Algorithms for reasoning with graphical models

Class 1 Rina Dechter

Dechter-Morgan&claypool book (Dbook): Chapters 1-2

Outline

- Graphical models: The constraint network, Probabilistic networks, cost networks and mixed networks. queries: consistency, counting, optimization and likelihood queries.
- Inference: Bucket elimination for deterministic networks (Adaptive-consistency, and the Davis-Putnam algorithms.) The induced-width
 - Inference: Bucket-elimination for Bayesian and Markov networks queries (mpe, map, marginal and probability of evidence)
 - Graph properties: induced-width, tree-width, chordal graphs, hypertrees, join-trees.
 - Inference: Tree-decomposition algorithms (join-tree propagation and junction-trees)
- Approximation by bounded Inference: (weighted Mini-bucket, belief/constraint-propagation, constraint propagation, generalized belief propagation, variational methods)
- Search for csps: Backtracking; pruning search by constraint propagation, backjumping and learning.
- Search: AND/OR search Spaces for likelihood, optimization queries (Probability of evidence, Partition function, MAP and MPE queries, AND/OR branch and bound).
- Approximation by sampling: Gibbs sampling, Importance sampling, cutsetsampling, SampleSearch and AND/OR sampling, Stochastic Local Search.
- Hybrid of search Inference: cutset-conditioning and cutset-sampling class1 276-2018

Outline

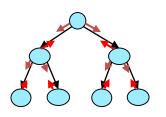
- Graphical models: The constraint network, Probabilistic networks, cost networks and mixed networks. Graphical representations and queries: consistency, counting, optimization and likelihood queries.
- Constraints inference: Bucket elimination for deterministic networks (Adaptive-consistency, and the Davis-Putnam algorithms.) The induced-width.
- Inference: Bucket-elimination for Bayesian and Markov networks queries (mpe,map, marginal and probability of evidence)
- Graph properties: induced-width, tree-width, chordal graphs, hypertrees, join-trees.
- Inference: Tree-decomposition algorithms (join-tree propagation and junction-trees algorithm, Cluster tree-elimination.)
- Approximation by bounded Inference: (Mini-bucket, belief-propagation, constraint propagation, generalized belief propagation)
- Search: Backtracking search algorithms; pruning search by constraint propagation,
 backjumping and learning.

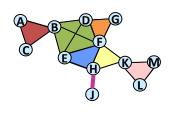
Course Requirements/Textbook

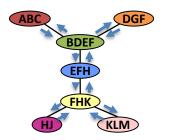
- Homeworks: There will be 5-6 problem sets, graded 70% of the final grades.
- A term project: paper presentation, a programming project.
- Books:
 - "Reasoning with probabilistic and deterministic graphical models", R. Dechter, Claypool, 2013 https://www.morganclaypool.com/doi/abs/10.2200/S00529ED1V01Y201308AIM023
 - "Modeling and Reasoning with Bayesian Networks", A.
 Darwiche, MIT Press, 2009.
 - "Constraint Processing", R. Dechter, Morgan Kauffman, 2003

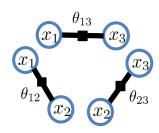
Outline of classes

Part 1: Introduction and Inference

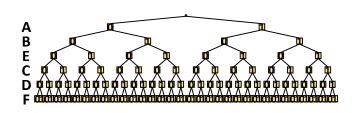


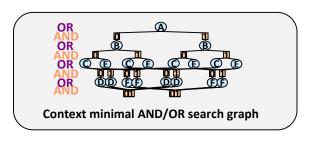




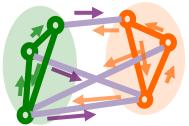


Part 2: Search





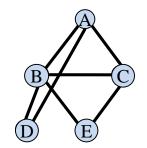
Parr 3: Variational Methods and Monte-Carlo Sampling

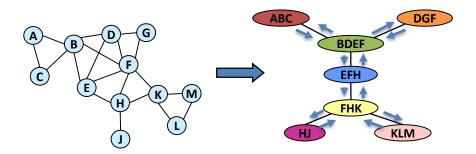


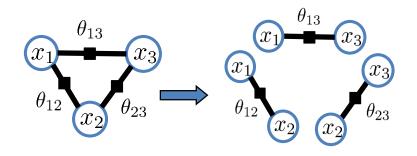
RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview

- Bucket elimination for trees
- Bucket elimination
- Jointree clustering
- Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Part 2

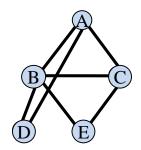


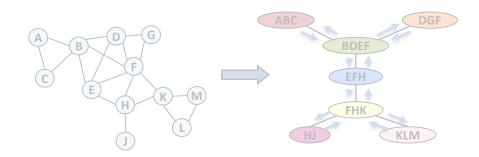




RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2





Probabilistic Graphical models

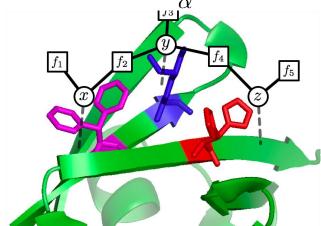
- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence

Probabilistic Graphical models

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{\alpha}(x_{\alpha})$
 - Complexity emerges through interdependence
- **Examples & Tasks**
 - Maximization (MAP): compute the most probable configuration

$$\mathbf{x}^* = rg \max_{\mathbf{x}} \prod_{lpha} f_{lpha}(\mathbf{x}_{lpha}) \qquad f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{lpha} f_{lpha}(\mathbf{x}_{lpha})$$

$$f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$



[Yanover & Weiss 2002]

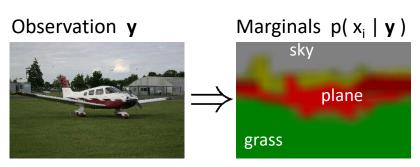
Probabilistic Graphical models

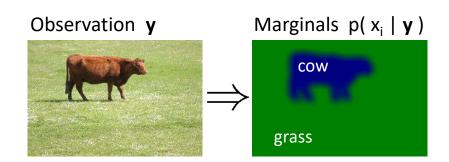
- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{\alpha}(x_{\alpha})$
 - Complexity emerges through interdependence
- **Examples & Tasks**
 - Summation & marginalization

$$p(x_i) = \frac{1}{Z} \sum_{\mathbf{x} \setminus x_i} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha}) \quad \text{and} \qquad Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

"partition function"

$$Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$





e.g., [Plath et al. 2009]

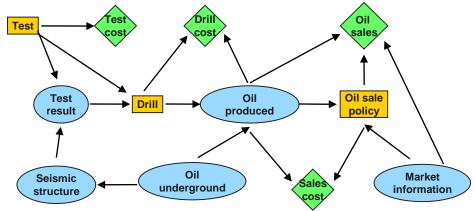
Graphical models

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence
- Examples & Tasks
 - Mixed inference (marginal MAP, MEU, ...)

$$f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

Influence diagrams & optimal decision-making

(the "oil wildcatter" problem)



e.g., [Raiffa 1968; Shachter 1986]

In more details...

Constraint Networks

Example: map coloring

Variables - countries (A,B,C,etc.)

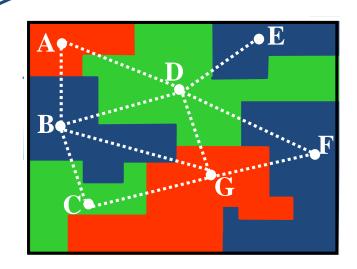
Values - colors (red, green, blue)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

A B

red green
red yellow
green red
green yellow
yellow green
yellow red

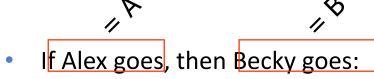


B

Constraint graph

Propositional Reasoning

Example: party problem

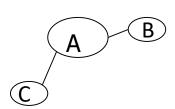


$$A \rightarrow B$$

• If Chris goes, then Alex goes:

$$C \rightarrow A$$

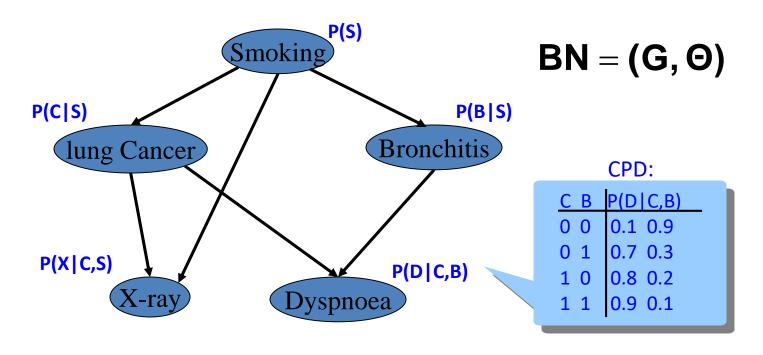
Is it possible that Chris goes to the party but Becky does not?



Is the *propositional theory*

$$\varphi = \{A \to B, C \to A, \neg B, C\}$$
 satisfiable?

Bayesian Networks (Pearl 1988)



P(S, C, B, X, D) = P(S) P(C/S) P(B/S) P(X/C,S) P(D/C,B)

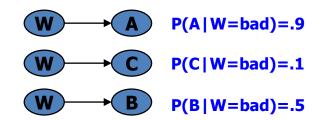
Combination: Product Marginalization: sum/max

- Posterior marginals, probability of evidence, MPE
- P(D= 0) = $\sum_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$ MAP(P)= $\max_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$

Probabilistic reasoning (directed)

Party example: the weather effect

- Alex is-likely-to-go in bad weather
- Chris <u>rarely</u>-goes in bad weather
- Becky is indifferent but <u>unpredictable</u>



P(W)

Questions:

 Given bad weather, which group of individuals is most likely to show up at the party?

What is the probability that Chris goes to the party but Becky does not?

W	Α	P(A W)
good	0	.01
good	1	.99
bad	0	.1
bad	1	.9
		-

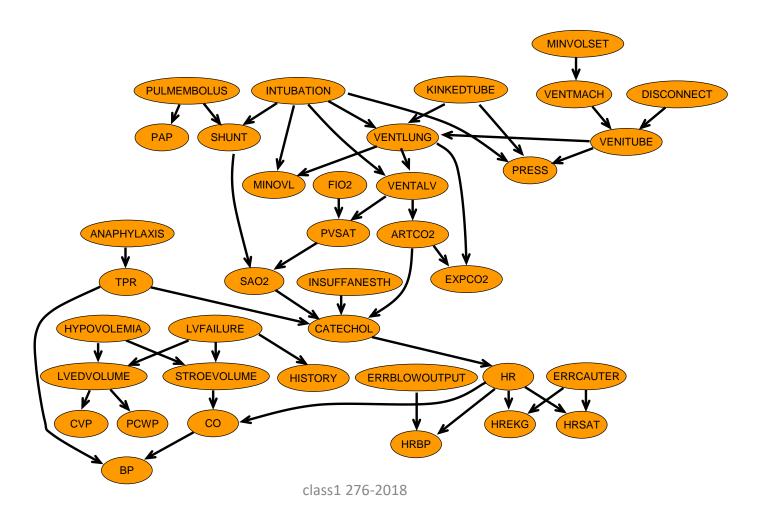
$$P(W,A,C,B) = P(B|W) \cdot P(C|W) \cdot P(A|W) \cdot P(W)$$
 $P(A,C,B|W=bad) = 0.9 \cdot 0.1 \cdot 0.5$
 $P(B|W)$
 $P(C|W)$

Alarm network

[Beinlich et al., 1989]

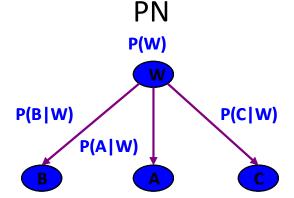
Bayes nets: compact representation of large joint distributions

The "alarm" network: 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)

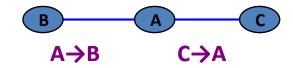


Mixed Probabilistic and Deterministic networks

Alex is-<u>likely</u>-to-go in bad weather Chris <u>rarely</u>-goes in bad weather Becky is indifferent but <u>unpredictable</u>



CN



Query:

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)$$

Graphical models (cost networks)

A graphical model consists of:

$$X=\{X_1,\ldots,X_n\}$$
 -- variables $B\in\{0,1\}$ $D=\{D_1,\ldots,D_n\}$ -- domains (we'll assume discrete) $C\in\{0,1\}$

 $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$ -- functions or "factors"

 $C \in \{0, 1\}$ $f_{AB}(A, B), \quad f_{BC}(B, C)$

 $A \in \{0, 1\}$

and a combination operator

The combination operator defines an overall function from the individual factors,

e.g., "+" :
$$F(A, B, C) = f_{AB}(A, B) + f_{BC}(B, C)$$

Notation:

Discrete Xi values called states

Tuple or configuration: states taken by a set of variables

Scope of f: set of variables that are arguments to a factor f often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha}), \quad X_{\alpha} \subseteq X$

Graphical models (cost networks)

A *graphical model* consists of:

$$X = \{X_1, \dots, X_n\}$$
 -- variables

$$D = \{D_1, \dots, D_n\}$$
 -- domains (we'll assume discrete)

$$F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$$
 -- functions or "factors"

Example:

$$A \in \{0, 1\}$$

$$B \in \{0, 1\}$$

$$C \in \{0, 1\}$$

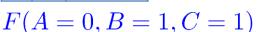
$$f_{AB}(A,B), \quad f_{BC}(B,C)$$

and a combination operator

$$F(A, B, C) = f_{AB}(A, B) + f_{BC}(B, C)$$

For discrete variables, think of functions as "tables" (though we might represent them more efficiently)

A	В	f(A,B)
0	0	6
0	1	0
1	0	0
1	1	6



В	С	f(B,C)
0	0	6
0	1	0
1	0	0
1	1	6

	f(A,B,C)	С	В	A
	12	0	0	0
	6	1	0	0
	0	0	1	0
= 0	6	1	1	0
	6	0	0	1
	0	1	0	1
	6	0	1	1
	12	1	1	1

+6

Graph Visualiization: Primal Graph

A graphical model consists of:

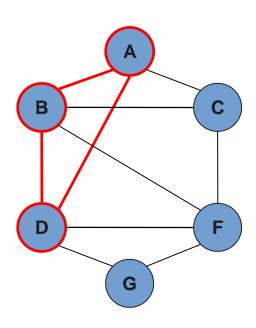
 $X=\{X_1,\dots,X_n\}$ -- variables $D=\{D_1,\dots,D_n\}$ -- domains $F=\{f_{\alpha_1},\dots,f_{\alpha_m}\}$ -- functions or "factors"

and a combination operator

Primal graph:

variables → nodes factors → cliques

$$F(A, B, C, D, F, G) = f_1(A, B, D) + f_2(D, F, G) + f_3(B, C, F) + f_4(A, C)$$



Example: Constraint networks

$$X_i \in \{ red, green, blue \}$$

$$f_{ij}(X_i,X_j)=(X_i
eq X_j)$$
 for adjacent regions i,j

Overall function is "and" of individual constraints:

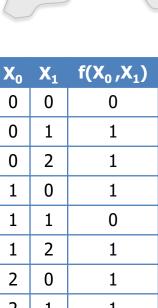
$$F(X) = f_{01}(X_0, X_1) \wedge f_{12}(X_1, X_2) \wedge f_{02}(X_0, X_2) \wedge \dots$$

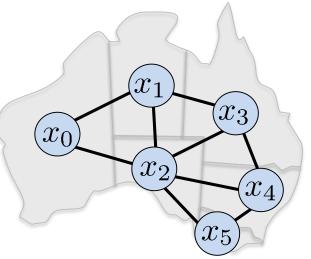
$$f_{ij}(X_i, X_j) = \begin{cases} 1.0 & X_i \neq X_j \\ 0.0 & X_i = X_j \end{cases}$$

$$F(X) = \prod_{ij} f_{ij}(X_i, X_j) = \begin{cases} 1.0 & \text{all valid} \\ 0.0 & \text{any invalid} \end{cases}$$

Tasks: "max": is there a solution?

"sum": how many solutions?





 x_6

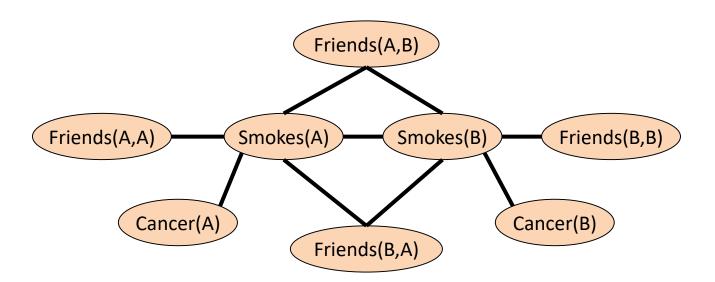
Markov logic, Markov networks

[Richardson & Domingos 2005]

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)



SA	CA	$f(S_{A'}C_{A})$
4	0	exp(1.5)
0	1	exp(1.5)
1	0	1.0
1	1	exp(1.5)

F _{AB}	SA	S _B	f(.)
0	0	0	exp(1.1)
0	0	1	exp(1.1)
0	1	0	exp(1.1)
0	1	1	exp(1.1)
1	0	0	exp(1.1)
1	0	1	1.0
1	1	0	1.0
1	1	1	exp(1.1)

Graphical visualization

A *graphical model* consists of:

$$X=\{X_1,\ldots,X_n\}$$
 -- variables $D=\{D_1,\ldots,D_n\}$ -- domains $F=\{f_{\alpha_1},\ldots,f_{\alpha_m}\}$ -- functions or "factors"

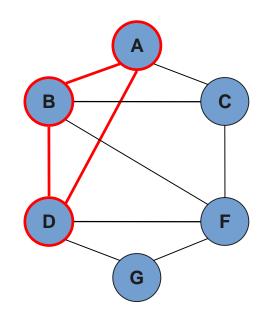
and a combination operator

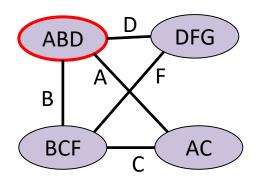
variables
$$\rightarrow$$
 nodes factors \rightarrow cliques

$$F(A, B, C, D, F, G) = f_1(A, B, D) + f_2(D, F, G) + f_3(B, C, F) + f_4(A, C)$$

Dual graph:

factor scopes → nodes edges → intersections (separators)



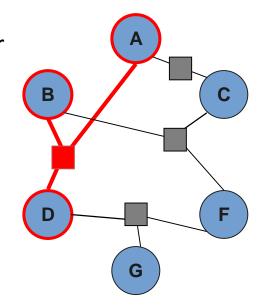


Graphical visualization

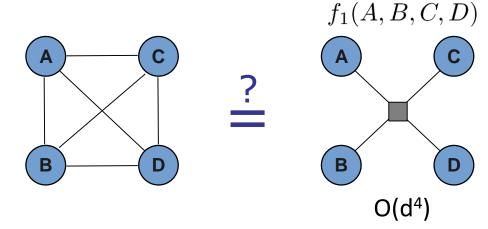
"Factor" graph: explicitly indicate the scope of each factor variables → circles

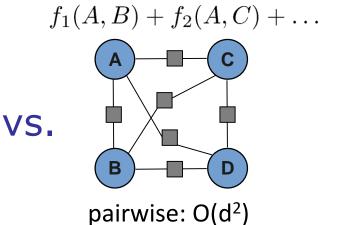
factors → squares

$$F(A, B, C, D, F, G) = f_1(A, B, D) + f_2(D, F, G) + f_3(B, C, F) + f_4(A, C)$$



Useful for disambiguating factorization:





Graphical models

A *graphical model* consists of:

$$X = \{X_1, \dots, X_n\}$$
 -- variables

$$D = \{D_1, \dots, D_n\}$$
 -- domains

$$F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$$
 -- functions or "factors"

Operators:

combination operator (sum, product, join, ...)

elimination operator (projection, sum, max, min, ...)

Types of queries:

Marginal: $Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

MPE / MAP: $f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

Marginal MAP: $f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

Conditional Probability Table (CPT) Relation A C F | P(F|A,C)0.96 green blue 0.40 red blue 0.60 blue 0.35 red green 0.65 0.72 0.68 $f_i := (F = A + C)$ $(A \lor C \lor F)$ В Primal graph (interaction graph) Ε

- All these tasks are NP-hard
 - exploit problem structure
 - identify special cases
 - approximate

Graphical models/reasoning task

Definition 2.1.2 (graphical model) A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$, where:

- 1. $X = \{X_1, \ldots, X_n\}$ is a finite set of variables;
- 2. $\mathbf{D} = \{D_1, \dots, D_n\}$ is the set of their respective finite domains of values;
- 3. $\mathbf{F} = \{f_1, \dots, f_r\}$ is a set of positive real-valued discrete functions, defined scopes of variables $\mathbf{S}_i \subseteq \mathbf{X}$,
- 4. \otimes is a combination operator¹ (e.g., $\otimes \in \{\prod, \sum, \bowtie\}$ (product, sum, join)).

The graphical model represents a global function whose scope is X which is the combination of all its functions: $\bigotimes_{i=1}^r f_i$.

Definition 2.1.3 (a reasoning problem) A reasoning problem over a graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$ and a subset of variable $Y \subset \mathbf{X}$ is defined by a marginalization operator $\Downarrow_{\mathbf{Y}}$. If \mathbf{S} is the scope of function f then $\Downarrow_{\mathbf{Y}} f \in \{ \sum_{\mathbf{S}-\mathbf{Y}}^{\max} f, \sum_{\mathbf{S}-\mathbf{Y}}^{\min} f, \pi_{\mathbf{Y}} f, \sum_{\mathbf{S}-\mathbf{Y}}^{\sum} f \}$ is a marginalization operator. The reasoning problem $\mathcal{P}\langle \mathcal{M}, \Downarrow_{\mathbf{Y}}, \mathbf{Z} \rangle$ is the task of computing the function $\mathcal{P}_{\mathcal{M}}(\mathbf{Z}) = \Downarrow_{\mathbf{Z}} \otimes_{i=1}^{r} f_{i}$, where r is the number of functions in F.

Summary of graphical models types

- Constraint networks
- Cost networks
- Bayesian network
- Markov networks
- Mixed probability and constraint network
- Influence diagrams

Constraint Networks

Map coloring

Combination = join
Marginalization = projection

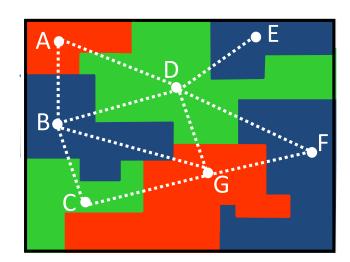
Variables: countries (A B C etc.)

Values: colors (red green blue)

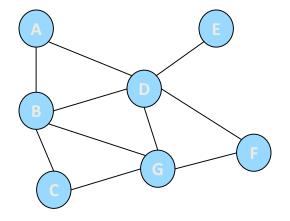
Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$,...

red green
red yellow
green red
green yellow
yellow green
yellow red



Constraint graph

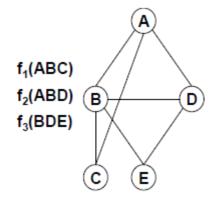


Example of a Cost Network

Α	В	С	f ₁ (ABC)
0	0	0	8
0	0	1	8
0	1	0	8
0	1	1	2
1	0	0	8
1	0	1	2
1	1	0	8
1	1	1	2

Α	В	D	f ₂ (ABD)
0	0	0	1
0	0	1	8
0	1	0	0
0	1	1	2
1	0	0	6
1	0	1	5
1	1	0	6
1	1	1	5

Е	3	D	Ε	f ₃ (BDE)
0)	0	0	8
0)	0	1	3
0)	1	0	8
0)	1	1	4
1		0	0	8
1		0	1	3
1		1	0	8
1		1	1	4



(a) Cost functions

Figure 2.3: A cost network.

(b) Constraint graph

Combination: sum Marginalization:min/max

Definition 2.3.2 (WCSP) A Weighted Constraint Satisfaction Problem (WCSP) is a graphical model $\langle X, D, F, \Sigma \rangle$ where each of the functions $f_i \in F$ assigns "0" (no penalty) to allowed tuples and a positive integer penalty cost to the forbidden tuples. Namely, $f_i : D_{X_{i_1}} \times ... \times D_{X_{i_t}} \to \mathbb{N}$, where $S_i = \{X_{i_1}, ..., X_{i_t}\}$ is the scope of the function.

A Bayesian Network

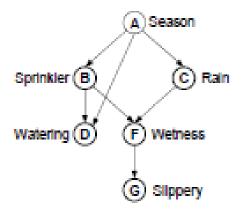
B	C	F	P(F B,C)	B	A=winter	D	P(D A,B)
false	false	true	0.1	false	false	true	0.3
true	false	true	0.9	true	false	true	0.9
false	true	true	0.8	false	true	true	0.1
true	true	true	0.95	true	true	true	1

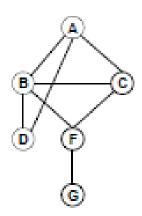
A	C	P(C A)	A	B	P(B A)
Summ	er true	0.1	Summer	true	0.8
Fall	true	0.4	Fall	true	0.4
Winte	er true	0.9	Winter	true	0.1
Sprin	g true	0.3	Spring	true	0.6

F	G	P(G F)
false	true	0.1
true	true	1

Combination: product

Marginalization: sum or min/max





(b) Moral graph

(a) Directed acyclic graph

Belief network P(g, f, c, b, a) = P(g|f)P(f|c, b)P(d|a, b)P(c|1)P(b|a)P(a)

Markov Networks

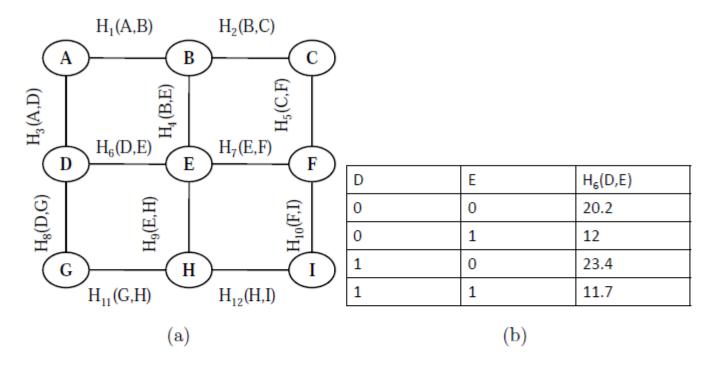


Figure 2.6: (a) An example 3×3 square Grid Markov network (ising model) and (b) An example potential $H_6(D, E)$

network represents a global joint distribution over the variables X given by:

$$P(x) = \frac{1}{Z} \prod_{i=1}^{m} H_i(x)$$
 , $Z = \sum_{x \in X} \prod_{i=1}^{m} H_i(x)$

Example domains for graphical models

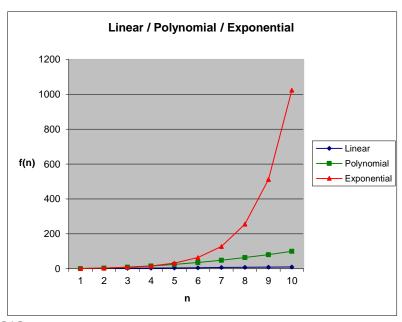
- Natural Language processing
 - Information extraction, semantic parsing, translation, topic models, ...
- Computer vision
 - Object recognition, scene analysis, segmentation, tracking, ...
- Computational biology
 - Pedigree analysis, protein folding and binding, sequence matching, ...
- Networks
 - Webpage link analysis, social networks, communications, citations,
- Robotics
 - Planning & decision making

Complexity of Reasoning Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning

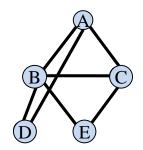
Reasoning is computationally hard

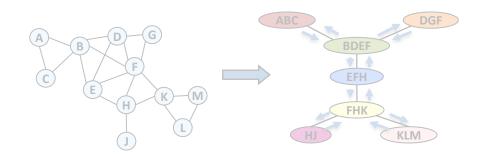
Complexity is Time and space(memory)



RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2



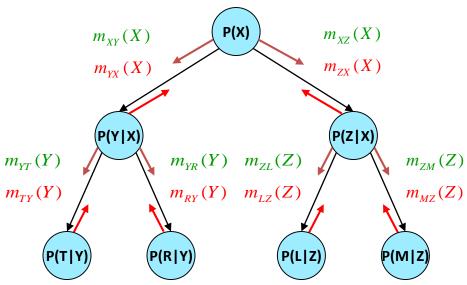


Max-Inference	$f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{lpha} f_lpha(\mathbf{x}_lpha)$
> Sum-Inference	$Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$
Mixed-Inference	$f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{lpha} f_{lpha}(\mathbf{x}_{lpha})$

- **NP-hard**: exponentially many terms
- We will focus on approximation algorithms
 - Anytime: very fast & very approximate! Slower & more accurate

Tree-solving is easy

Belief updating (sum-prod)



CSP – consistency (projection-join)

MPE (max-prod)

#CSP (sum-prod)

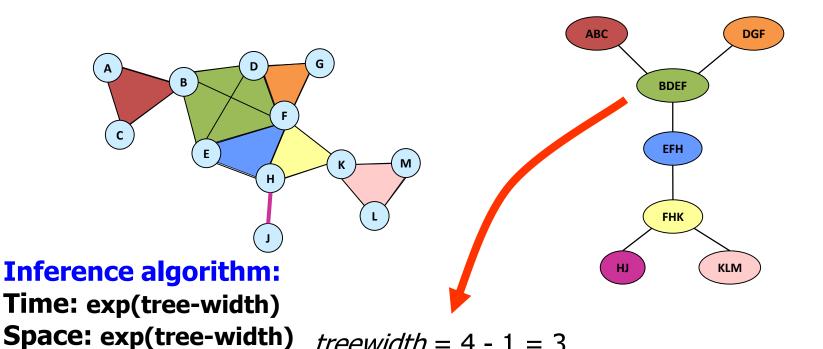
Trees are processed in linear time and memory

Transforming into a Tree

- By Inference (thinking)
 - Transform into a single, equivalent tree of subproblems

- By Conditioning (guessing)
 - Transform into many tree-like sub-problems.

Inference and Treewidth

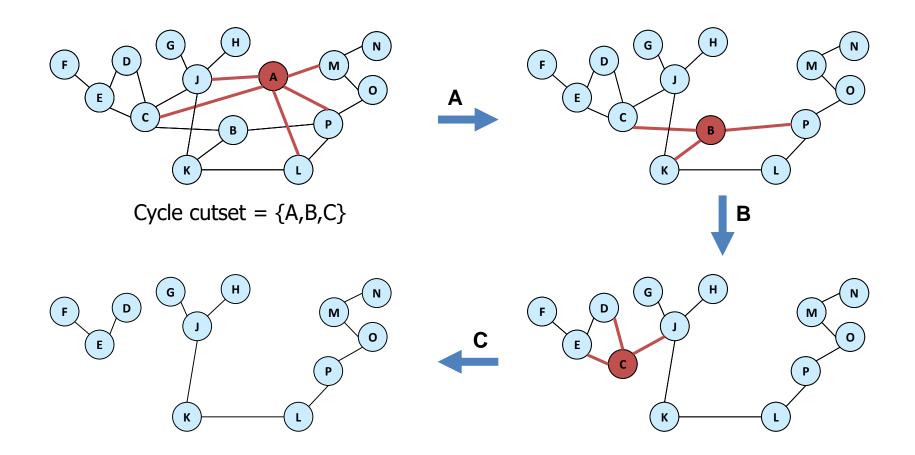


class1 276-2018

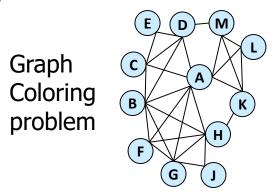
treewidth = 4 - 1 = 3

treewidth = (maximum cluster size) - 1

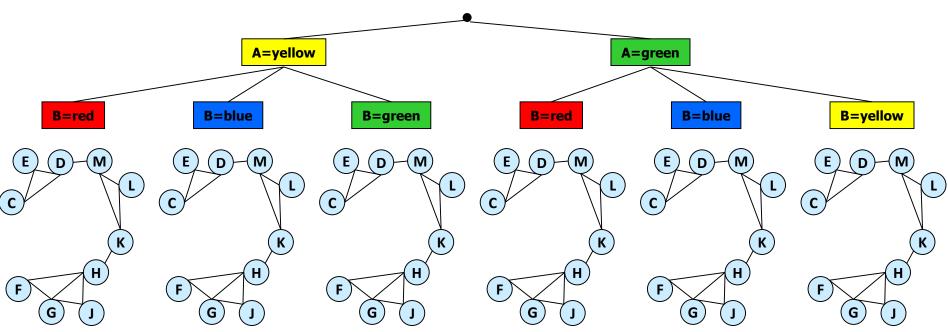
Conditioning and Cycle cutset



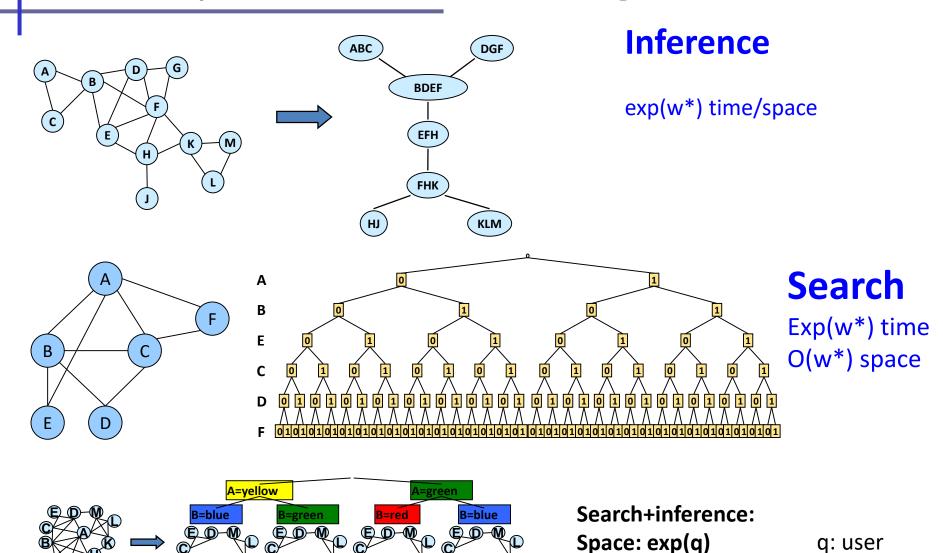
Search over the Cutset



- Inference may require too much memory
- Condition on some of the variables



Bird's-eye View of Exact Algorithms

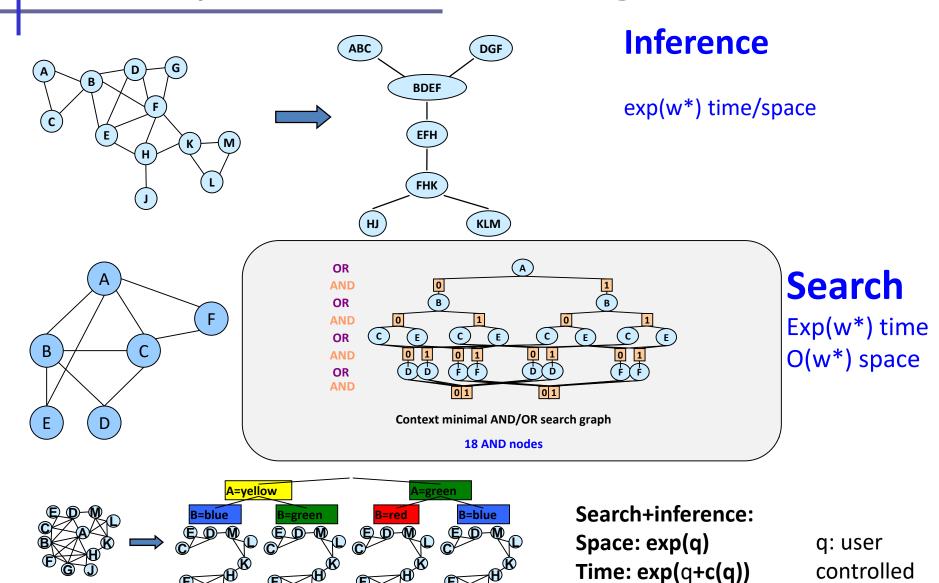


class1 276-2018

controlled

Time: exp(q+c(q))

Bird's-eye View of Exact Algorithms



class1 276-2018

Bird's-eye View of Approximate Algorithms

