

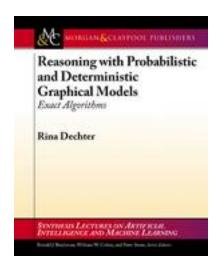
Algorithms for Reasoning with graphical models

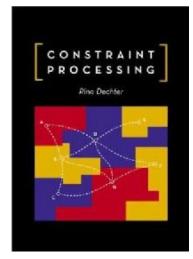
Class2: Constraint Networks Rina Dechter

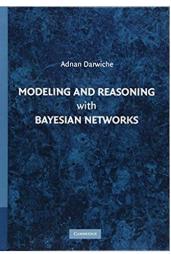
Dbook: chapter 2-3,

Constraint book: chapters 2 and 4

Text Books







- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks

Sudoku – Approximation: Constraint Propagation

- Constraint
- Propagation
- Inference

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	23 #6
		9			4	5	8	1
			3		2	9		

• Variables: empty slots

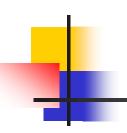
• Domains = {1,2,3,4,5,6,7,8,9}

Constraints:

• 27 all-different

Each row, column and major block must be alldifferent

"Well posed" if it has unique solution: 27 constraints



Sudoku

		2	1	5				6
			3	6	8		(1)	
6	1	8			2			4
		5		2				3
	9	3				5	4	
1				3		6		
3			8			4		7
	8		6	4	3			
5				1	7	9		

Each row, column and major block must be all different "Well posed" if it has unique solution

Constraint Networks

A

Example: map coloring

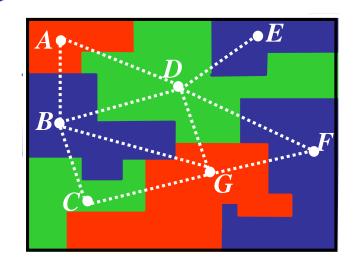
Variables - countries (A,B,C,etc.)

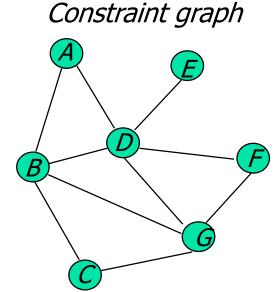
Values - colors (red, green, blue)

Constraints:

 $(A \neq B)$ $A \neq D$, $D \neq E$, etc.

red green
red yellow
green red
green yellow
yellow green
yellow red





Constraint Satisfaction Tasks

Example: map coloring

Variables - countries (A,B,C,etc.)

Values - colors (e.g., red, green, yellow)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

Are the constraints consistent?

Find a solution, find all solutions

Count all solutions

Find a good (optimal) solution

A	В	O	D	i.
red	green	red	green	blue
red	blue	green	green	blue
•••	•••	•••	•••	green
•••	•••	•••	:	red
red	blue	red	green	red

Constraint Network

- A constraint network is: R=(X,D,C)
 - X variables

$$X = \{X_1, ..., X_n\}$$

D domain

$$D = \{D_1, ..., D_n\}, D_i = \{v_1, ..., v_k\}$$

C constraints

$$C = \{C_1, ..., C_t\}$$
$$C_i = (S_i, R_i)$$

- R expresses allowed tuples over scopes
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).
- Tasks: consistency?, one or all solutions, counting, optimization

Crossword Puzzle

Domains: letters

Constraints: words from

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

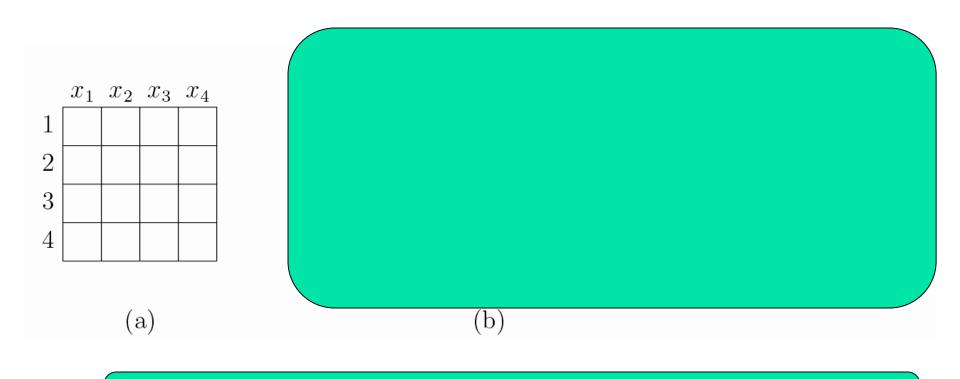
{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

4

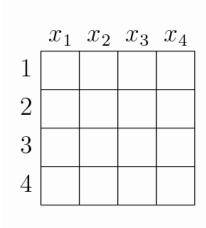
Crossword Puzzle

```
\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(\textbf{1},R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \\ R_{12,13} &= R_{10,13} \end{split}
```


The Queen Problem



The Queen Problem



(a)

$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)$$

$$(4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)

The network has four variables, all with domains $D_i = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

Varieties of Constraints

Unary constraints involve a single variable,

e.g., SA ≠ green

Binary constraints involve pairs of variables,

e.g., SA ≠ WA

Higher-order constraints involve 3 or more variables,

e.g., cryptarithmetic column constraints

Constraint's Representations

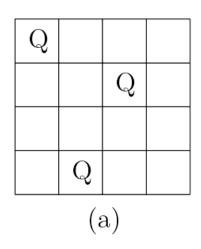
- Relation: allowed tuples
- Algebraic expression:
- Propositional formula:
- Semantics: by a relation

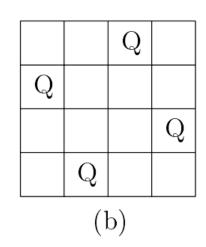
2 1 3

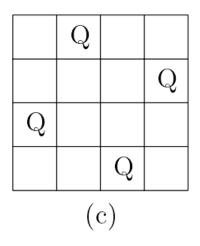
$$X + Y^2 \le 10, X \ne Y$$

$$(a \lor b) \rightarrow \neg c$$

Partial Solutions







Not all consistent instantiations are part of a solution: (a) A consistent instantiation that is not part of a solution. (b) The placement of the queens corresponding to the solution (2, 4, 1, 3). (c) The placement of the queens corresponding to the solution (3, 1, 4, 2).

Constraint Graphs:

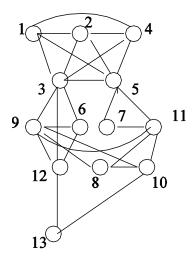
Primal, dual and hypergraphs

When variables are squares:

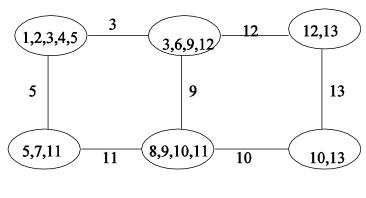
A (primal) constraint graph: a node per variable arcs connect constrained variables.

A dual constraint graph: a node per constraint's scope, an arc connect nodes sharing variables =hypergraph

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	



(a)



(b)

Graph Concepts

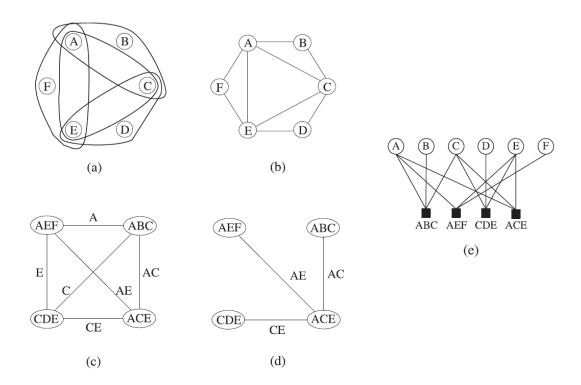
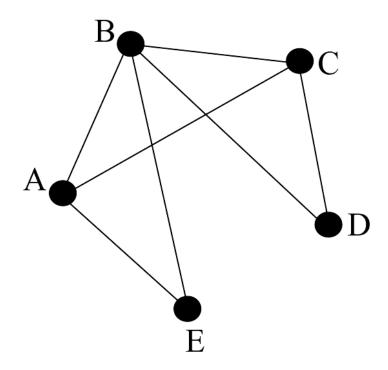


Figure 2.1: (a) Hyper; (b) primal; (c) dual; (d) join-tree of a graphical model having scopes ABC, AEF, CDE and ACE; and (e) the factor graph.

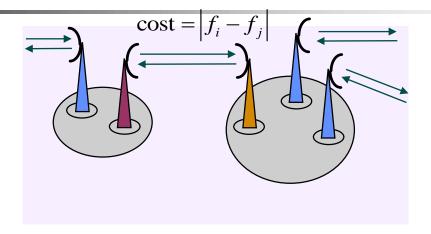
Propositional Satisfiability

 $\varphi = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}.$



ı

Example: Radio Link Assignment



Given a telecommunication network (where each communication link has various antenas), assign a frequency to each antenna in such a way that all antennas may operate together without noticeable interference.

Encoding?

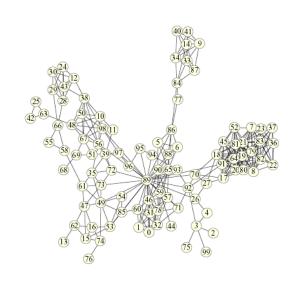
Variables: one for each antenna

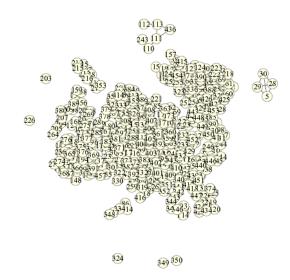
Domains: the set of available frequencies

Constraints: the ones referring to the antennas in the same communication link

Constraint graphs of 3 instances of the Radio frequency assignment problem in CELAR's benchmark







Operations With Relations

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

Local Functions

$$f\bowtie g$$

Join :

X ₁	X_2
а	a
b	b

 \bowtie

$$\begin{array}{ccc} x_2 & x_3 \\ \hline a & a \\ a & b \\ b & a \\ \end{array}$$

$$\begin{array}{cccc} x_1 & x_2 & x_3 \\ \hline a & a & a \\ a & b & b \end{array}$$

 $f \wedge g$

Logical AND:

\mathbf{X}_{1}	X_2	f
a	а	true
a	b	false
b	a	false
b	b	true

$$\begin{array}{c|cccc} x_2 & x_3 & g \\ \hline a & a & true \\ & a & b & true \\ b & a & true \\ b & b & false \\ \end{array}$$

X ₁	Υ.	Υ.	l h
$\frac{\lambda_1}{a}$	x ₂ a	$\frac{x_3}{a}$	true
a	a	b	true
а	b	а	false
а	b	b	false
b	a	a	false
b	а	b	false
b	b	а	true
b	b	b	false

class2 276 2018

Example of Selection, Projection and Join

x_1	x_2	x_3
a	b	c
b	b	c
\mathbf{c}	b	С
\mathbf{c}	b	\mathbf{s}

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|cccc}
x_2 & x_3 & x_4 \\
\hline
a & a & 1 \\
b & c & 2 \\
b & c & 3
\end{array}$$

- (a) Relation R
- (b) Relation R'

(c) Relation R''

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ b & b & c \\ c & b & c \\ \end{array}$$

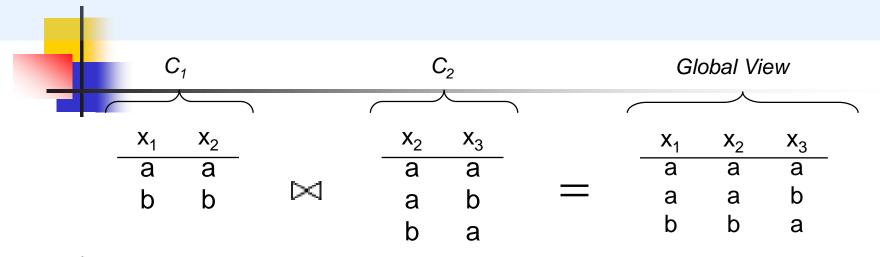
$$\begin{array}{c|c} x_2 & x_3 \\ \hline b & c \\ n & n \end{array}$$

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 & x_4 \\ \hline b & b & c & 2 \\ b & b & c & 3 \\ c & b & c & 2 \\ c & b & c & 3 \\ \end{array}$$

- (a) $\sigma_{x_3=c}(R')$ (b) $\pi_{\{x_2,x_3\}}(R')$

(c) $R' \bowtie R''$

Global View of the Problem



What about counting?

X ₁	X_2	x_3	h		_ x ₁	X_2	X_3
а	а	а	true		a	а	а
a	а	b	true		а	а	b
a	b	a	false		а	b	a
а	b	b	false		а	b	b
b	a	а	false	true is 1 false is 0	b	a	а
b	а	b	false	logical AND?	b	а	b
b	b	а	true	logical AND:	b	b	а
b	b	b	false		b	b	b

Number of true tuples

class2 276 2018Sum over all the tuples

The minimal network, An extreme case of re-parameterization

The N-queens Constraint Network

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

	x_1	x_2	x_3	x_4
1				
2				
3				
4				

(a)

$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4) (4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

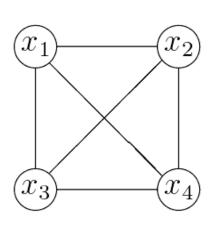
$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)

Solutions are: (2,4,1,3) (3,1,4,2)

Figure 2.11: The 4-queens constraint network: (a) The constraint graph. (b) The minimal binary constraints.

(c) The minimal unary constraints (the domains).



$$M_{12} = \{(2,4), (3,1)\}$$

$$M_{13} = \{(2,1), (3,4)\}$$

$$M_{14} = \{(2,3), (3,2)\}$$

$$M_{23} = \{(1,4), (4,1)\}$$

$$M_{24} = \{(1,2), (4,3)\}$$

$$M_{34} = \{(1,3), (4,2)\}$$

$$D_1 = \{1,3\}$$

$$D_2 = \{1,4\}$$

$$D_3 = \{1,4\}$$

$$D_4 = \{1,3\}$$

(a)

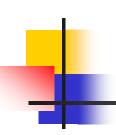
(b)

(c)

Solutions are: (2,4,1,3) (3,1,4,2)

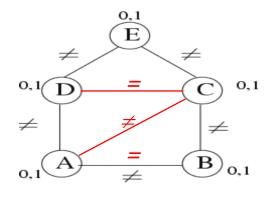
- The minimal network is perfectly explicit for binary and unary constraints:
 - Every pair of values permitted by the minimal constraint is in a solution.

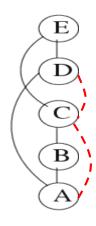
- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks



Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)





Bucket E: $E \neq D$, $E \neq C$

Bucket D: $D \neq A$

Bucket C: $C \neq B$ $A \neq C$

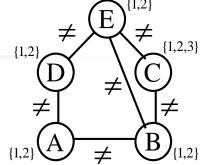
Bucket B: $B \neq A$ $\nearrow B = A$

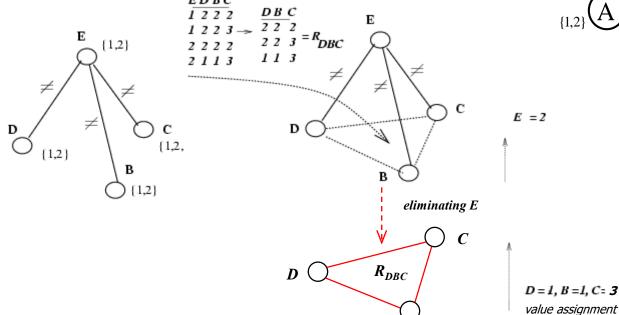
Bucket A: contradiction

Complexity: $O(n \exp(w^*))$

w* - induced width

The Idea of Elimination

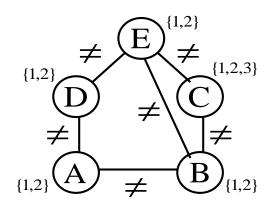




$$R_{DBC} = \prod\nolimits_{DBC} R_{ED} \bowtie R_{EB} \bowtie R_{EC}$$

Eliminate variable $E \Leftrightarrow join and project$

Bucket-Elimination



Bucket(E): E \neq D, E \neq C, E \neq B

 $Bucket(D): D \neq A \parallel R_{DCB}$

 $Bucket(C): C \neq B \parallel R_{ACB}$

 $Bucket(B): B \neq A \parallel R_{AB}$

 $Bucket(A): R_A$

Bucket(A): $A \neq D$, $A \neq B$

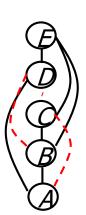
 $Bucket(D): D \neq E \parallel R_{DB}$

 $Bucket(C): C \neq B, C \neq E$

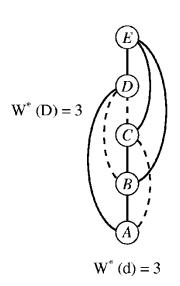
 $Bucket(B): B \neq E \parallel R^{D}_{BE}, R^{C}_{BE}$

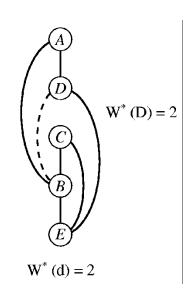
 $Bucket(E): || R_E$

Complexity: O(n exp(w*(d))), w*(d) - induced width along ordering d



The Induced-Width





- Width along d, w(d):
 - max # of previous parents
- Induced width w*(d):
 - The width in the ordered induced graph
- Induced-width w*:
 - Smallest induced-width over all orderings
- Finding w*
 - NP-complete (Arnborg, 1985) but greedy heuristics (min-fill).

Adaptive-Consistency, Bucket-Elimination

Initialize: partition constraints into $bucket_1,...,bucket_n$ **For** i=n down to 1 along d (process in reverse order) **for** all relations $R_1,...,R_m \in bucket_i$ **do** (join all relations and "project-out" X_i)

$$R_{new} \leftarrow \prod_{(-X_i)} (\bowtie_j R_j)$$

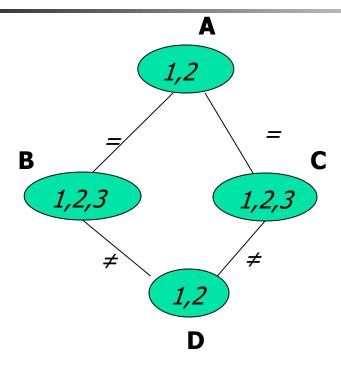
If R_{new} is not empty, add it to $bucket_k$, k < i, where k is the largest variable index in R_{new} **Else** problem is unsatisfiable

Return the set of all relations (old and new) in the buckets

Algorithms for Reasoning with graphical models

Class3 Rina Dechter

Example: deadends, backtrack-freeness



Assign values in the order D,B,C,A before and after adaptive-consistence

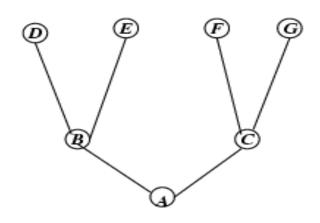
Order A,B,C,D, order A,B,D,C

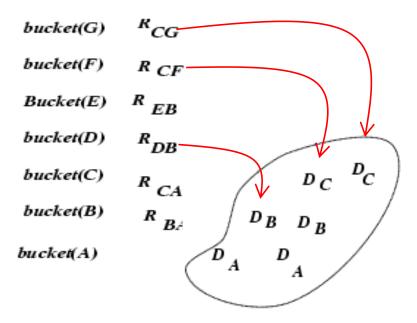
- Adaptive-consistency generates a constraint network that is backtrack-free (can be solved without dead-ends).
- The time and space complexity of adaptive-consistency along ordering d is time and memory exponential in w*(d)
- Therefore, problems having bounded induced width are tractable (solved in polynomial time).
 - *trees* (w*=1),
 - series-parallel networks (w*=2),
 - and in general k-trees (w*=k).

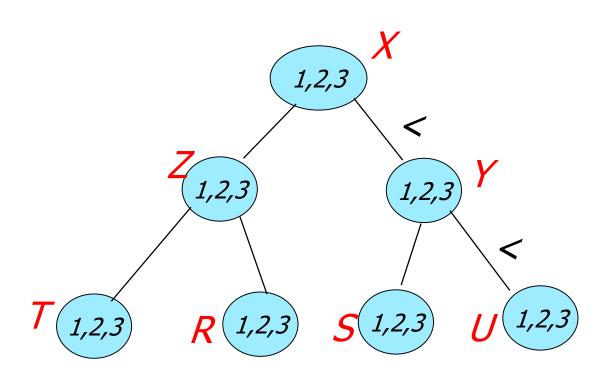
Solving Trees

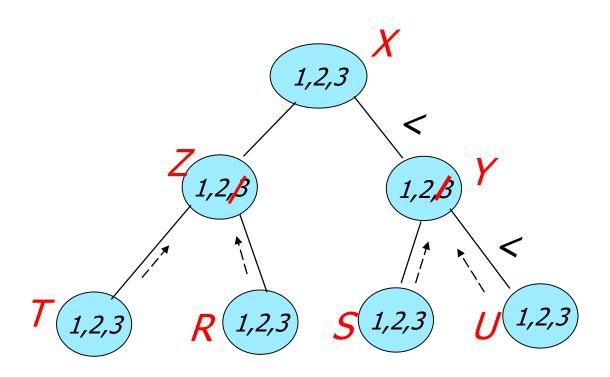
(Mackworth and Freuder, 1985)

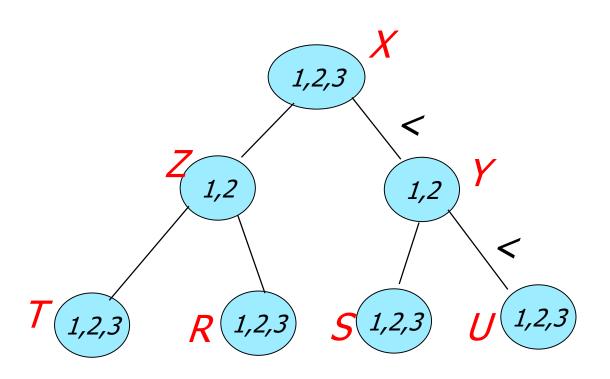
Adaptive consistency is linear for trees and equivalent to enforcing directional arc-consistency (recording only unary constraints)

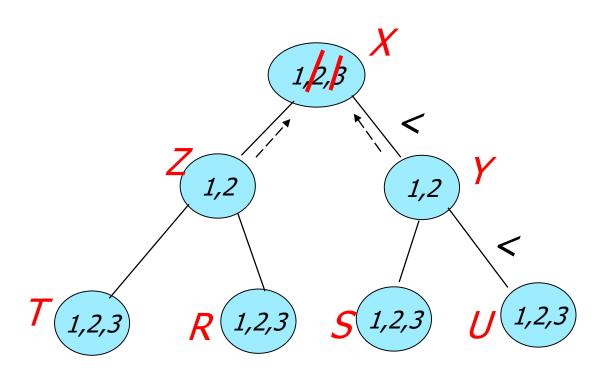


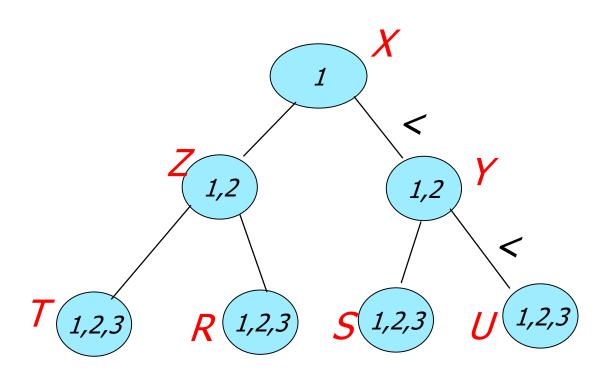


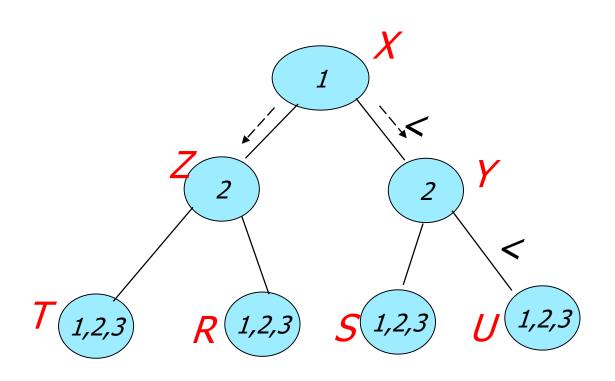


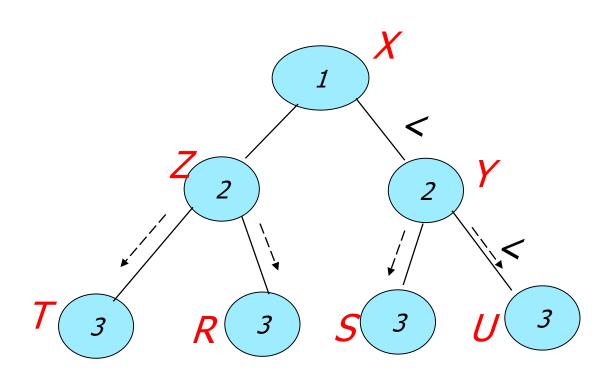


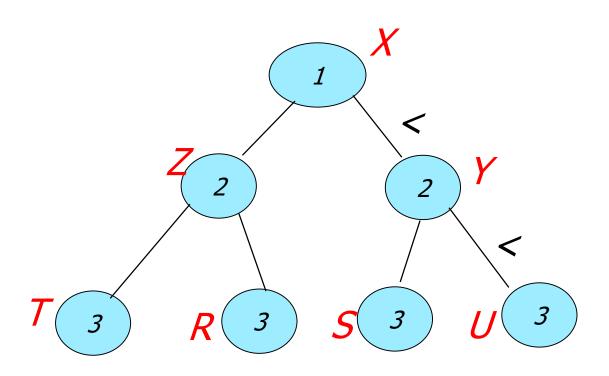












Adaptive-consistency is linear time because induced-width is 1 (Constraint propagation Solves trees in linear time)

Example: crossword puzzle

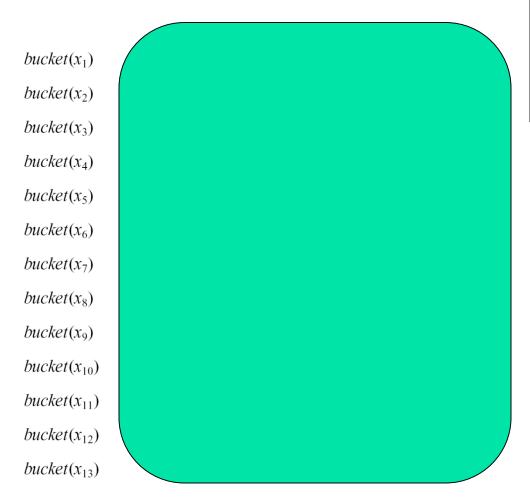
```
R_{1,2,3,4,5} = \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ (S,N,A,I,L),(S,T,E,E,R)\}
R_{3,6,9,12} = \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ (S,A,M,E)\}
R_{5,7,11} = \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\}
R_{8,9,10,11} = R_{3,6,9,12}
R_{10,13} = \{(N,O),(B,E),(U,S),(I,T)\}
R_{12,13} = R_{10,13}
```


$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ \end{split}$$

(S, A, M, E)} $R_{5,7,11} = \{(R, U, N), (S, U, N), (L, E, T), (Y, E, S), (E, A, T), (T, E, N)\}$

$$\begin{split} R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \end{split}$$

 $R_{12,13} = R_{10,13}$

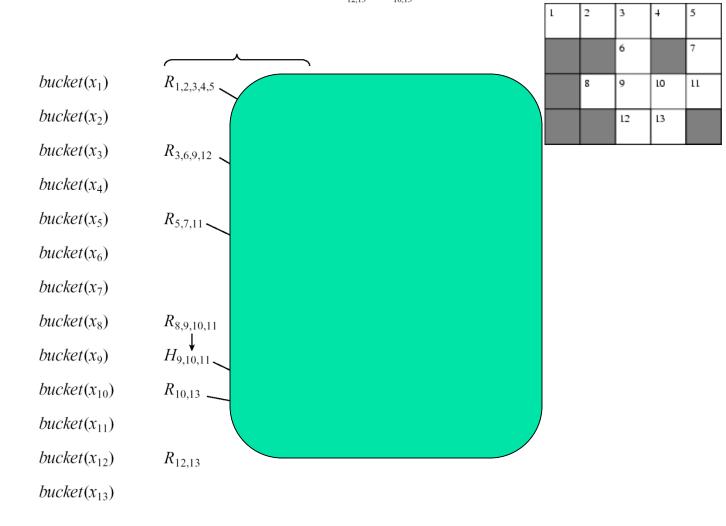


 $R_{1,2,3,4,5} = \{(H, O, S, E, S), (L, A, S, E, R), (S, H, E, E, T),\}$ (S, N, A, I, L), (S, T, E, E, R) $R_{3,6,9,12} = \{(H, I, K, E), (A, R, O, N), (K, E, E, T), (E, A, R, N),$

(S, A, M, E)} $R_{5,7,11} = \{(R, U, N), (S, U, N), (L, E, T), (Y, E, S), (E, A, T), (T, E, N)\}$

$$\begin{split} &R_{8,9,10,11} = R_{3,6,9,12} \\ &R_{10,13} = \{(N,O),(B,E),(U,S),(I,T)\} \end{split}$$

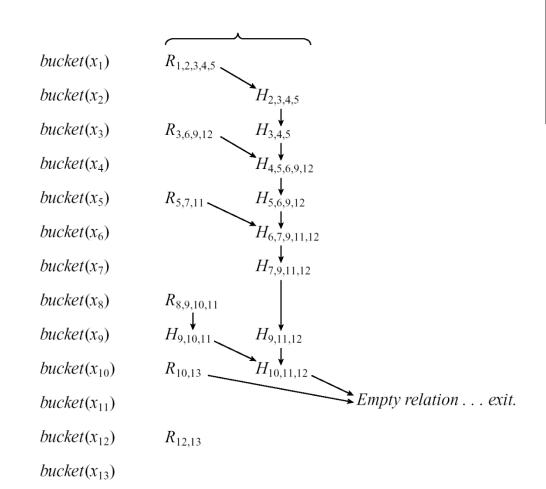
 $R_{12,13} = R_{10,13}$



Adaptive-Consistency on the Crossword Puzzle

$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \underbrace{\{(N,O),(B,E),(U,S),(I,T)\}} \end{split}$$

 $R_{12.13} = R_{10.13}$



Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks

Gausian and Boolean Propagation, Resolution

Linear inequalities

$$x + y + z \le 15, z \ge 13 \Longrightarrow$$

$$x \le 2, y \le 2$$

Boolean constraint propagation, unit resolution

$$(A \lor B \lor \neg C), (\neg B) \Longrightarrow$$

$$(A \vee \neg C)$$

The Effect of Resolution on Its Graph

(~C) (AVBVC) (~AvBvE)(~B,C,E)

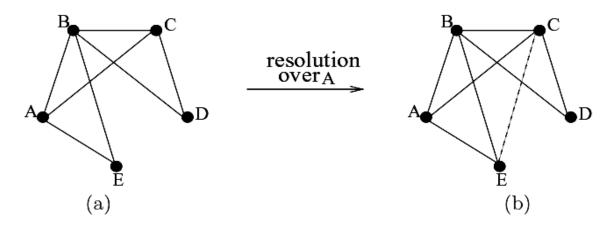
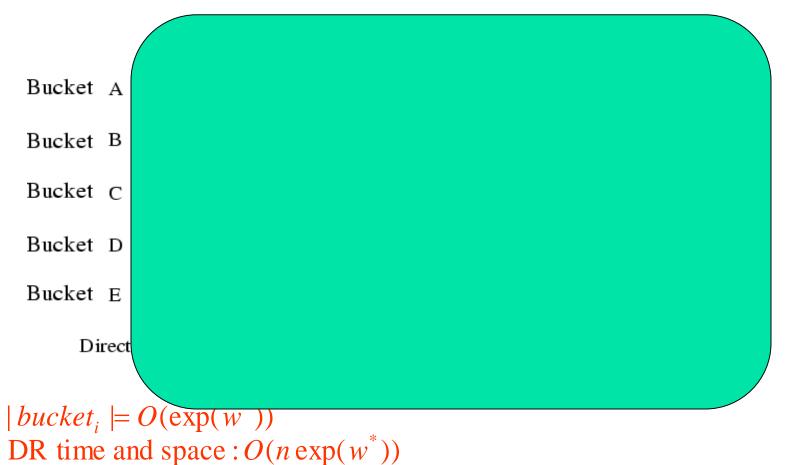


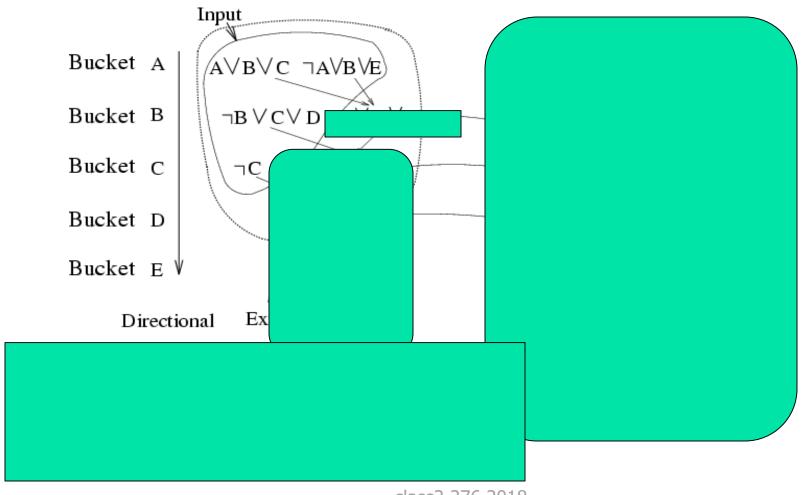
Figure 4.19: (a) The interaction graph of theory $\varphi_1 = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}$, and (b) the effect of resolution over A on that graph.

(~C) (AVBVC) (~AvBvE)(~B,C,E)



class2 276 2018

(~C) (AVBVC) (~AvBvE)(~B,C,E)



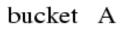
(~C) (AVBVC) (~AvBvE)(~B,C,E)



 $|bucket_i| = O(\exp(w^*))$ DR time and space : $O(n \exp(w^*))$

Knowledge compilation

Model generation

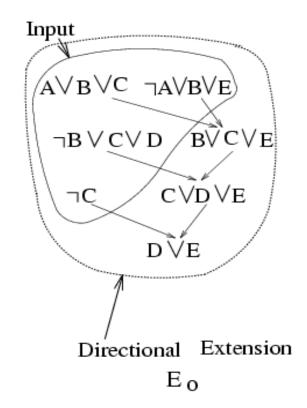


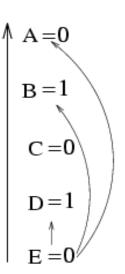
bucket B

bucket C

bucket D

bucket E





Directional Resolution

DIRECTIONAL-RESOLUTION

Input: A CNF theory φ , an ordering $d = Q_1, \ldots, Q_n$ of its variables.

OutputA decision of whether φ is satisfiable. If it is, a theory $E_d(\varphi)$,

equivalent to φ , else an empty directional extension.

- 1. **Initialize:** generate an ordered partition of clauses into buckets. $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all clauses whose highest literal is Q_i .
- 2. for $i \leftarrow n$ downto 1 process $bucket_i$:
- 3. **if** there is a unit clause **then** (the instantiation step) apply unit-resolution in $bucket_i$ and place the resolvents in their right buckets. **if** the empty clause was generated, theory is not satisfiable.
- 4. **else** resolve each pair $\{(\alpha \vee Q_i), (\beta \vee \neg Q_i)\} \subseteq bucket_i$. **if** $\gamma = \alpha \vee \beta$ is empty, return $E_d(\varphi) = \{\}$, theory is not satisfiable **else** determine the index of γ and add it to the appropriate bucket.
- 5. **return** $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

History

- 1960 resolution-based Davis-Putnam algorithm
- 1962 resolution step replaced by conditioning (Davis, Logemann and Loveland, 1962) to avoid memory explosion, resulting into a backtracking search algorithm known as Davis-Putnam (DP), or DPLL procedure.
- The dependency on induced width was not known in 1960.
- 1994 Directional Resolution (DR), a rediscovery of the original Davis-Putnam, identification of tractable classes (Dechter and Rish, 1994).

Properties of DR

Lemma 3.2.6 Given a theory φ and an ordering $d = (Q_1, ..., Q_n)$, if Q_i has at most k parents in the induced graph along d, then the bucket of Q_i in $E_d(\varphi)$ contains no more than 3^{k+1} clauses.

Proof: Given a clause α in the bucket of Q_i , there are three possibilities for each parent P of Q_i : either P appears in α , $\neg P$ appears in α , or neither of them appears in α . Since Q_i also appears in α , either positively or negatively, the number of possible clauses in a bucket is no more than $2 \cdot 3^k < 3^{k+1}$.

Theorem 3.2.7 (complexity of DR)

Given a theory φ and an ordering of its variables d, the time complexity of algorithm DR along d is $O(n \cdot 9^{w_d^*})$, and $E_d(\varphi)$ contains at most $n \cdot 3^{w_d^*+1}$ clauses, where w_d^* is the induced width of φ 's interaction graph along d. \square

Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Greedy search for induced-width orderings
 - Variable elimination for Linear Inequalities
- Constraint propagation
- Search
- Probabilistic Networks

 Finding a minimum induced-width ordering is hard (NP-complete, lots of literature). So we have approximation greedy schemes.

Greec

Greedy Algorithms for Induced-Width

- Min-width ordering
- Min-induced-width ordering
- Max-cardinality ordering
- Min-fill ordering
- Chordal graphs
- Hypergraph partitionings

(Project: present papers on induced-width, run algorithms for induced-width on new benchmarks...)

Min-width Ordering

```
MIN-WIDTH (MW)
```

```
input: a graph G = (V, E), V = \{v_1, ..., v_n\}
```

output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow \text{a node in } G \text{ with smallest degree.}$
- 3. put r in position j and $G \leftarrow G r$. (Delete from V node r and from E all its adjacent edges)
- 4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph **Complexity:?**

0(e)

Greedy Orderings Heuristics

min-induced-width (miw)

```
input: a graph G = (V;E), V = \{v1; :::; vn\} output: A miw ordering of the nodes d = (v1; :::; vn).
```

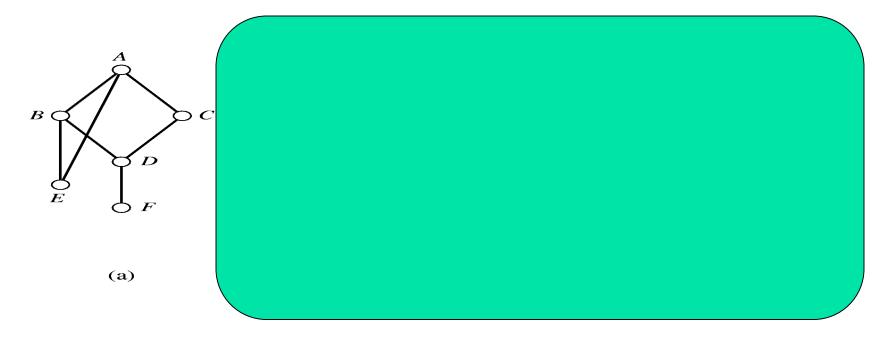
- 1. for j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest degree.
- 3. put r in position j.
- 4. connect r's neighbors: $E \leftarrow E$ union $\{(vi; vj) | (vi; r) \text{ in } E; (vj; r) \text{ 2 in } E\}$,
- 5. remove r from the resulting graph: $V \leftarrow V \{r\}$.

min-fill (min-fill)

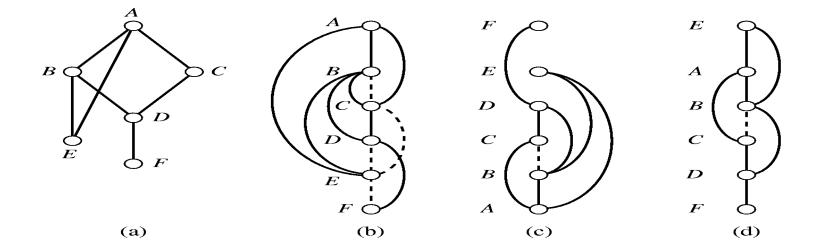
```
input: a graph G = (V;E), V = \{v1; :::; vn\} output: An ordering of the nodes d = (v1; :::; vn).
```

- 1. for j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest fill edges for his parents.
- 3. put r in position j.
- 4. connect r's neighbors: $E \leftarrow E$ union $\{(vi; vj) | (vi; r) \ 2 \ E; (vj; r) \ in \ E\}$,
- 5. remove r from the resulting graph: $V \leftarrow V \{r\}$.

Theorem: A graph is a tree iff it has both width and induced-width of 1.



Example



Chordal Graphs; Max-Cardinality Ordering

- A graph is chordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the max-cardinality ordering
- If G* is an induced graph of it is chordal
- K-trees are special chordal graphs.
- Finding the max-clique in chordal graphs is easy (just enumerate all cliques in a maxcardinality ordering

4

Max-Cardinality Ordering

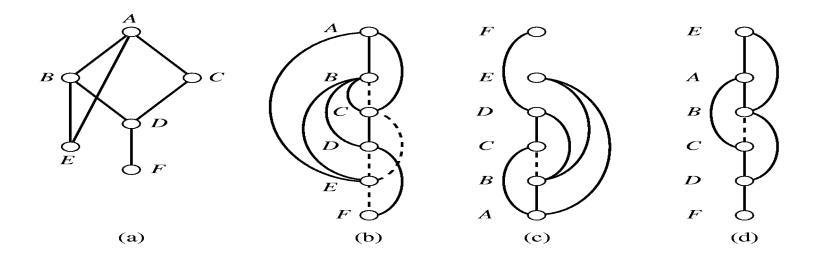
MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. Place an arbitrary node in position 0.
- 2. for j = 1 to n do
- 3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j-1, breaking ties arbitrarily.
- 4. endfor

Example

We see again that *G* in the Figure (a) is not chordal since the parents of *A* are not connected in the max-cardinality ordering in Figure (d). If we connect *B* and *C*, the resulting induced graph is chordal.



Which Greedy Algorithm is Best?

 MinFill, prefers a node who add the least number of fill-in arcs.

- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is O(?), MIW: O(?) MF (?) MC is O(mn)

Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Greedy search for induced-width orderings
 - Variable elimination for Linear Inequalities
- Constraint propagation
- Search
- Probabilistic Networks

Linear Inequalities

$$(3x_i + 2x_j \le 3) \land (-4x_i + 5x_j \le 1)$$

Definition 3.3.1 (Linear elimination) Let $\alpha = \sum_{i=1}^{(r-1)} a_i x_i + a_r x_r \leq c$, and $\beta = \sum_{i=1}^{(r-1)} b_i x_i + b_r x_r \leq d$. Then $elim_r(\alpha, \beta)$ is applicable only if a_r and b_r have opposite signs, in which case $elim_r(\alpha, \beta) = \sum_{i=1}^{r-1} (-a_i \frac{b_r}{a_r} + b_i) x_i \leq -\frac{b_r}{a_r} c + d$. If a_r and b_r have the same sign the elimination implicitly generates the universal constraint.

Linear Inequalities: Fourier Elimination

Directional-Linear-Elimination (φ, d)

Input: A set of linear inequalities φ , an ordering $d = x_1, \ldots, x_n$.

OutputA decision of whether φ is satisfiable. If it is, a backtrack-free theory $E_d(\varphi)$.

- Initialize: Partition inequalities into ordered buckets.
- 2. for $i \leftarrow n$ downto 1 do
- 3. if x_i has one value in its domain then
- substitute the value into each inequality in the bucket and put the resulting inequality in the right bucket.
- else, for each pair {α, β} ⊆ bucket_i, compute γ = elim_i(α, β) if γ has no solutions, return E_d(φ) = {}, "inconsistency" else add γ to the appropriate lower bucket.
- 5. return $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

Directional linear elimination, DLE: generates a backtrack-free representation

Theorem 4.8.3 Given a set of linear inequalities φ , algorithm DLE (Fourier elimination) decides the consistency of φ over the Rationals and the Reals, and it generates an equivalent backtrack-free representation. \square

Example

 $bucket_4: 5x_4 + 3x_2 - x_1 \le 5, x_4 + x_1 \le 2, -x_4 \le 0,$

 $bucket_3: x_3 \le 5, x_1 + x_2 - x_3 \le -10$

 $bucket_2: x_1 + 2x_2 \leq 0.$

 $bucket_1:$

Figure 4.23: initial buckets

bucket₄: $5x_4 + 3x_2 - x_1 \le 5$, $x_4 + x_1 \le 2$, $-x_4 \le 0$,

 $bucket_3: x_3 \leq 5, x_1 + x_2 - x_3 \leq -10$

 $bucket_2: x_1 + 2x_2 \le 0 \mid |3x_2 - x_1 \le 5, x_1 + x_2 \le -5$

 $bucket_1: || x_1 \leq 2.$

Figure 4.24: final buckets

Algorithms for Reasoning with graphical models

Class4 Rina Dechter

Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation (ch 2 Dechter2)
- Search
- Probabilistic Networks

Sudoku – Approximation: Constraint Propagation

- Constraint
- Propagation
- Inference

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	23 #6
		9			4	5	8	1
			3		2	9		

• Variables: empty slots

• Domains = {1,2,3,4,5,6,7,8,9}

Constraints:

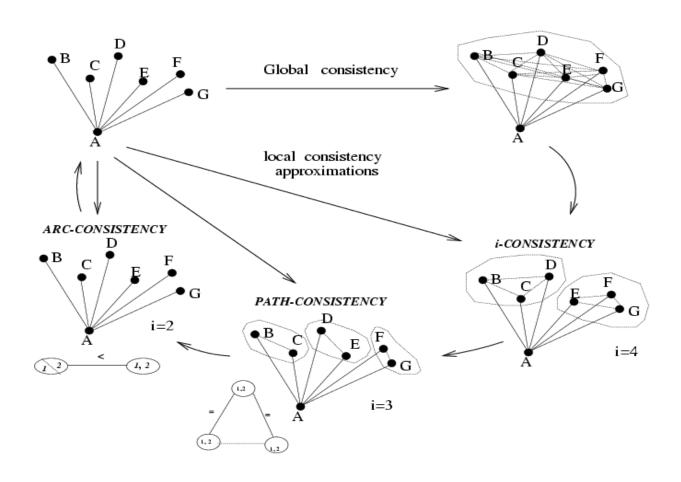
• 27 all-different

Each row, column and major block must be alldifferent

"Well posed" if it has unique solution: 27 constraints

- Problem: bucket-elimination/tree-clustering algorithms are intractable when induced width is large
- Approximation: bound the size of recorded dependencies, i.e. perform *local constraint* propagation (local inference)

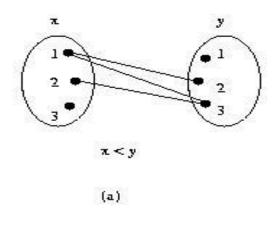
From Global to Local Consistency

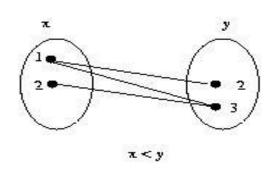


Arc-Consistency

A binary constraint R(X,Y) is arc-consistent w.r.t. X is every value In x's domain has a match in y's domain.

$$R_X = \{1,2,3\}, R_Y = \{1,2,3\}, \text{ constraint } X < Y$$





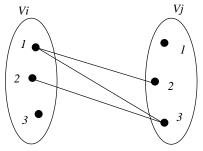
(b)

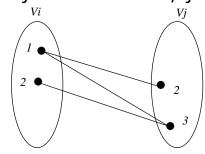
$$R_X \leftarrow \prod_X R_{XY} \bowtie D_Y$$

Arc-Consistency

Definition: Given a constraint graph G,

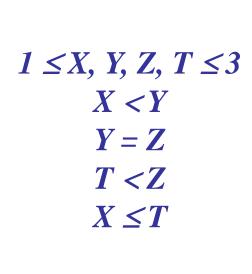
■ A <u>variable V_i is arc-consistent relative to</u> V_j iff for every value $a \in D_{Vi}$ there exists a value $b \in D_{Vi} \mid (a, b) \in R_{Vi,Vi}$.

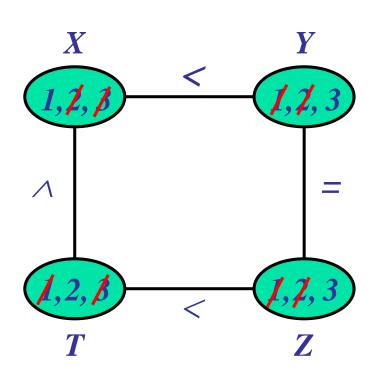




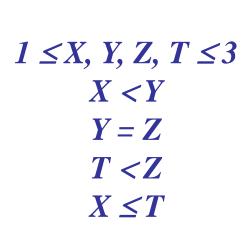
- The constraint R_{Vi,Vi} is arc-consistent iff
 - V_i is arc-consistent relative to V_i and
 - V_j is arc-consistent relative to V_i.
- A binary CSP is arc-consistent iff every constraint (or sub-graph of size 2) is arc-consistent

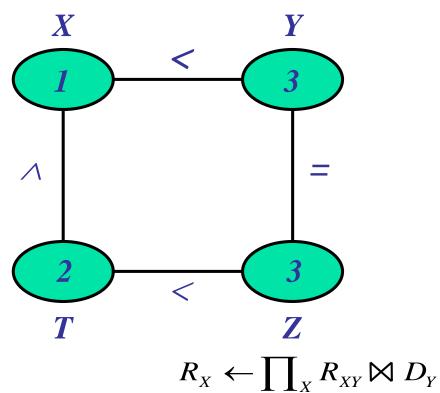
Arc-consistency





Arc-consistency





$$R_X \leftarrow \prod_X R_{XY} \bowtie D_Y$$

AC-1(R) input: a n

input: a network of constraints $\mathcal{R} = (X, D, C)$

output: \mathcal{R}' which is the loosest arc-consistent network equivalent to \mathcal{R}

- 1. repeat
- 2. **for** every pair $\{x_i, x_i\}$ that participates in a constraint
- 3. Revise $((x_i), x_j)$ (or $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j)$)
- 4. Revise $((x_j), x_i)$ (or $D_j \leftarrow D_j \cap \pi_j(R_{ij} \bowtie D_i)$)
- 5. endfor
- 6. **until** no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

- Complexity (Mackworth and Freuder, 1986):
- e = number of arcs, n variables, k values
- (ek^2 , each loop, nk number of loops), best-case = ek
- Arc-consistency is: $\Omega(ek^2)$
- Complexity of AC-1: O(enk³)

AC-3(R)

input: a network of constraints $\mathcal{R} = (X, D, C)$ **output:** \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R} 1. for every pair $\{x_i, x_j\}$ that participates in a constraint $R_{ij} \in \mathcal{R}$ $queue \leftarrow queue \cup \{(x_i, x_j), (x_j, x_i)\}$ 2. 3. endfor while $queue \neq \{\}$ select and delete (x_i, x_j) from queue 5. $Revise((x_i), x_j)$ 6. if $Revise((x_i), x_j)$ causes a change in D_i 7. then $queue \leftarrow queue \cup \{(x_k, x_i), i \neq k\}$ 8. endif 9. 10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

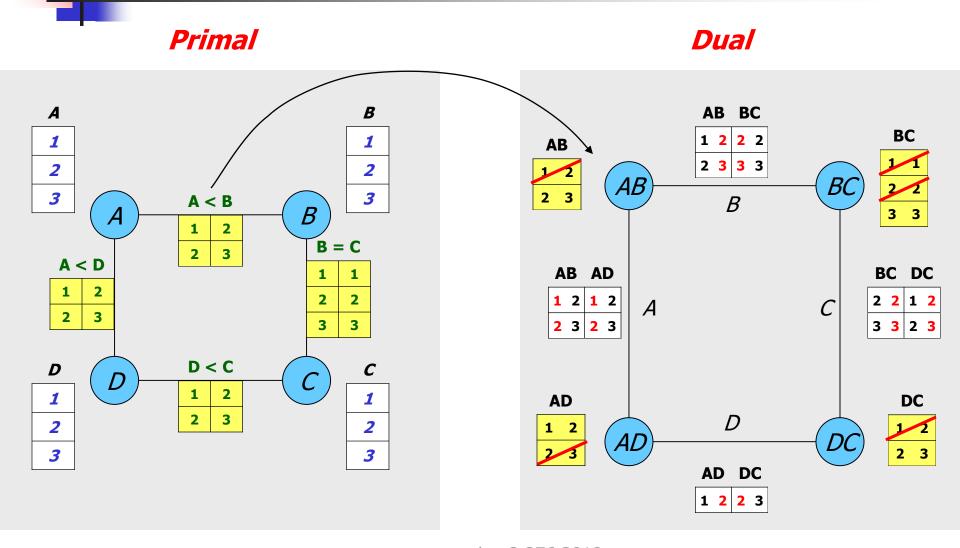
- Complexity: $O(ek^3)$
- Best case O(ek), since each arc may be processed in O(2k)

Arc-Consistency Algorithms

- AC-1: brute-force, distributed $O(nek^3)$
- AC-3, queue-based $O(ek^3)$
- AC-4, context-based, optimal $O(ek^2)$
- AC-5,6,7,.... Good in special cases
- Important: applied at every node of search

n=number of variables, e=#constraints, k=domain size Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

Relational Distributed Arc-Consistency



Path-Consistency

 A pair (x, y) is path-consistent relative to Z, if every consistent assignment (x, y) has a consistent extension to z.

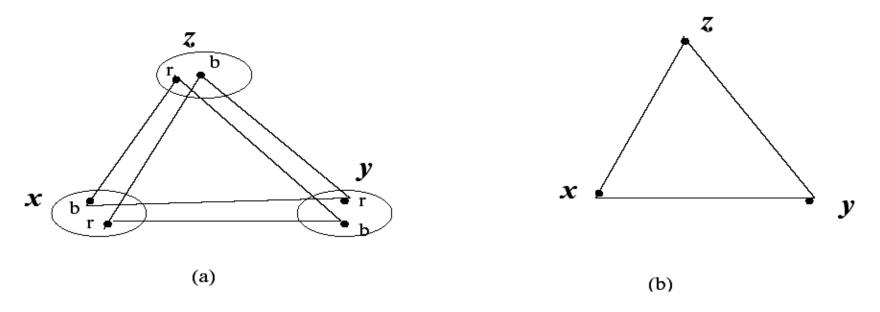


Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical picture of path-consistency using the matching diagram.

-

Example: Path-Consistency

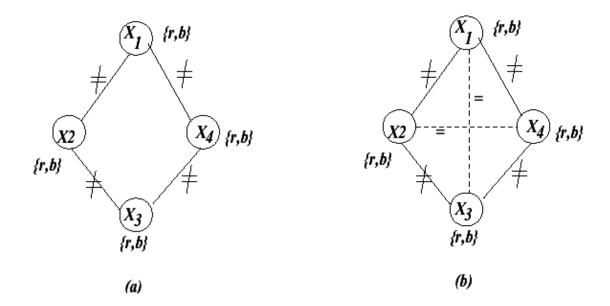
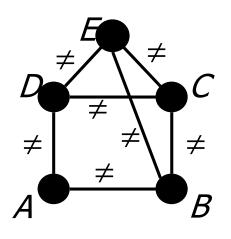
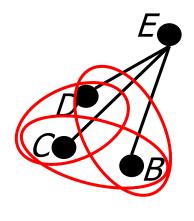


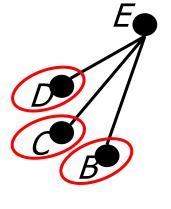
Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

Directional i-Consistency





d-path



 $E: E \neq D, E \neq C, E \neq B$

Adaptive

d-arc

 $D: D \neq C, D \neq A$

 R_{DCB}

 $egin{aligned} R_D \ R_C \ R_D \end{aligned}$

 $\textbf{C: } \textbf{C} \neq \textbf{B}$

 R_{CB}

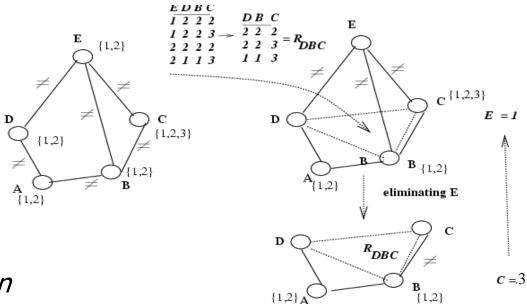
 R_{DC}, R_{DB}

 $B: A \neq B$

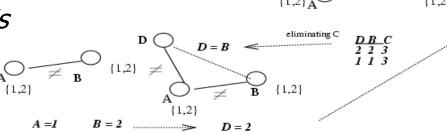
A:

Variable Elimination

Eliminate
variables
one by one:
"constraint
propagation"



Solution generation after elimination is backtrack-free



Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination:
 - Tree-clustering
 - Constraint propagation
- Search
- Probabilistic Networks