Sampling Techniques for Probabilistic and Deterministic Graphical models

ICS 276, Spring 2018
Bozhena Bidyuk
Rina Dechter

Reading” Darwiche chapter 15, related papers
Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling
A **Markov chain** is a discrete random process with the property that the next state depends only on the current state (**Markov Property**):

\[
P(x_t \mid x_1, x_2, \ldots, x_{t-1}) = P(x_t \mid x_{t-1})
\]

- If \(P(X^t \mid x^{t-1})\) does not depend on \(t\) (**time homogeneous**) and state space is finite, then it is often expressed as a **transition function** (aka **transition matrix**)

\[
\sum_x P(X = x) = 1
\]
Example: Drunkard’s Walk

- a random walk on the number line where, at each step, the position may change by +1 or −1 with equal probability

\[D(X) = \{0,1,2,...\} \]

\[
\begin{array}{c|c|c}
 n & P(n-1) & P(n+1) \\
 0.5 & 0.5 \\
\end{array}
\]

transition matrix \(P(X) \)
Example: Weather Model

\[D(\mathcal{X}) = \{ \text{rainy, sunny} \} \]

\[
\begin{array}{c|cc}
\text{rainy} & P(\text{rainy}) & P(\text{sunny}) \\
\hline
\text{rainy} & 0.9 & 0.1 \\
\text{sunny} & 0.5 & 0.5 \\
\end{array}
\]

transition matrix P(\mathcal{X})
Multi-Variable System

\[X = \{ X_1, X_2, X_3 \}, D(X_i) = \text{discrete, finite} \]

• state is an assignment of values to all the variables

\[x^t = \{ x_1^t, x_2^t, \ldots, x_n^t \} \]
Bayesian Network System

- Bayesian Network is a representation of the joint probability distribution over 2 or more variables

\[X = \{ X_1, X_2, X_3 \} \]

\[x^t = \{ x_1^t, x_2^t, x_3^t \} \]
Stationary Distribution

Existence

• If the Markov chain is time-homogeneous, then the vector \(\pi(X) \) is a \textit{stationary} distribution (aka \textit{invariant} or \textit{equilibrium} distribution, aka "fixed point"), if its entries sum up to 1 and satisfy:

\[
\pi(x_i) = \sum_{x_i \in D(X)} \pi(x_j) P(x_i \mid x_j)
\]

• Finite state space Markov chain has a unique stationary distribution if and only if:
 – The chain is irreducible
 – All of its states are positive recurrent
Irreducible

- A state x is **irreducible** if under the transition rule one has nonzero probability of moving from x to any other state and then coming back in a finite number of steps.
- If one state is irreducible, then all the states must be irreducible.

(Liu, Ch. 12, pp. 249, Def. 12.1.1)
Recurrent

• A state χ is *recurrent* if the chain returns to χ with probability 1

• Let $M(\chi)$ be the expected number of steps to return to state χ

• State χ is *positive recurrent* if $M(\chi)$ is finite

 The recurrent states in a finite state chain are positive recurrent.
Stationary Distribution Convergence

• Consider infinite Markov chain:

\[P^{(n)} = P(x^n \mid x^0) = P^0 P^n \]

• If the chain is both **irreducible** and **aperiodic**, then:

\[\pi = \lim_{n \to \infty} P^{(n)} \]

• Initial state is not important in the limit

“The most useful feature of a “good” Markov chain is its fast forgetfulness of its past...”

(Liu, Ch. 12.1)
Aperiodic

- Define $d(i) = \text{g.c.d.}\{n > 0 \mid \text{it is possible to go from } i \text{ to } i \text{ in } n \text{ steps}\}$. Here, g.c.d. means the greatest common divisor of the integers in the set. If $d(i) = 1$ for $\forall i$, then chain is \textit{aperiodic}

- \textit{Positive recurrent, aperiodic} states are \textit{ergodic}
Markov Chain Monte Carlo

• How do we estimate $P(X)$, e.g., $P(X|e)$?

• Generate samples that form Markov Chain with stationary distribution $\pi = P(X|e)$

• Estimate π from samples (observed states): visited states x^0,\ldots,x^n can be viewed as “samples” from distribution π

$$\overline{\pi}(x) = \frac{1}{T} \sum_{t=1}^{T} \delta(x, x^t)$$

$$\pi = \lim_{T \to \infty} \overline{\pi}(x)$$
MCMC Summary

• Convergence is guaranteed in the limit
• Initial state is not important, but... typically, we throw away first K samples - “burn-in”
• Samples are dependent, not i.i.d.
• Convergence (mixing rate) may be slow
• The stronger correlation between states, the slower convergence!
Gibbs Sampling (Geman&Geman, 1984)

• **Gibbs sampler** is an algorithm to generate a sequence of samples from the **joint probability distribution** of two or more random variables.

• Sample new variable value one variable at a time from the variable’s conditional distribution:

\[
P(X_i) = P(X_i | x_1^t, ..., x_{i-1}^t, x_{i+1}^t, ..., x_n^t) = P(X_i | x^t \setminus x_i)
\]

• Samples form a Markov chain with stationary distribution \(P(X/e)\)
Gibbs Sampling: Illustration

The process of Gibbs sampling can be understood as a *random walk* in the space of all instantiations of $X=x$ (remember drunkard’s walk):

In one step we can reach instantiations that differ from current one by value assignment to at most one variable (assume randomized choice of variables X_i).
Ordered Gibbs Sampler

Generate sample x^{t+1} from x^t:

\[
X_1 = x_1^{t+1} \leftarrow P(X_1 \mid x_2^t, x_3^t, \ldots, x_N^t, e) \\
X_2 = x_2^{t+1} \leftarrow P(X_2 \mid x_1^{t+1}, x_3^t, \ldots, x_N^t, e) \\
\vdots \\
X_N = x_N^{t+1} \leftarrow P(X_N \mid x_1^{t+1}, x_2^{t+1}, \ldots, x_{N-1}^{t+1}, e)
\]

In short, for $i=1$ to N:

\[
X_i = x_i^{t+1} \leftarrow \text{sampled from } P(X_i \mid x^t \setminus x_i, e)
\]
Given *Markov blanket* (parents, children, and their parents), \(X_i \) is independent of all other nodes

Markov blanket:

\[
\text{markov}(X_i) = pa_i \cup ch_i \cup \left(\bigcup_{X_j \in ch_i} pa_j \right)
\]

\[
P(X_i \mid x^t \setminus x_i) = P(X_i \mid \text{markov}^t_i):
\]

\[
P(x_i \mid x^t \setminus x_i) \propto P(x_i \mid pa_i) \prod_{X_j \in ch_i} P(x_j \mid pa_j)
\]

Computation is linear in the size of Markov blanket!
Ordered Gibbs Sampling Algorithm (Pearl, 1988)

Input: X, $E=e$
Output: T samples $\{x_t^t\}$

Fix evidence $E=e$, initialize x^0 at random

1. For $t = 1$ to T (compute samples)
2. For $i = 1$ to N (loop through variables)
3. $x_{i}^{t+1} \leftarrow P(X_i \mid \text{markov}_{i}^{t})$
4. End For
5. End For
Gibbs Sampling Example - BN

\[X = \{ X_1, X_2, \ldots, X_9 \}, E = \{ X_9 \} \]

\[
\begin{align*}
X_1 &= x_1^0 \\
X_6 &= x_6^0 \\
X_2 &= x_2^0 \\
X_7 &= x_7^0 \\
X_3 &= x_3^0 \\
X_8 &= x_8^0 \\
X_4 &= x_4^0 \\
X_5 &= x_5^0 \\
\end{align*}
\]
Gibbs Sampling Example - BN

\[X = \{X_1, X_2, \ldots, X_9\}, \ E = \{X_9\} \]

\[x_1^1 \leftarrow P(X_1 \mid x_2^0, \ldots, x_8^0, x_9) \]

\[x_2^1 \leftarrow P(X_2 \mid x_1^1, \ldots, x_8^0, x_9) \]

\[\ldots \]
Answering Queries $P(x_i \mid e) = ?$

- **Method 1**: count # of samples where $X_i = x_i$ (*histogram estimator*):

 $$
 \overline{P}(X_i = x_i) = \frac{1}{T} \sum_{t=1}^{T} \delta(x_i, x^t)
 $$

- **Method 2**: average probability (*mixture estimator*):

 $$
 \overline{P}(X_i = x_i) = \frac{1}{T} \sum_{t=1}^{T} P(X_i = x_i \mid \text{markov}_i^t)
 $$

- Mixture estimator converges faster (*consider estimates for the unobserved values of X_i; prove via Rao-Blackwell theorem*)
Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be composed of two groups of variables, R and L. Then, for the joint distribution $\pi(R,L)$ and function g, the following result applies

$$\text{Var}[E\{g(R) \mid L\} \leq \text{Var}[g(R)]$$

for a function of interest g, e.g., the mean or covariance (Casella & Robert, 1996, Liu et. al. 1995).

• theorem makes a weak promise, but works well in practice!
• improvement depends on the choice of R and L
Importance vs. Gibbs

Gibbs: \[x^t \leftarrow \hat{P}(X \mid e) \]
\[\hat{P}(X \mid e) \xrightarrow{T \to \infty} P(X \mid e) \]
\[\hat{g}(X) = \frac{1}{T} \sum_{t=1}^{T} g(x^t) \]

Importance: \[X^t \leftarrow Q(X \mid e) \]
\[\bar{g} = \frac{1}{T} \sum_{t=1}^{T} \frac{g(x^t) P(x^t)}{Q(x^t)} \]
Gibbs Sampling: Convergence

• Sample from \(\bar{P}(X|e) \rightarrow P(X|e) \)
• Converges iff chain is irreducible and ergodic
• Intuition - must be able to explore all states:
 – if \(X_i \) and \(X_j \) are strongly correlated, \(X_i=0 \Leftrightarrow X_j=0 \),
 then, we cannot explore states with \(X_i=1 \) and \(X_j=1 \)
• All conditions are satisfied when all probabilities are positive
• Convergence rate can be characterized by the second eigen-value of transition matrix
Gibbs: Speeding Convergence

Reduce dependence between samples (autocorrelation)

- Skip samples
- Randomize Variable Sampling Order
- Employ blocking (grouping)
- Multiple chains

Reduce variance (cover in the next section)
 Blocking Gibbs Sampler

• Sample several variables **together, as a block**

• **Example:** Given three variables X, Y, Z, with domains of size 2, group Y and Z together to form a variable $W = \{Y, Z\}$ with domain size 4. Then, given sample (x^t, y^t, z^t), compute next sample:

$$x^{t+1} \leftarrow P(X \mid y^t, z^t) = P(w^t)$$

$$ (y^{t+1}, z^{t+1}) = w^{t+1} \leftarrow P(Y, Z \mid x^{t+1}) $$

+ Can improve convergence greatly when two variables are strongly correlated!

- Domain of the block variable grows exponentially with the #variables in a block!
Gibbs: Multiple Chains

- Generate M chains of size K
- Each chain produces independent estimate P_m:
 \[
 \overline{P}_m(x_i \mid e) = \frac{1}{K} \sum_{t=1}^{K} P(x_i \mid x^t \backslash x_i)
 \]
- Estimate $P(x_i \mid e)$ as average of $P_m(x_i \mid e)$:
 \[
 \hat{P}(\bullet) = \frac{1}{M} \sum_{i=1}^{M} P_m(\bullet)
 \]

Treat P_m as independent random variables.
Gibbs Sampling Summary

• Markov Chain Monte Carlo method
• Samples are dependent, form Markov Chain
• Sample from $\overline{P}(X \mid e)$ which converges to $\overline{P}(X \mid e)$
• Guaranteed to converge when all $P > 0$
• Methods to improve convergence:
 – Blocking
 – Rao-Blackwellised
Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling
Sampling: Performance

• Gibbs sampling
 – Reduce dependence between samples

• Importance sampling
 – Reduce variance

• Achieve both by sampling a subset of variables and integrating out the rest (reduce dimensionality), aka Rao-Blackwellisation

• Exploit graph structure to manage the extra cost
Smaller Subset State-Space

- Smaller state-space is easier to cover

\[X = \{ X_1, X_2, X_3, X_4 \} \quad \text{and} \quad X = \{ X_1, X_2 \} \]

\[D(X) = 64 \quad \text{and} \quad D(X) = 16 \]
Smotherer Distribution

\[P(X_1, X_2, X_3, X_4) \]

\[P(X_1, X_2) \]
Speeding Up Convergence

• Mean Squared Error of the estimator:
 \[MSE_Q[\hat{P}] = BIAS^2 + Var_Q[\hat{P}] \]

• In case of unbiased estimator, BIAS=0
 \[MSE_Q[\hat{P}] = Var_Q[\hat{P}] = \left(E_Q[\hat{P}]^2 - E_Q[P]^2 \right) \]

• Reduce variance ⇒ speed up convergence!
Rao-Blackwellisation

\[X = R \bigcup L \]

\[\hat{g}(x) = \frac{1}{T} \left\{ h(x^1) + \cdots + h(x^T) \right\} \]

\[\tilde{g}(x) = \frac{1}{T} \left\{ E[h(x) \mid l^1] + \cdots + E[h(x) \mid l^T] \right\} \]

\[\text{Var}\{g(x)\} = \text{Var}\{E[g(x) \mid l]\} + E\{\text{var}[g(x) \mid l]\} \]

\[\text{Var}\{g(x)\} \geq \text{Var}\{E[g(x) \mid l]\} \]

\[\text{Var}\{\hat{g}(x)\} = \frac{\text{Var}\{h(x)\}}{T} \geq \frac{\text{Var}\{E[h(x) \mid l]\}}{T} = \text{Var}\{\tilde{g}(x)\} \]

Liu, Ch.2.3
Rao-Blackwellisation

“Carry out analytical computation as much as possible” - Liu

- $X = R \cup L$

- **Importance Sampling:**

 $$\text{Var}_Q \left\{ \frac{P(R, L)}{Q(R, L)} \right\} \geq \text{Var}_Q \left\{ \frac{P(R)}{Q(R)} \right\}$$

 Liu, Ch.2.5.5

- **Gibbs Sampling:**

 - Autocovariances are lower (less correlation between samples)

 - If X_i and X_j are strongly correlated, $X_i=0 \leftrightarrow X_j=0$, only include one of them into a sampling set
Blocking Gibbs Sampler vs. Collapsed

- **Standard Gibbs:**
 \[P(x \mid y, z), P(y \mid x, z), P(z \mid x, y) \] (1)

- **Blocking:**
 \[P(x \mid y, z), P(y, z \mid x) \] (2)

- **Collapsed:**
 \[P(x \mid y), P(y \mid x) \] (3)

Faster Convergence
Collapsed Gibbs Sampling

Generating Samples

Generate sample c^{t+1} from c^t:

$$C_1 = c_1^{t+1} \leftarrow P(c_1 \mid c_2^t, c_3^t, ..., c_K^t, e)$$

$$C_2 = c_2^{t+1} \leftarrow P(c_2 \mid c_1^{t+1}, c_3^t, ..., c_K^t, e)$$

...

$$C_K = c_K^{t+1} \leftarrow P(c_K \mid c_1^{t+1}, c_2^{t+1}, ..., c_{K-1}^{t+1}, e)$$

In short, for $i=1$ to K:

$$C_i = c_i^{t+1} \leftarrow \text{sampled from } P(c_i \mid c^t \setminus c_i, e)$$
Collapsed Gibbs Sampler

Input: \(C \subseteq X, \ E = e \)
Output: \(T \) samples \(\{c_t\} \)

Fix evidence \(E = e \), initialize \(c^0 \) at random

1. For \(t = 1 \) to \(T \) (compute samples)
2. For \(i = 1 \) to \(N \) (loop through variables)
3. \(c_{i}^{t+1} \leftarrow P(C_i \mid c^t \backslash c_i) \)
4. End For
5. End For
Calculation Time

• Computing $P(c_i | c^t \backslash c_i, e)$ is more expensive (requires inference)

• Trading #samples for smaller variance:
 – generate more samples with higher covariance
 – generate fewer samples with lower covariance

• Must control the time spent computing sampling probabilities in order to be time-effective!
Recall... computation time is exponential in the adjusted induced width of a graph

• \textbf{\textit{w}}-cutset is a subset of variable s.t. when they are observed, induced width of the graph is \textit{w}.

• When sampled variables form a \textbf{\textit{w}}-cutset, inference is \textit{exp}(\textit{w}) (e.g., using \textit{Bucket Tree Elimination}).

• \textbf{\textit{cycle}}-cutset is a special case of \textbf{\textit{w}}-cutset.

\begin{tabular}{|l|}
\hline
Sampling \textit{w}-cutset \Rightarrow \textbf{\textit{w}}-cutset sampling! \\
\hline
\end{tabular}
What If C=Cycle-Cutset?

\[c^0 = \{x_2^0, x_5^0\}, \quad E = \{X_9\} \]

\(P(x_2, x_5, x_9) \) – can compute using Bucket Elimination

\(P(x_2, x_5, x_9) \) – computation complexity is \(O(N) \)
Computing Transition Probabilities

Compute joint probabilities:

BE : \(P(x_2 = 0, x_3, x_9) \)

BE : \(P(x_2 = 1, x_3, x_9) \)

Normalize:

\[\alpha = P(x_2 = 0, x_3, x_9) + P(x_2 = 1, x_3, x_9) \]

\(P(x_2 = 0 \mid x_3) = \alpha P(x_2 = 0, x_3, x_9) \)

\(P(x_2 = 1 \mid x_3) = \alpha P(x_2 = 1, x_3, x_9) \)
Cutset Sampling-Answering Queries

• Query: $\forall c_i \in C, P(c_i | e) = ?$ same as Gibbs:

$$\hat{P}(c_i | e) = \frac{1}{T} \sum_{t=1}^{T} P(c_i | c^t \setminus c_i, e)$$

computed while generating sample t using bucket tree elimination

• Query: $\forall x_i \in X \setminus C, P(x_i | e) = ?$

$$\bar{P}(x_i | e) = \frac{1}{T} \sum_{t=1}^{T} P(x_i | c^t, e)$$

compute after generating sample t using bucket tree elimination
Cutset Sampling vs. Cutset Conditioning

• Cutset Conditioning

\[P(x_i | e) = \sum_{c \in D(C)} P(x_i | c, e) \times P(c | e) \]

• Cutset Sampling

\[\overline{P}(x_i | e) = \frac{1}{T} \sum_{t=1}^{T} P(x_i | c^t, e) \]

\[
= \sum_{c \in D(C)} P(x_i | c, e) \times \frac{\text{count}(c)}{T}
\]

\[
= \sum_{c \in D(C)} P(x_i | c, e) \times \overline{P}(c | e)
\]
Cutset Sampling Example

Estimating $P(x_2 \mid e)$ for sampling node X_2:

$$
\begin{align*}
 x_2^1 & \leftarrow P(x_2 \mid x_5^0, x_9) \quad \text{Sample 1} \\
 \vdots & \\
 x_2^2 & \leftarrow P(x_2 \mid x_5^1, x_9) \quad \text{Sample 2} \\
 \vdots & \\
 x_2^3 & \leftarrow P(x_2 \mid x_5^2, x_9) \quad \text{Sample 3}
\end{align*}
$$

$$
\overline{P}(x_2 \mid x_9) = \frac{1}{3} \left[P(x_2 \mid x_5^0, x_9) + P(x_2 \mid x_5^1, x_9) + P(x_2 \mid x_5^2, x_9) \right]
$$
Cutset Sampling Example

Estimating $P(x_3 \mid e)$ for non-sampled node X_3:

$c^1 = \{x_2^1, x_5^1\} \Rightarrow P(x_3 \mid x_2^1, x_5^1, x_9)$

$c^2 = \{x_2^2, x_5^2\} \Rightarrow P(x_3 \mid x_2^2, x_5^2, x_9)$

$c^3 = \{x_2^3, x_5^3\} \Rightarrow P(x_3 \mid x_2^3, x_5^3, x_9)$

\[
P(x_3 \mid x_9) = \frac{1}{3} \left[P(x_3 \mid x_2^1, x_5^1, x_9)
\quad + \quad P(x_3 \mid x_2^2, x_5^2, x_9)
\quad + \quad P(x_3 \mid x_2^3, x_5^3, x_9) \right]
\]
CPCS54 Test Results

MSE vs. #samples (left) and time (right)
Ergodic, |X|=54, D(X_i)=2, |C|=15, |E|=3
Exact Time = 30 sec using Cutset Conditioning
CPCS179 Test Results

MSE vs. #samples (left) and time (right)
Non-Ergodic (1 deterministic CPT entry)
|X| = 179, |C| = 8, 2 <= D(X_i) <= 4, |E| = 35

Exact Time = 122 sec using Cutset Conditioning
MSE vs. #samples (left) and time (right)

Ergodic, $|X| = 360$, $D(X_i) = 2$, $|C| = 21$, $|E| = 36$

Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination
MSE vs. #samples (left) and time (right)

$|X| = 100$, $D(X_i) = 2$, $|C| = 13$, $|E| = 15-20$

Exact Time = 30 sec using Cutset Conditioning
Coding Networks

Cutset Transforms Non-Ergodic Chain to Ergodic

MSE vs. time (right)

Non-Ergodic, \(|X| = 100, D(X_i) = 2, |C| = 13-16, |E| = 50\)

Sample Ergodic Subspace \(U = \{U_1, U_2, \ldots U_k\}\)

Exact Time = 50 sec using Cutset Conditioning
Non-Ergodic Hailfinder

MSE vs. #samples (left) and time (right)

Non-Ergodic, $|X| = 56$, $|C| = 5$, $2 \leq D(X_i) \leq 11$, $|E| = 0$

Exact Time = 2 sec using Loop-Cutset Conditioning
MSE vs. Time

Ergodic, $|X| = 360$, $|C| = 26$, $D(X_i) = 2$

Exact Time = 50 min using BTE
Cutset Importance Sampling
(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)

• Apply Importance Sampling over cutset C

$$
\hat{P}(e) = \frac{1}{T} \sum_{t=1}^{T} \frac{P(c^t, e)}{Q(c^t)} = \frac{1}{T} \sum_{t=1}^{T} w^t
$$

where $P(c^t, e)$ is computed using Bucket Elimination

$$
\overline{P}(c_i \mid e) = \alpha \frac{1}{T} \sum_{t=1}^{T} \delta(c_i, c^t) w^t
$$

$$
\overline{P}(x_i \mid e) = \alpha \frac{1}{T} \sum_{t=1}^{T} P(x_i \mid c^t, e) w^t
$$
Likelihood Cutset Weighting (LCS)

• $Z =$ Topological Order$\{C,E\}$

• Generating sample $t+1$:

\[
\text{For } Z_i \in Z \text{ do :} \\
\quad \text{If } Z_i \in E \\
\quad \quad z_{i}^{t+1} = z_i, z_i \in e \\
\text{Else} \\
\quad z_{i}^{t+1} \leftarrow P(Z_i \mid z_{1}^{t+1}, ..., z_{i-1}^{t+1}) \\
\text{End If} \\
\text{End For}
\]

• computed while generating sample t using bucket tree elimination

• can be memoized for some number of instances K (based on memory available)

$$KL[P(C \mid e), Q(C)] \leq KL[P(X \mid e), Q(X)]$$
Pathfinder 1

PathFinder 1, $N=109$, $w^*=6$, $|LC|=9$, $|E|=11$

- **LW**
- **LWLC**
- **LWLC-BUF**
- **IBP**

![Graph showing MSE over time for different algorithms](image-url)
Pathfinder 2

PathFinder2, N=135, |LC|=4, |E|=17

MSE

Time (sec)

- LW
- LWLC
- LWLC-BUF
- IBP
Link

![Graph showing MSE over time for Link, N=724, w*=15, |LC|=142, |E|=10.]

- LW
- LWLC
- IBP
Summary

Importance Sampling

• i.i.d. samples
• Unbiased estimator
• Generates samples fast

• Samples from Q
• Reject samples with zero-weight
• Improves on cutset

Gibbs Sampling

• Dependent samples
• Biased estimator
• Generates samples slower

• Samples from $\overline{P}(X|e)$
• Does not converge in presence of constraints
• Improves on cutset
CPCS360b

LW – likelihood weighting
LCS – likelihood weighting on a cutset
CPCS422b

LW – likelihood weighting
LCS – likelihood weighting on a cutset
Coding Networks

LW – likelihood weighting
LCS – likelihood weighting on a cutset