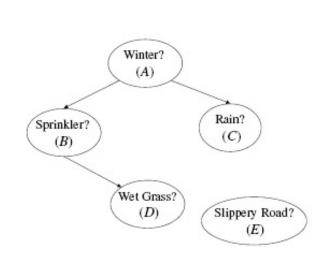
Example of pruning irrelevant subnetworks



Pruning Edges: Example

Example of pruning edges due to evidence or conditioning

Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25



Α	C	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

Α	Θ_A
true	.6
false	.4

В	D	$\sum_{C} \Theta_{D BC}^{C ightharpoons false}$
true	true	.9
true	false	.1
false	true	0
false	false	1

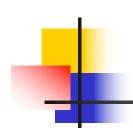
Ε	$\sum_{C} \Theta_{E C}^{C ightarrow false}$
true	0
false	1

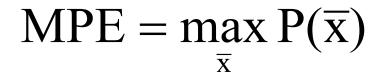
Evidence $\mathbf{e}: C = \text{false}$

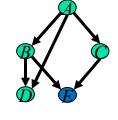
Inference for Probabilistic Networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE $(\rightarrow MAP)$
- for MAP (→ Marginal Map)
- Induced-Width

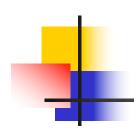




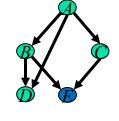


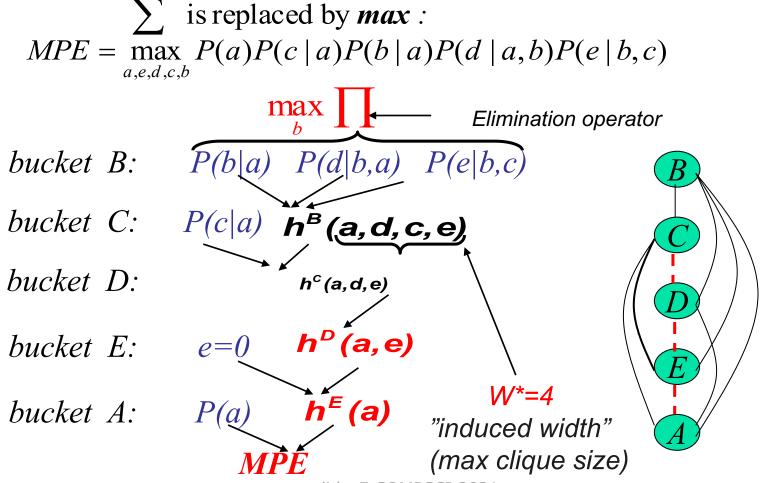
$$\sum_{a,e,d,c,b} \text{is replaced by } \boldsymbol{max} :$$

$$MPE = \max_{a,e,d,c,b} P(a)P(c \mid a)P(b \mid a)P(d \mid a,b)P(e \mid b,c)$$



$MPE = \max_{\overline{x}} P(\overline{x})$





slides5 COMPSCI 2021

Generating the MPE-tuple

5.
$$b' = arg \max_{b} P(b | a') \times P(d' | b, a') \times P(e' | b, c')$$

4.
$$c' = arg max P(c | a') \times h^{B}(a', d', c, e')$$

3.
$$d' = arg \max_{d} h^{c}(a', d, e')$$

2.
$$e' = 0$$

1.
$$a' = arg \max_{a} P(a) \cdot h^{E}(a)$$

$$C: P(c|a) \quad h^{B}(a,d,c,e)$$

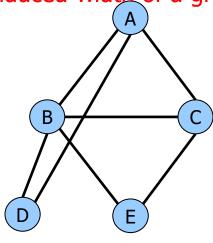
$$D$$
: h^c (a, d, e)

$$E: e=0 \quad h^{D}(a,e)$$

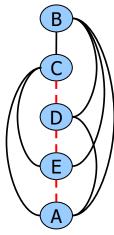
$$A: P(a) \quad \mathbf{h}^{\mathbf{E}}(\mathbf{a})$$

Induced Width

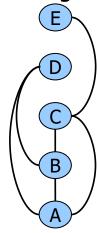
- Width is the max number of parents in the ordered graph
- Induced-width is the width of the induced ordered graph: recursively connecting parents going from last node to first.
- Induced-width w*(d) is the max induced-width over all nodes in ordering d
- Induced-width of a graph, w* is the min w*(d) over all orderings d



primal graph



$$w^*(d_1) = 4$$



$$w^*(d_2) = 2$$

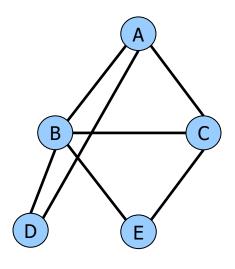
Complexity of Bucket Elimination

Bucket-Elimination is **time** and **space** $O(r \exp(w_d^*))$

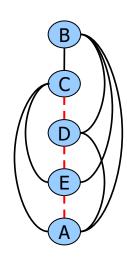
 w_d^* : the induced width of the primal graph along ordering d

r = *number of functions*

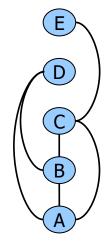
The effect of the ordering:



primal graph



$$w^*(d_1) = 4$$

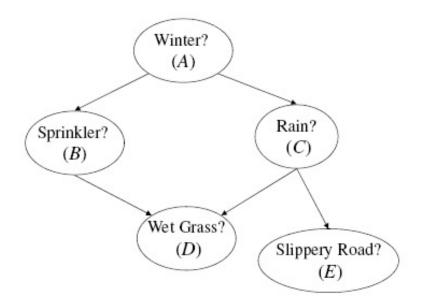


$$w^*(d_2) = 2$$

Finding smallest induced-width is hard!

A Bayesian Network

Example with mpe?



Α	Θ_A
true	.6
false	.4

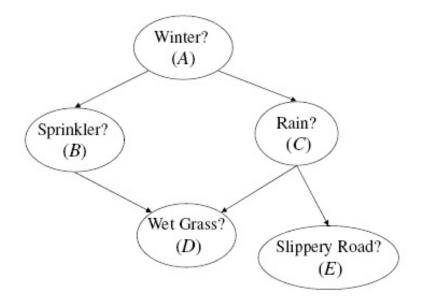
Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Try to compute MPE when E=0



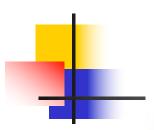
Α	Θ_A
true	.6
false	.4

Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	C	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1



Cost Networks

$$P(a,b,c,d,f,g) = P(a)P(b|a)P(c|a)P(f|b,c)P(d|a,b)P(g|f)$$

becomes

Figure 5.12: Schematic execution of BE-Opt

OPT

Induced width w*= 4

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE $(\rightarrow MAP)$
 - for MAP (→ Marginal Map)
 - Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Marginal Map

Max-Inference	$f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{lpha} f_lpha(\mathbf{x}_lpha)$
> Sum-Inference	$Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$
Mixed-Inference	$f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

• NP-hard: exponentially many terms

Example for MMAP Applications

Haplotype in Family pedigrees

Coding networks

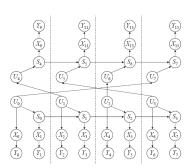
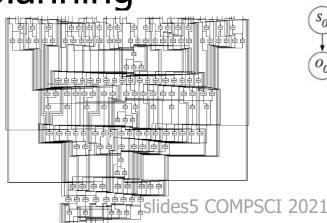
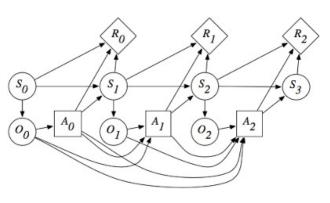


Figure 5.24: A Bayesian network for a turbo code

Probabilistic planning

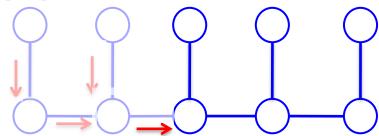
Diagnosis



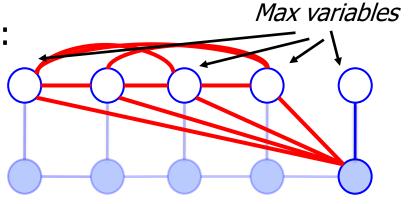


Marginal MAP is Not Easy on Trees

- Pure MAP or summation tasks
 - Dynamic programming
 - Ex: efficient on trees

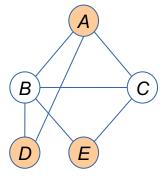


- Marginal MAP
 - Operations do not commute:
 - Sum must be done first!



Bucket Elimination for MMAP

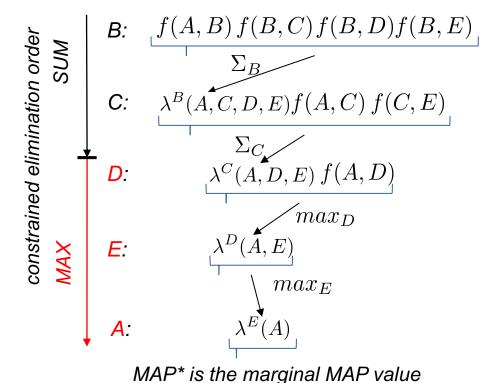
Bücket Elimination

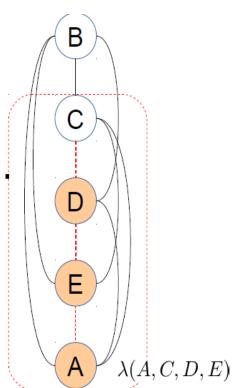


$$\mathbf{X}_M = \{A, D, E\}$$

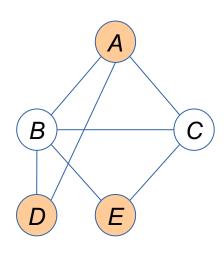
$$\mathbf{X}_S = \{B, C\}$$

$$\max_{\mathbf{X}_M} \sum_{\mathbf{X}_S} P(\mathbf{X})$$

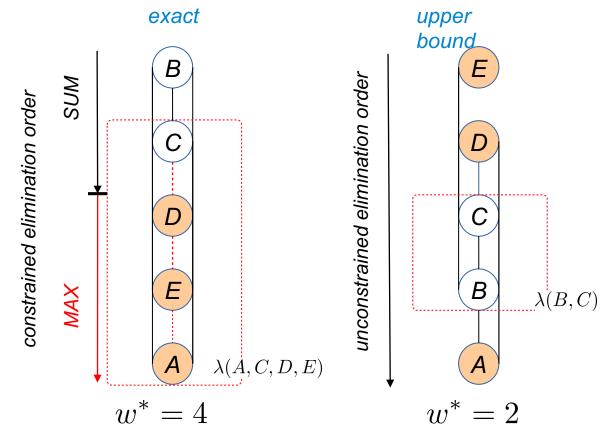




Why is MMAP harder?



$$\mathbf{X}_M = \{A, D, E\}$$
$$\mathbf{X}_S = \{B, C\}$$



In practice, constrained induced is much larger!

$$\max_X \sum_Y \phi \le \sum_Y \max_X \phi$$

(Park & Darwiche, 2003) (Yuan & Hansen, 2009)

Complexity of Bucket-Elimination

Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*)) space, when w* is the induced-width of the moral graph along d when evidence nodes are processed (edges from evidence nodes to earlier variables are removed.)

More accurately: $O(r \exp(w^*(d)))$ where r is the number of CPTs. For Bayesian networks r=n. For Markov networks?

Inference with Markov Networks

- Undirected graphs with potentials on cliques
- Query: find *partition function. Same as* probability of the evidence in a Bayesian network.
- The joint probability distribution of a Markov network is defined by:

$$P(x) = \frac{1}{Z} \sum_{x \in \mathcal{D}} \Pi_{C \in \mathcal{C}} \Psi_C(x_C) \qquad \begin{array}{c} \textit{BE is equally} \\ \textit{applicable} \end{array}$$

$$Z = \sum_{x} \prod_{C \in C} \Psi_{C}(x_{C}) \qquad (2.2)$$

For example. A markov network over the moral graph in Figure 2.4(b) is defined by:

$$P(a, b, c, d, f, g) = \frac{\Psi(a, b, c) \cdot \Psi(b, c, f) \cdot \Psi(a, b, d) \cdot \Psi(f, g)}{Z}$$
(2.3)

where,

$$Z = \sum_{a,b,c,d,e,f,g} \Psi(a,b,c) \cdot \Psi(b,c,f) \cdot \Psi(a,b,d) \cdot \Psi(f,g) \qquad (2.4)$$

Inference for probabilistic networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE $(\rightarrow MAP)$
- for MAP (→ Marginal Map)
- Induced-Width (Dechter 3.4,3.5)

•

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Min-width Ordering

```
MIN-WIDTH (MW)
```

```
input: a graph G = (V, E), V = \{v_1, ..., v_n\}
```

output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in G with smallest degree.
- 3. put r in position j and $G \leftarrow G r$. (Delete from V node r and from E all its adjacent edges)
- 4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph What is the Complexity of MW?

O(e)

Greedy Orderings Heuristics

- Min-induced-width
 - From last to first, pick a node with smallest width, then connect parent and remove

- Min-Fill
 - From last to first, pick a node with smallest fill-edges

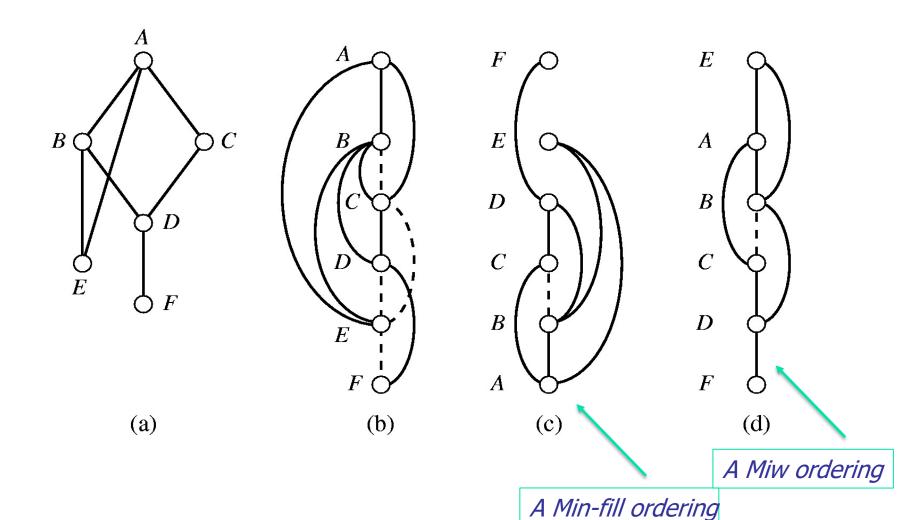
Complexity? $O(n^3)$

Min-Fill Heuristic

Select the variable that creates the fewest "fill-in"

edges Eliminate B next? Eliminate E next? Connect neighbors Neighbors already connected "*Fill-in*" = 3: "*Fill-in*" = 0 (A,D), (C,E), (D,E)

Different Induced-Graphs



Chordal Graphs

A graph is chordal if every cycle of length at least 4 has a

chord

- Deciding chordality by max-cardinality ordering:
 - from 1 to n, always assigning a next node connected to a largest set of previously selected nodes.
- A graph along max-cardinality order has no fill-in edges iff it is chordal.
- The maximal cliques of chordal graphs form a tree

Greedy Orderings Heuristics

- Min-Induced-width
 - From last to first, pick a node with smallest width
- Min-Fill
 - From last to first, pick a node with smallest filledges

Complexity? $O(n^3)$

- Max-Cardinality search [Tarjan & Yanakakis 1980]
 - From **first to last**, pick a node with largest neighbors already ordered. Complexity? O(n + m)

4

Max-cardinality ordering

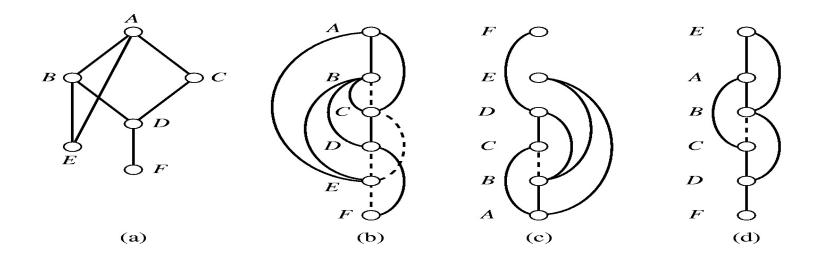
MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. Place an arbitrary node in position 0.
- 2. for j = 1 to n do
- 3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j-1, breaking ties arbitrarily.
- 4. endfor

Proposition 5.3.3 [56] Given a graph G = (V, E) the complexity of max-cardinality search is O(n+m) when |V| = n and |E| = m.

We see again that *G* in the Figure (a) is not chordal since the parents of *A* are not connected in the max-cardinality ordering in Figure (d). If we connect *B* and *C*, the resulting induced graph is chordal.



Which Greedy Algorithm is Best?

 Min-Fill, prefers a node who add the least number of fill-in arcs.

- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is O(e), MIW: O(n^3) MF O(n^3) MC is O(e+n)

K-trees

Definition 5.3.4 (k-trees) A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose maximal cliques are of size k+1, and it can be defined recursively as follows:

(1) A complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended to r+1 vertices by connecting the new vertex to all the vertices in any clique of size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique of size smaller than k.

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of?
- Greedy algorithms:
 - Min width (MW)
 - Min induced-width (MIW)
 - Max-cardinality and chordal graphs (MC)
 - Min-Fill (thought as the best) (MIN-FILL)

Anytime algorithms

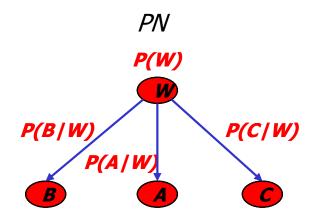
- Search-based [Gogate & Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE $(\rightarrow MAP)$
 - for MAP (→ Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

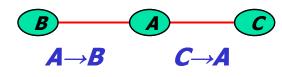
4

Party Example



Semantics?

Algorithms?



Query:

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)$$

Bucket Elimination for Mixed Networks

The CPE (constraint probability evaluation) query

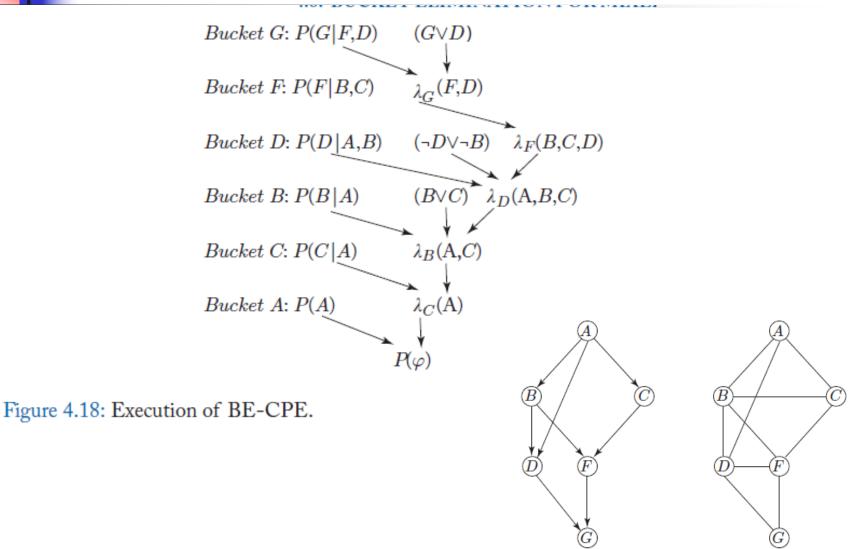
$$P_{\mathcal{B}}(\varphi) = \sum_{\mathbf{x}_{\varphi} \in Mod(\varphi)} P(\mathbf{x}_{\varphi})$$

Using the belief network product form we get:

$$P_{\mathcal{B}}(\varphi) = \sum_{\{\mathbf{x} \mid \mathbf{x}_{\varphi} \in Mod(\varphi)\}} \prod_{i=1}^{n} P(x_i \mid \mathbf{x}_{pa_i}).$$

$$P((C \rightarrow B) \text{ and } P(A \rightarrow C))$$

Bucket-Elimination example for a Mixed Network $\varphi = (B \lor C), (G \lor D), (\sim D \lor \sim B)$



slides5 CON

(a) Directed Acyclic Graph

(b) Moral Graph

Bucket-Elimination example for a Mixed Network $\varphi = (B \lor C), (G \lor D), (\sim D \lor \sim B)$

In Bucket
$$G: \lambda_G(f,d) = \sum_{\{g \mid g \lor d = true\}} P(g \mid f)$$

In
$$Bucket_F$$
: $\lambda_F(b,c,d) = \sum_f P(f|b,c)\lambda_G(f,d)$

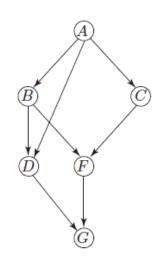
In
$$Bucket_D$$
: $\lambda_D(a,b,c) = \sum_{\{d \mid \neg d \lor \neg b = true\}} P(d|a,b)\lambda_F(b,c,d)$

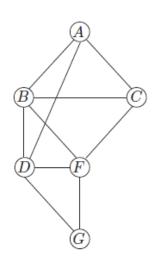
In
$$Bucket_B$$
: $\lambda_B(a,c) = \sum_{\{b|b \lor c = true\}} P(b|a)\lambda_D(a,b,c)\lambda_F(b,c)$

In
$$Bucket_C$$
: $\lambda_C(a) = \sum_c P(c|a)\lambda_B(a,c)$

In
$$Bucket_A$$
: $\lambda_A = \sum_a P(a)\lambda_C(a)$

$$P(\varphi) = \lambda_A$$
.



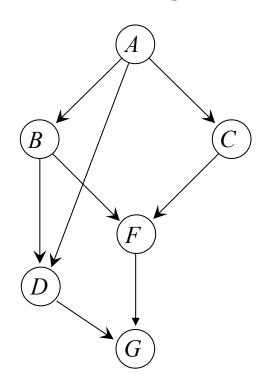


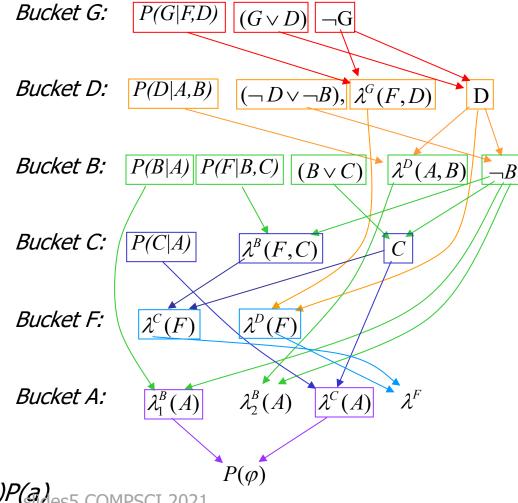
(a) Directed Acyclic Graph

(b) Moral Graph

Trace of Elim-CPE

Adding evidence G=0





Belief network P(g,f,d,c,b,a)=P(g|f,d)P(f|c,b)P(d|b,a)P(b|a)P(c|a)P(a)_{es5 COMPSCI 2021}

Bucket-Elimination example for a Mixed Network

$$\varphi = (B \lor C), (G \lor D), (\sim D \lor \sim B)$$

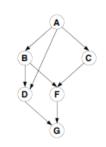




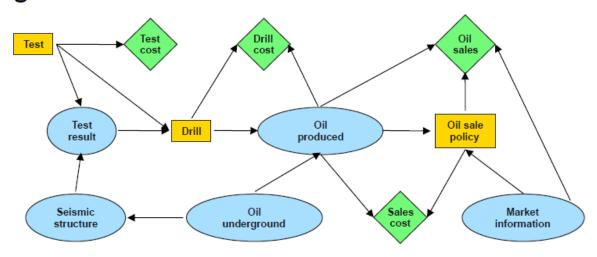
Figure 4.15: Execution of BE-CPE.

Figure 4.16: Execution of BE-CPE (evidence $\neg G$).

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE $(\rightarrow MAP)$
 - for MAP (→ Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

Influence diagram:



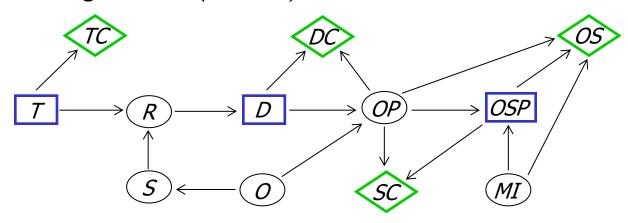
- Three actions: test, drill, sales policy
- Chance variables:

P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

Utilities capture costs of actions, rewards of sale
 Oil sales - Test cost - Drill cost - Sales cost

Influence Diagrams

Influence diagram ID = (X,D,P,R).



Chance variables $X = X_1,...,X_n$ over domains.

Decision variables $D = D_1,...,D_m$

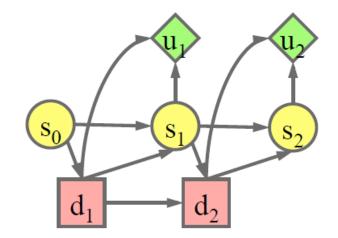
CPT's for chance variables $P_i = P(X_i \mid pa_i), i = 1..n$

Reward components $R = \{r_1, ..., r_j\}$

Utility function $u = \sum_{i} r_i$

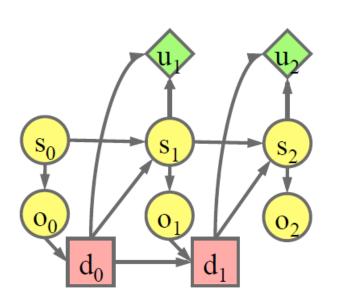
Common examples

- Markov decision process
 - Markov chain state sequence
 - Actions "di" influence state transition
 - Rewards based on action, new state
 - Temporally homogeneous



Partially observable MDP

- Hidden Markov chain state sequence
- Generate observations
- Actions based on observations



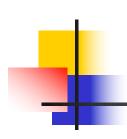
Influence Diagrams (continue)

A decision rule for D_i is a mapping: $\delta i : \Omega pa_{D_i} \to \Omega_{D_i}$ where Ω_S is the cross product of domains in S.

A policy is a list of decision rules $\Delta = (\delta_1, ..., \delta_m)$

Task: Find an optimal policy that maximizes the expected utility.

$$E = \max_{\Delta = (\delta_1, \dots, \delta_m)} \sum_{x = (x_1, \dots, x_n)} \prod_i P_i(x) u(x)$$



The Car Example (Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry out tests with various costs, and then, decide which car to buy.

T: Test variable (t_0, t_1, t_2) (t_1 test car 1, t_2 test car 2)

D: the decision of which car to buy, $D \in \{buy1, buy2\}$

 C_i : the quality of car i, $C_i \in \{q_1, q_2\}$

 t_i : the outcome of the test on car i, $t_i \in \{pass, fail, null\}$.

r(T): The cost of testing,

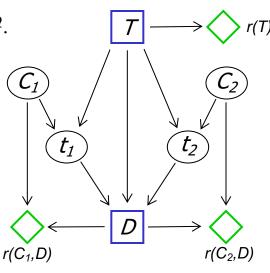
 $r(C_1,D)$, $r(C_2,D)$: the reward in buying cars 1 and 2.

The utility is: $r(T) + r(C_1,D) + r(C_2,D)$.

Task: determine decision rules T and D such that:

$$E = \max_{T,D} \sum_{t_2,t_1,C_2,C_1} P(t_2,|C_2,T) P(C_2) P(t_1|C_1,T) \cdot$$

$$P(C_1)[r(T) + r(C_2, D) + r(C_1, D)]$$



97

Bucket Elimination for meu (Algorithm Elim-meu-id)

Input: An Influence diagram $ID = \{P_1, ..., P_n, r_1, ..., r_j\}$

Output: Meu and optimizing policies.

- 1. Order the variables and partition into buckets.
- 2. Process buckets from last to first:

$$o = T, t_{2}, t_{2}, D, C_{2}, C_{1}$$

$$bucket(C_{1}): P(C_{1}), P(t_{1}|C_{1}, T), r(C_{1}, D)$$

$$bucket(C_{2}): P(C_{2}), P(t_{2}|C_{2}, T), r(C_{2}, D)$$

$$bucket(D): \theta_{C_{1}}(t_{1}, T, D), \theta_{C_{2}}(t_{2}, T, D)$$

$$bucket(t_{1}): \lambda_{C_{1}}(t_{1}, T) \theta_{D}(t_{1}, t_{2}, T), \delta(t_{1}, t_{2}, T)$$

$$bucket(t_{2}): \lambda_{C_{2}}(t_{2}, T) \theta_{t_{1}}(t_{2}, T)$$

$$bucket(T): r(T) \lambda_{t_{1}}(T) \lambda_{t_{2}}(T) \theta_{t_{1}}(T)$$

3. Forward: Assign values in ordering d

The Bucket Description

Final buckets: (λ s or Ps) utility components (θ 's or r's).

$$bucket(C_1): P(C_1), P(t_1|C_1,T), r(C_1,D)$$

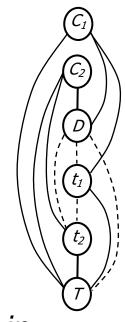
bucket(C_2): $P(C_2), P(t_2|C_2, T), r(C_2, D)$

bucket(D):
$$\theta_{C_1}(t_1,T,D), \overline{\theta_{C_2}(t2,T,D)}$$

bucket(
$$t_1$$
): $\lambda_{C_1}(t_1,T), \quad \theta_D(t_1,t_2,T)$

bucket(D):
$$\theta_{C_1}(t_1, T, D), \theta_{C_2}(t2, T, D)$$

bucket(t_1): $\lambda_{C_1}(t_1, T), \quad \theta_D(t_1, t_2, T)$
bucket(t_2): $\lambda_{C_2}(t_2, T), \quad \theta_{t_1}(t_2, T)$



Optimizing policies: $\delta_{\scriptscriptstyle T}$ is argmax of $\theta_{\scriptscriptstyle T}$ computed in bucket(T), and $\theta_D(t_1,t_2,T)$ in bucket(t_I).

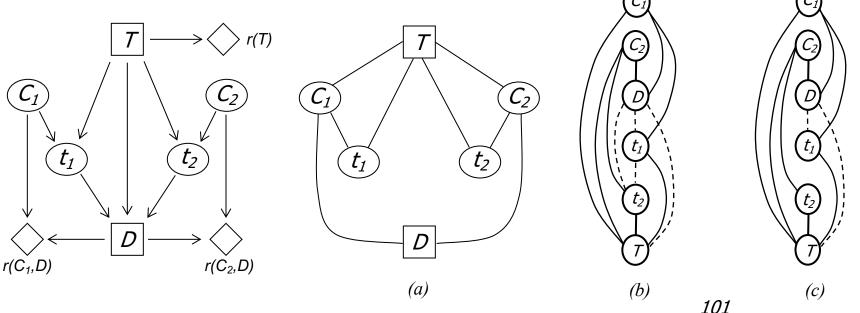
100

Complexity

Theorem: Algorithm elim-meu-id is time and space $O(n \bullet exp(w^*(o,e)))$, where $w^*(o,e)$ is the width along o of the adjusted compounded induced graph.

In the augmented graph all the parents of chance and value components

are connected, Value nodes are deleted.



General Graphical Models

Definition 2.2 Graphical model. A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M} = \langle X, D, F, \otimes \rangle$, where:

- 1. $X = \{X_1, \dots, X_n\}$ is a finite set of variables;
- 2. **D** = $\{D_1, \ldots, D_n\}$ is the set of their respective finite domains of values;
- 3. $\mathbf{F} = \{f_1, \dots, f_r\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $S = \{S_1, \dots, S_r\}$, where $\mathbf{S}_i \subseteq \mathbf{X}$. They are called *local* functions.
- 4. ⊗ is a *combination* operator (e.g., ⊗ ∈ {∏, ∑, ⋈} (product, sum, join)). The combination operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our discussion we can define it explicitly, by enumeration.

The graphical model represents a *global function* whose scope is **X** which is the combination of all its functions: $\bigotimes_{i=1}^{r} f_i$.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$. $F = \{f_1, ..., f_n\}$ an ordering of the variables, $d = X_1, ..., X_n$; $\mathbf{Y} \subseteq \mathbf{X}$.

Output: A new compiled set of functions from which the query $\psi_Y \otimes_{i=1}^n f_i$ can be derived in linear time.

- 1. **Initialize:** Generate an ordered partition of the functions into $bucket_1, ..., bucket_n$, where $bucket_i$ contains all the functions whose highest variable in their scope is X_i . An input function in each bucket ψ_i , $\psi_i = \bigotimes_{i=1}^n f_i$.
- 2. **Backward:** For $p \leftarrow n$ downto 1, do for all the functions ψ_p , λ_1 , λ_2 , ..., λ_j in $bucket_p$, do
 - If (observed variable) $X_p = x_p$ appears in $bucket_p$, assign $X_p = x_p$ in ψ_p and to each λ_i and put each resulting function in appropriate bucket.
 - else, (combine and marginalize) $\lambda_p \leftarrow \psi_{S_p} \ \psi_p \otimes (\otimes_{i=1}^j \lambda_i)$ and add λ_p to the largest-index variable in $scope(\lambda_p)$.
- 3. **Return:** all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its time and space complexities is exponential in the $w^*(d) + 1$ and $w^*(d)$, respectively, along the order of processing d.