Algorithms for Reasoning with graphical models

Slides Set 9:
AND/OR search for
Probabilistic Networks

Rina Dechter

(Dechter1 chapter 6 and 7)
Algorithms for Reasoning with graphical models

Class6: AND/OR search for Probabilistic Networks

Rina Dechter
Overall Perspective

• Class 1: Introduction and Inference

• Class 2: Search

• Class 3: Variational Methods and Monte-Carlo Sampling
Types of queries

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Inference</td>
<td>$f(x^*) = \max_x \prod_{\alpha} f_{\alpha}(x_{\alpha})$</td>
</tr>
<tr>
<td>Sum-Inference</td>
<td>$Z = \sum_x \prod_{\alpha} f_{\alpha}(x_{\alpha})$</td>
</tr>
<tr>
<td>Mixed-Inference</td>
<td>$f(x_M^*) = \max_{x_M} \sum_{x_S} \prod_{\alpha} f_{\alpha}(x_{\alpha})$</td>
</tr>
</tbody>
</table>

- **NP-hard**: exponentially many terms
- We will focus on **approximation** algorithms
 - **Anytime**: very fast & very approximate! Slower & more accurate
Outline: Search for Graphical Models

- Review Graphical Modes
 - AND/OR search spaces, pseudo-trees
 - AND/OR search trees
 - AND/OR search graphs
 - Generating good pseudo-trees
 - Brute-force AND/OR
 - Heuristic search (HS) for AND/OR spaces
 - Basic Heuristic search (Depth and Best)
 - AND/OR Depth-first HS (branch and bound)
 - AND/OR Best-first heuristic search
 - The Guiding MBE heuristic
 - Marginal Map (max-sum-product)

- Hybrids of search and Inference
- Summary and Class 2
Outline: Search for Graphical Models

• Review Graphical Modes

• AND/OR search spaces, pseudo-trees
 – AND/OR search trees
 – AND/OR search graphs
 – Generating good pseudo-trees
 – Brute-force AND/OR

• Heuristic search (HS) for AND/OR spaces
 – Basic Heuristic search (Depth and Best)
 – AND/OR Depth-first HS (branch and bound)
 – AND/OR Best-first heuristic search
 – The Guiding MBE heuristic
 – Marginal Map (max-sum-product)

• Hybrids of search and Inference
• Summary and Class 2
Conditioning - the Probability Tree

\[P(a, e = 0) = P(a) \sum_{b} P(b | a) \sum_{c} P(c | a) \sum_{b} P(d | a, b) \sum_{e=0} P(e | b, c) \]

Complexity of conditioning: exponential time, linear space

Figure 6.1: Probability tree for computing \(P(d=1, g=0) \).
Conditioning + Elimination

\[P(a, e = 0) = P(a) \sum_b P(b \mid a) \sum_c P(c \mid a) \sum_d P(d \mid a, b) \sum_{e=0} P(e \mid b, c) \]

Idea: conditioning until W^* of a (sub)problem gets small
The Classic OR Search Space

Ordering: A B E C D F
AND/OR Search Space

Primal graph

DFS tree
AND/OR vs. OR

AND/OR size: \(\exp(4) \),
OR size \(\exp(6) \)
AND/OR vs. OR

- **Size of tree** $O(nk^h)$
- **Can be traversed in**
 - **Time** $O(nk^h)$, **Space** $O(n)$
- **All solution trees = all configurations**
AND/OR vs. OR

No-goods
(A=1,B=1)
(B=0,C=0)
AND/OR vs. OR

(A=1, B=1)
(B=0, C=0)
Arc weights
Cost of a solution tree
The value function
Arc Weights for AND/OR Trees

Evidence: E=0

Evidence: D=1

OR to AND arc weight <X,x> is the product of factors that all their arguments are just assigned at AND node X=x but not before

slides9 828X 2019
Cost of a Solution Tree

Cost of the solution tree: the product of weights on its arcs

Cost of \((A=0,B=1,C=1,D=1,E=0)\) = \(0.6 \cdot 0.6 \cdot 0.5 \cdot 0.8 \cdot 0.5 = 0.0720\)
Arc Weights for AND/OR Trees

A Bayesian Network

OR to AND arc weight \((X, x)\) is the product of factors \(f\) that are instantiated at the AND node \(X=x\) but not before.
The Value Function for (Probability of Evidence)

Value of node = updated belief for sub-problem below

AND node: product

\[\prod_{n' \in \text{children}(n)} v(n') \]

OR node: Marginalization by summation

\[\sum_{n \in \text{children}(n)} w(n, n') v(n') \]
The Value Function (Probability of Evidence)

\[P(E \mid A, B) \]
\[P(B \mid A) \]
\[P(C \mid A) \]
\[P(A) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>E=0</th>
<th>E=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.4</td>
<td>.6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.7</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
<td>.8</td>
</tr>
</tbody>
</table>

Evidence: E=0

\[P(D=1, E=0) = ? \]

\[P(D \mid B, C) \]

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.2</td>
<td>.8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
</tr>
</tbody>
</table>

Evidence: D=1

Value of node = updated belief for sub-problem below

AND node: product

\[\prod_{n' \in \text{children}(n)} v(n') \]

OR node: Marginalization by summation

\[\sum_{n' \in \text{children}(n)} w(n, n') v(n') \]
The Value Function

\[P(E \mid A, B) \quad P(B \mid A) \quad P(C \mid A) \quad P(A) \]

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
A & B & \text{Evidence: E=0, E=1} \\
\hline
0 & 0 & .4 \quad .6 \\
0 & 1 & .5 \quad .5 \\
1 & 0 & .7 \quad .3 \\
1 & 1 & .2 \quad .8 \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
A & B = 0 & B = 1 \\
\hline
0 & .4 & .6 \\
1 & .2 & .8 \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
A & C = 0 & C = 1 \\
\hline
0 & .6 & .4 \\
1 & .7 & .3 \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
A & P(A) \\
\hline
0 & .6 \\
1 & .4 \\
\hline
\end{tabular}
\end{center}

- \(V(n)\) is dictated by the query of interest
- \(V(n)\) the value of the sub-problem represented by \(T(n)\)
- For sum-inference it is the probability mess below \(n\)
- Can be computed recursively based on child values.

\[P(D \mid B, C) \]

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
B & C & D = 0 & D = 1 \\
\hline
0 & 0 & .2 \quad .8 \\
0 & 1 & .1 \quad .9 \\
1 & 0 & .3 \quad .7 \\
1 & 1 & .5 \quad .5 \\
\hline
\end{tabular}
\end{center}

\text{Evidence: D=1, E=0}
The Value Function

- $V(n)$ is dictated by the query of interest
- $V(n)$ the value of the sub-problem represented by $T(n)$
- For sum-inference it is the probability mess below n
- Can be computed recursively based on child values.
The Value Function for Optimization

Objective function: \(F^* = \min_x \sum_\alpha f_\alpha(x_\alpha) \)

Node Value (bottom-up evaluation)

OR – minimization
AND – summation
The Value Function for Optimization

Objective function: \(F^* = \min_x \sum_{\alpha} f_\alpha(x_\alpha) \)

AND node = Combination operator (summation)

OR node = Marginalization operator (minimization)
The AND/OR Counting Value (#CSP)

Value of node = number of solutions below it
Summary: AND/OR Search Tree for GMs

- The AND/OR search tree of R relative to a pseudo-tree, T, has:
 - Alternating levels of: OR nodes (variables) and AND nodes (values)

- Successor function:
 - The successors of OR nodes X are all its consistent values along its path
 - The successors of AND <X,v> are all X child variables in T
 - Arc-weight are assigned from the model factors

- A solution is a consistent subtree. Its cost, the product of the weights.
- Query: compute the value of the root node
Size and Traversal of AND/OR Search Tree

<table>
<thead>
<tr>
<th></th>
<th>AND/OR tree</th>
<th>OR tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Size = Time</td>
<td>$O(n , k^h)$</td>
<td>$O(k^n)$</td>
</tr>
<tr>
<td></td>
<td>$O(n , k^{w* , \log n})$</td>
<td></td>
</tr>
</tbody>
</table>

(Freuder & Quinn85), (Collin, Dechter & Katz91), (Bayardo & Miranker95), (Darwiche01)

k = domain size
h = height of pseudo-tree
n = number of variables
$w*$ = treewidth

$h \leq w* \, \log n$
AND/OR vs. OR Spaces

<table>
<thead>
<tr>
<th>width</th>
<th>height</th>
<th>OR space</th>
<th>AND/OR space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (sec.)</td>
<td>Nodes</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3.15</td>
<td>2,097,150</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3.13</td>
<td>2,097,150</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3.12</td>
<td>2,097,150</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>3.12</td>
<td>2,097,150</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>3.11</td>
<td>2,097,150</td>
</tr>
</tbody>
</table>

Random graphs with 20 nodes, 20 edges and 2 values per node
Pseudo-trees
Given undirected graph $G = (V, E)$, a directed rooted tree $T = (V, E')$ defined on all its nodes is a pseudo tree if any arc of G which is not included in E' is a back-arc in T, namely it connects a node in T to an ancestor in T. The arcs in E' may not all be included in E.

Given a pseudo tree T of G, the extended graph of G relative to T includes also the arcs in E' that are not in E: as $G_T = (V, E \cup E')$.
A pseudo-tree of a graph is a tree spanning its nodes, where all arcs in the graph not in the tree are back-arcs.

$$h \leq w^* \log n$$

(b) DFS tree
height=3

(c) Pseudo tree
height=2

(d) Chain
height=6
Definition 6.11 Pseudo tree, extended graph. Given an undirected graph $G = (V, E)$, a directed rooted tree $T = (V, E')$ defined on all its nodes is a pseudo tree if any arc in E which is not in E' is a back-arc in T, namely, it connects a node in T to an ancestor in T. The arcs in E' may not all be included in E. Given a pseudo tree T of G, the extended graph of G relative to T includes also the arcs in E' that are not in E. That is, the extended graph is defined as $G^T = (V, E \cup E')$.

Theorem 6.14 Size of AND/OR search tree. Given a graphical model \mathcal{M}, with domains size bounded by k, having a pseudo tree T whose height is h and having l leaves, the size of its AND/OR search tree $S_T(\mathcal{M})$ is $O(l \cdot k^h)$ and therefore also $O(nk^h)$ and $O((bk)^h)$ when b bounds the branching degree of T and n bounds the number of nodes. The size of its OR search tree along any ordering is $O(k^n)$ and these bounds are tight. (See Appendix for proof.)

Question: given, n,k,w,h,b develop and expression that study the size of the AND/OR search tree as a function of these parameters, which are not independent of each other.
From DFS-Trees to Pseudo-Trees

(a) (b) (c)

237 AND nodes

108 AND nodes

slides9 828X 2019
From DFS to Pseudo Trees

DFS tree
depth = 3

pseudo-tree
depth = 2
Finding Min-Depth Pseudo-Trees

• Finding min depth DFS, or pseudo tree is NP-complete, but:
• Given a tree-decomposition whose treewidth is w^*, there exists a pseudo-tree T of G whose depth, satisfies $h \leq w^* \log n$,
Finding Min-height Pseudo-Trees

- Finding a min height pseudo-tree is NP-complete, but:
- Given a tree-decomposition with treewidth w^*, there exists a pseudo-tree whose height satisfies $h \leq w^* \log n$
- Optimality of h and w^* cannot be achieved at once.

$W^* = 1$

$h = 7$

$w^* = 2$

$h = 3$
AND/OR Search-tree properties

\(k = \text{domain size}, \ h = \text{pseudo-tree height}. \ n = \text{number of variables}\)

- **Theorem**: Any AND/OR search tree based on a pseudo-tree is sound and complete (expresses all and only solutions)

- **Theorem**: Size of AND/OR search tree is \(O(n \, k^h)\)

 Size of OR search tree is \(O(k^n)\)

- **Theorem**: Size of AND/OR search tree can be bounded by \(O(\exp(w \cdot \log n))\)

- When the pseudo-tree is a chain we get an OR space
Summary: Queries and Value of Nodes

- \(V(n) \) is the value of the tree \(T(n) \) for the task:
 - **Counting**: \(v(n) \) is the number of solutions in \(T(n) \)
 - **Consistency**: \(v(n) \) is 0 if \(T(n) \) is inconsistent, 1 otherwise.
 - **Max-Inference**: \(v(n) \) is the optimal solution in \(T(n) \)
 - **Sum-Inference**: \(v(n) \) is the probability of evidence in \(T(n) \).
 - **Mixed-Inference**: \(v(n) \) is the marginal map in \(T(n) \).

- **Goal**: Compute the value of the root node recursively traversing the AND/OR tree.

Complexity of searching depth-first is
- **Space**: \(O(n) \)
- **Time**: \(O(nk^h) \)
- **Time**: \(O(k^{w*\log n}) \)
Outline: Search

• Review Graphical Modes

• AND/OR search spaces, pseudo-trees
 – AND/OR search trees
 – AND/OR search graphs
 – Generating good pseudo-trees
 – Brute-force AND/OR

• Heuristic search (HS) for AND/OR spaces
 – Basic Heuristic search (Depth and Best)
 – AND/OR Depth-first HS (branch and bound)
 – AND/OR Best-first heuristic search
 – The Guiding MBE heuristic
 – Marginal Map (max-sum-product)

• Hybrids of search and Inference

• Summary and Class 2
From Search Trees to Search Graphs

- Any two nodes that root identical subtrees or subgraphs can be merged
From Search Trees to Search Graphs

- Any two nodes that root identical subtrees or subgraphs can be merged
AND/OR Tree
AND/OR Graph
Merging Based on Context

- context (X) = ancestors of X in pseudo tree, connected to X, or to descendants of X
- context (X) = parents in the induced graph
- max |context| = induced width = treewidth

pseudo tree

context() = []
Definition 7.2.13 (context minimal AND/OR search graph) The AND/OR search graph of M guided by a pseudo-tree T that is closed under context-based merge operator, is called the context minimal AND/OR search graph and is denoted by $C_T(R)$.
AND/OR Tree DFS Algorithm (Value=Sum-Product)

\[P(E \mid A, B) \quad P(B \mid A) \quad P(C \mid A) \quad P(A) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>E=0</th>
<th>E=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.4</td>
<td>.6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.7</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
<td>.8</td>
</tr>
</tbody>
</table>

Evidence: E=0

\[P(B \mid A) \quad P(C \mid A) \quad P(A) \]

\[A \quad B=0 \quad B=1 \quad C \quad C=0 \quad C=1 \quad A \quad P(A) \]

\[A | B=0 | B=1 | C \mid C=0 | C=1 \mid A \mid P(A) \]

\[0 \quad .4 \quad .6 \quad 0 \quad .2 \quad .8 \quad 0 \quad .6 \]
\[1 \quad .1 \quad .9 \quad 1 \quad .7 \quad .3 \quad 1 \quad .4 \]

Result: \(P(D=1, E=0) \)

\[P(D \mid B, C) \]

\[B \quad C \quad D=0 \quad D=1 \]

\[0 \quad 0 | .2 \quad .8 \]
\[0 \quad 1 | .1 \quad .9 \]
\[1 \quad 0 | .3 \quad .7 \]
\[1 \quad 1 | .5 \quad .5 \]

Evidence: D=1, E=0
AND/OR Search Graph (Value=Sum-Product)

Evidence: E=0

Result: P(D=1,E=0)

Cache table for D

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.1</td>
</tr>
</tbody>
</table>

P(D|B,C)

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.2</td>
<td>.8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
</tr>
</tbody>
</table>

Evidence: D=1,E=0
Objective function: \(F^* = \min_x \sum_{\alpha} f_\alpha(x_\alpha) \)

Cache table for D

Context minimal AND/OR search graph
Merging Based on Context

- context (X) = ancestors of X in pseudo tree, connected to X, or to descendants of X
- context (X) = parents in the induced graph
- max |context| = induced width = treewidth
Theorem: The maximum context-size of a pseudo-tree equals the treewidth along the pseudo tree.
Treewidth vs. Pathwidth

Treewidth
- \[\text{treewidth} = 3 \]
- \[= (\text{max cluster size}) - 1 \]

Pathwidth
- \[\text{pathwidth} = 4 \]
- \[= (\text{max cluster size}) - 1 \]
All Four Search Spaces

Full OR search tree
126 nodes

Full AND/OR search tree
54 AND nodes

Context minimal OR search graph
28 nodes

Context minimal AND/OR search graph
18 AND nodes

Any query is best computed over the context-minimal AND/OR space
All Four Search Spaces

AND/OR graph

Space \(O(n \cdot k^{w^*}) \)

Time size \(O(n \cdot k^{w^*+1}) \)

OR graph

Space \(O(n \cdot k^{pw^*}) \)

Time size \(O(n \cdot k^{pw^*+1}) \)

Computes any query:
- Constraint satisfaction
- Max-Inference: Optimization
- Sum-Inference: Weighted counting
- Mixed-Inference: Marginal Map,
- Maximum expected utility

\(k = \) domain size

\(n = \) number of variables

\(w^* = \) treewidth

\(pw^* = \) pathwidth

Any query is best computed over the context-minimal AND/OR space
AND/OR Search and Variable Elimination

(C K H A B E J L N O D P M F G)
AND/OR Search and Variable Elimination

(C K H A B E J L N O D P M F G)

Variable Elimination

slides9 828X 2019
AND/OR Search and Variable Elimination

(C K H A B E J L N O D P M F G)

AND/OR Search

Variable Elimination
Road Map: Search

• Review Graphical Modes

• AND/OR search spaces, pseudo-trees
 – AND/OR search trees
 – AND/OR search graphs
 – Generating good pseudo-trees
 – Brute-force AND/OR

• Heuristic search for AND/OR spaces
 – Basic Heuristic search (Depth and Best)
 – Depth-first AND/OR branch and bound
 – Best-first AND/OR search
 – The Guiding MBE heuristic
 – Marginal Map (max-sum-product)

• Hybrids of search and Inference
• Summary and Class 2
Finding Good Pseudo-Trees
Finding Min-Height Pseudo-Trees

- Finding min height pseudo tree is NP-complete, but:
- Given a tree-decomposition whose tree-width is w^*, there exists a pseudo-tree T of G whose depth, satisfies $h \leq w^* \log n,$
Constructing Pseudo-Trees

- **Min-Fill** [Kjaerulff, 1990]
 - Depth-first traversal of the induced graph obtained along the *min-fill* elimination order
 - Variables ordered according to the smallest “fill-set”

- **Hypergraph Partitioning** [Karypis and Kumar, 2000]
 - Functions are vertices in the hypergraph and variables are hyperedges
 - Recursive decomposition of the hypergraph while minimizing the separator size at each step
 - Using state-of-the-art software package hMeTiS
Variable Orderings and Pseudo-Trees

Bucket-tree = pseudo-tree

Bucket-tree used as pseudo-tree

Induced graph

Finding small height or small width pseudo-trees is NP-hard
So, which orderings would give good pseudo-trees?

Note: we order from top to bottom here
Quality of Pseudo-Trees

<table>
<thead>
<tr>
<th>Network</th>
<th>hypergraph</th>
<th>min-fill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>width</td>
<td>depth</td>
</tr>
<tr>
<td></td>
<td>width</td>
<td>depth</td>
</tr>
<tr>
<td>barley</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>diabetes</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>link</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>mildew</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>munin1</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>munin2</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>munin3</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>munin4</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>water</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>pigs</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

Bayesian Networks Repository

SPOT5 Benchmarks

<table>
<thead>
<tr>
<th>Network</th>
<th>hypergraph</th>
<th>min-fill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>width</td>
<td>depth</td>
</tr>
<tr>
<td></td>
<td>width</td>
<td>depth</td>
</tr>
<tr>
<td>spot5</td>
<td>47</td>
<td>152</td>
</tr>
<tr>
<td>spot28</td>
<td>108</td>
<td>138</td>
</tr>
<tr>
<td>spot29</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>spot42</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>spot54</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>spot404</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>spot408</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>spot503</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>spot505</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td>spot507</td>
<td>70</td>
<td>122</td>
</tr>
</tbody>
</table>

For more see [Dechter 2013]
Finding Min-height Pseudo-Trees

- Finding a min height pseudo-tree is NP-complete, but:
 - Given a tree-decomposition with treewidth w^*, there exists a pseudo-tree whose height satisfies $h \leq w^* \log n$
- Optimality of h and w^* cannot be achieved at once.
Hypergraphs Decomposition

It is well known that the problem of finding the minimal size hypergraph separator is hard. However, heuristic approaches were developed over the years. Generating a pseudo tree T (yielding also a tree-decomposition) for M using hypergraph decomposition is fairly straightforward. The vertices of the hypergraph are partitioned into two balanced (roughly equal-sized) parts, denoted by H_{left} and H_{right}, respectively, while minimizing the number of hyperedges across. A small number of crossing edges translates into a small number of variables shared between the two sets of functions. H_{left} and H_{right} are then each recursively partitioned in the same fashion, until they contain a single vertex. The result of this process is a tree of hypergraph separators which can be shown to also be a pseudo tree of the original model where each separator corresponds to a subset of variables connected by a chain.
The Impact of the Pseudo-Tree

- Choose pseudo-tree with a minimal search graph
- But determinism and pruning for optimization is unpredictable

Min-Fill
(Kjaerulff90)

What is a good pseudo-tree?
Road Map: Search

• Review Graphical Modes

• AND/OR search spaces, pseudo-trees
 – AND/OR search trees
 – AND/OR search graphs
 – Generating good pseudo-trees
 – **Brute-force AND/OR**

• Heuristic search (HS) for AND/OR spaces
 – Basic Heuristic search (Depth and Best)
 – AND/OR Depth-first HS (branch and bound)
 – AND/OR Best-first heuristic search
 – The Guiding MBE heuristic
 – Marginal Map (max-sum-product)

• Hybrids of search and Inference
• Summary and Class 2
Types of queries

<table>
<thead>
<tr>
<th>Type</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Inference</td>
<td>(f(x^*) = \max_x \prod_{\alpha} f_\alpha(x_\alpha))</td>
</tr>
<tr>
<td>Sum-Inference</td>
<td>(Z = \sum_x \prod_{\alpha} f_\alpha(x_\alpha))</td>
</tr>
<tr>
<td>Mixed-Inference</td>
<td>(f(x^*M) = \max{x_M} \sum_{x_S} \prod_{\alpha} f_\alpha(x_\alpha))</td>
</tr>
</tbody>
</table>

- All solved by AND/OR Depth-first search,
 - Linear memory, exp(h) time or
 - exp(w*) memory and time
- But, we can do better by:
 - Pruning while searching
 - Generating upper and lower bounds anytime
Search Spaces for a Tree GM
AND/OR Tree DFS Algorithm (Belief Updating)

P(E | A, B)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>E=0</th>
<th>E=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.4</td>
<td>.6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.7</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
<td>.8</td>
</tr>
</tbody>
</table>

Evidence: E=0

P(B | A)

<table>
<thead>
<tr>
<th>A</th>
<th>B=0</th>
<th>B=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.4</td>
<td>.6</td>
</tr>
<tr>
<td>1</td>
<td>.7</td>
<td>.3</td>
</tr>
</tbody>
</table>

P(C | A)

<table>
<thead>
<tr>
<th>A</th>
<th>C=0</th>
<th>C=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.2</td>
<td>.8</td>
</tr>
<tr>
<td>1</td>
<td>.7</td>
<td>.3</td>
</tr>
</tbody>
</table>

P(A)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.2</td>
<td>.8</td>
<td>.2</td>
<td>.8</td>
<td>.1</td>
</tr>
<tr>
<td>1</td>
<td>.1</td>
<td>.9</td>
<td>.7</td>
<td>.5</td>
<td>.7</td>
</tr>
</tbody>
</table>

Result: \(P(D=1, E=0) \)

Searching the AND/OR tree

Dfs is straightforward

P(D | B, C)

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.2</td>
<td>.8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
</tr>
</tbody>
</table>

Evidence: D=1

OR node: Marginalization operator (summation)

AND node: Combination operator (product)

Value of node = updated belief for sub-problem below
AND/OR Graph DFS Algorithm (Belief Updating)

Evidence: E=0

![Diagram of AND/OR graph with nodes and edges representing the algorithm steps.]

Context

- **BC Values:**
 - 00: 0.8
 - 01: 0.9
 - 10: 0.7
 - 11: 0.1

Cache table for D

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Evidence: D=1

Result: \(P(D=1, E=0) \)

Searching the AND/OR graph should avoid dead caches, less simple

\(P(D | B, C) \)

Cache table for D

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
AND/OR Search Graph (Optimization)

Objective function: \(F^* = \min_x \sum_{\alpha} f_\alpha(x_\alpha) \)

Cache table for D
Dead Caches

Definition 8.1.9 (dead cache) If X is the parent of Y in pseudo-tree T, and $\text{context}(X) \subseteq \text{context}(Y)$, then $\text{context}(Y)$ represents a dead cache.

(Darwiche 2000)
Dead Caches

Definition 8.1.9 (dead cache) If X is the parent of Y in pseudo-tree T, and $\text{context}(X) \subset \text{context}(Y)$, then $\text{context}(Y)$ represents a dead cache.
Algorithm 2: AO-COUNTING / AO-BELIEF-UPDATING

A constraint network $M = (X, D, C)$, or a belief network $P = (X, D, P)$; a pseudo tree T rooted at X_1; parents pa_i (OR-context) for every variable X_i; caching set to true or false. The number of solutions, or the updated belief, $v(X_1)$.

if caching == true then // Initialize cache tables
1. Initialize cache tables with entries of “-1”
2. $v(X_1) \leftarrow 0$, OPEN $\leftarrow \{X_1\}$ // Initialize the stack OPEN

while OPEN $\neq \emptyset$ do

4. $n \leftarrow \text{top}(\text{OPEN})$; remove n from OPEN
5. if caching == true and n is OR, labeled X_i and $\text{Cache}(\text{asgn}(\pi_n)[pa_i]) \neq -1$ then // In cache
6. $v(n) \leftarrow \text{Cache}(\text{asgn}(\pi_n)[pa_i])$ // Retrieve value
7. $\text{successors}(n) \leftarrow \emptyset$ // No need to expand below
8. else
9. if n is an OR node labeled X_i then // OR-expand
10. $\text{successors}(n) \leftarrow \{(X_i, x_i) \mid (X_i, x_i) \text{ is consistent with } \pi_n\}$
11. $v((X_i, x_i)) \leftarrow 1$, for all $(X_i, x_i) \in \text{successors}(n)$
12. $v((X_i, x_i)) \leftarrow \prod_{f \in \mathcal{F}(X_i)} f(\text{asgn}(\pi_n)[pa_i])$, for all $(X_i, x_i) \in \text{successors}(n)$ // AO-RU
13. if n is an AND node labeled (X_i, x_i) then // AND-expand
14. $\text{successors}(n) \leftarrow \text{children}_T(X_i)$
15. $v(X_i) \leftarrow 0$ for all $X_i \in \text{successors}(n)$

16. Add successors(n) to top of OPEN

while successors(n) $\neq \emptyset$ do // PROPAGATE

17. if n is an OR node labeled X_i then
18. if $X_i = X_1$ then // Search is complete
19. return $v(n)$
20. if caching == true then
21. $\text{Cache}(\text{asgn}(\pi_n)[pa_i]) \leftarrow v(n)$ // Save in cache
22. $v(p) \leftarrow v(p) \ast v(c)$
23. if $v(p) == 0$ then // Check if p is dead-end
24. remove successors(p) from OPEN
25. $\text{successors}(p) \leftarrow \emptyset$
26. if n is an AND node labeled (X_i, x_i) then
27. let p be the parent of n
28. $v(p) \leftarrow v(p) + v(n)$;
29. remove n from successors(p)

Rina Dechter
Searching AND/OR Graphs

- AND/OR(i): searches depth-first, cache i-context
 - i = the max size of a cache table (i.e. number of variables in a context)

\[
\begin{align*}
\text{Space: } & \quad O(n) & \quad \text{Space: } & \quad O(\exp(w^*)) \\
\text{Time: } & \quad O(\exp(w^* \log n)) & \quad \text{Time: } & \quad O(\exp(w^*))
\end{align*}
\]

\[
\begin{align*}
\text{Space: } & \quad O(\exp(i)) & \quad \text{Time: } & \quad O(\exp(m_i + i))
\end{align*}
\]

m_i is related to the size of the i-cutset.
Different Levels of Caching

Figure 7.11: AOC(2) graph (adaptive caching).

Figure 7.12: AOCutset(2) graph (AND/OR Cutset).
Search for Mixed Deterministic and Probabilistic Graphical Models
AND/OR Search for Mixed Networks

Definition 8.2.1 (backtrack-free AND/OR search tree) Given graphical model M and given an AND/OR search tree $S_T(M)$, the backtrack-free AND/OR search tree of M based on T, denoted $BF_T(M)$, is obtained by pruning from $S_T(M)$ all inconsistent subtrees, namely all nodes that root no consistent partial solution.

- Graph-based No-good and good learning are automatically performed by AND/OR (backjumping) and by caching.
Figure 8.1: AND/OR search tree and backtrack-free tree
AND/OR CPE (Constraint Probability Evaluation)

Figure 8.2: Mixed network defined by the query $\varphi = (A \lor C) \land (B \lor \neg E) \land (B \lor D)$

Example 8.2.6 We refer back to the example in Figure 7.4. Consider a constraint network that is defined by the CNF formula $\varphi = (A \lor C) \land (B \lor \neg E) \land (B \lor D)$. The trace of algorithm AND-OR-cpe without caching is given in Figure 8.2. Notice that the clause $(A \lor C)$ is not satisfied if $A = 0$ and $C = 0$, therefore the paths that contain this assignment cannot be part of a solution of the mixed network. The value of each node is shown to its left (the leaf nodes assume a dummy value of 1, not shown in the figure). The value of the root node is the probability of φ. Figure 8.2 is similar to Figure 7.4. In Figure 7.4 the evidence can be modeled as the CNF formula with unit clauses $D \land \neg E$. \qed
The Effect of Constraint Propagation in AND/OR

Domains are \{1,2,3,4\}

CONSTRAINTS ONLY

FORWARD CHECKING

MAINTAINING ARC CONSISTENCY
Available code

• http://graphmod.ics.uci.edu/group/Software
Outline: Search

• Review Graphical Modes
 – AND/OR search spaces, pseudo-trees
 – AND/OR search trees
 – AND/OR search graphs
 – Generating good pseudo-trees
 – Brute-force search

• Heuristic search (HS) for AND/OR spaces
 – Basic Heuristic search (Depth and Best)
 – AND/OR Depth-first HS (branch and bound)
 – AND/OR Best-first heuristic search
 – The Guiding MBE heuristic
 – Marginal Map (max-sum-product)

• Hybrids of search and Inference
• Summary and Class 2
Basic Heuristic Search

Heuristic function $\tilde{f}(\hat{x}_p)$ computes a lower bound on the best extension of partial configuration \hat{x}_p and can be used to guide heuristic search. We focus on:

1. **Branch-and-Bound**
 - Use heuristic function $\tilde{f}(\hat{x}_p)$ to prune the depth-first search tree
 - Linear space

2. **Best-First Search**
 - Always expand the node with the lowest heuristic value $\tilde{f}(\hat{x}_p)$
 - Needs lots of memory

We assume min-sum problems in the following slides.
Basic Heuristic Search; **Best-First**

Task: compute v(root): MAP, Marginal , MMAP
Each node is a sub-problem
(defined by current conditioning)

- **Best-First Algorithms, (A*)**
 - Expand nodes in OPEN list in order of min $f(n)$
 - Terminates with first full solution (for mpe)

- **Properties**
 - Optimal, if $h(n) \leq v(n)$
 - Expands least set of nodes
 - Exponential memory
 - **Not anytime solution for MAP**
 - Yields lower bounds on value, anytime

$$f(n) = g(n) + h(n) \leq g(n) + v(n) = f^*(n)$$

$f(n)$ is a lower bound on best cost through n
Basic Heuristic Search; Depth-First

- **Depth-First (B&B for MAP)**
 - Expand in dfs order
 - Update UB with each solution
 - Prunes if $f(n) \geq UB$

- **Properties**
 - Can use only linear memory
 - Yields upper bounds anytime

(UB) Upper Bound = best solution so far

$g(n) \leq h(n)$; $h(n) \leq v(n)$

Prunes if $f(n) \geq UB$

$UB = \text{best solution so far}$
Partial Solution Tree for AND/OR

Pseudo tree

Extension(T′) – solution trees that extend T′

\(g(T′)\) = conditioned value of a node
\(V(T′)\) = the combined value below T′
\(f^*(T′)\) = conditioned value through T′
Exact Evaluation Function

Conditioned value of a node

\[f^*(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F) \]
Heuristic Evaluation Function

\[f(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) = 12 \leq f^*(T') \]
• Associate each node \(n \) with a heuristic lower bound \(h(n) \) on \(v(n) \)

Algorithm AOBB:
• **EXPAND** (top-down)
 – Evaluate \(f(T') \) and prune search if \(f(T') \geq UB \)
 – If not in cache, generate successors of the tip node \(n \)

• **PROPAGATE** (bottom-up)
 – Update value of the parent \(p \) of \(n \)
 • OR nodes: minimization
 • AND nodes: summation
 – Cache value of \(n \) based on context only if fully explored
Anytime Performance

- OR Branch-and-Bound is anytime
- But AND/OR breaks anytime behavior of depth-first scheme:
 - First anytime solution delayed until last sub-problem starts processing
- **Breadth-Rotating AOBB:**
 - Take turns processing sub-problems
 - Limit number of expansions per visit
 - Solve each sub-problem depth-first
 - Maintain favorable complexity bounds

[Otten and Dechter, 2012]
Summary: AND/OR Branch-and-Bound Search (AOBB)

- Associate each node n with a heuristic lower bound $h(n)$ on $v(n)$

- **EXPAND** (top-down)
 - Evaluate $f(T')$ and prune search if $f(T') \geq UB$
 - Generate successors of the tip node n

- **PROPAGATE** (bottom-up)
 - Update value of the parent p of n
 - OR nodes: minimization
 - AND nodes: summation

[Marinescu and Dechter, 2005; 2009]
Anytime Performance

- **Breadth-Rotating AOBB:**
 - Take turns processing sub-problems
 - Limit number of expansions per visit
 - Solve each sub-problem depth-first
 - Maintain favorable complexity bounds

[Otten and Dechter, 2012]
DFS Algorithm (#CSP Example)

Value of node = number of solutions below it
AND/OR Tree Search for Optimization

AND node = Combination operator (summation)

OR node = Marginalization operator (minimization)

Goal: \(\min_X \sum_{i=1}^{9} f_i(X) \)
AND/OR Tree Search for Optimization

Goal: \(\min_X \sum_{i=1}^{9} f_i(X) \)

AND node = Combination operator (summation)

OR node = Marginalization operator (minimization)
Outline: Search

- Review Graphical Modes
 - AND/OR search spaces, pseudo-trees
 - AND/OR search trees
 - AND/OR search graphs
 - Generating good pseudo-trees
 - Brute-force search

 - Heuristic search (HS) for AND/OR spaces
 - Basic Heuristic search (Depth and Best)
 - AND/OR Depth-first HS (branch and bound)
 - AND/OR Best-first heuristic search
 - The Guiding MBE heuristic
 - Marginal Map (max-sum-product)

- Hybrids of search and Inference

- Summary and Class 2
Conditioning versus Elimination

The main target in conditioning is to trade memory for time. It is not really possible to do better than elimination.

- Conditioning (search):
 - A = 1
 - ... (omitted)
 - A = k
 - k “sparser” problems

- Elimination (inference):
 - 1 “denser” problem
The Idea of Cutset-Conditioning

We observed that when variables are assigned, connectivity reduces. The magnitude of saving is reflected through the “conditioned-induced graph”

- Cutset-conditioning exploit this in a systematic way:
 - Select a subset of variables, assign them values, and
 - Solve the conditioned problem by bucket-elimination.
 - Repeat for all assignments to the cutset.

Algorithm VEC
Hybrid: (i)-Cutset-Conditioning

Condition Until Tree-ness

Algorithm VEC(i)
- Cycle-cutset
- i-cutset
- C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i)))
The impact of observations

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph Induced graph Ordered conditioned graph
A Cycle-Cutset

Cycle cutset = \{A, B, C\}

1-cutset = \{A, B, C\}, size 3

slides9 828X 2019
Loop-Cutset, q-Cutset, Cycle-Cutset

• A loop-cutset is a subset of nodes of a directed graph that when removed the remaining graph is a poly-tree.

• A \textit{q-cutset} is a subset of nodes of an undirected graph that when removed the remaining graph is has an induced-width of q or less.

• A \textit{cycle-cutset} is a q-cutset such that $q=1$.
Definition 7.3 q-cutset, minimal. Given a graph G, a subset of nodes is called a q-cutset for an integer q iff when removed, the resulting graph has an induced-width less than or equal to q. A minimal q-cutset of a graph has a smallest size among all q-cutsets of the graph. A cycle-cutset is a 1-cutset of a graph.

Finding a minimal q-cutset is clearly a hard task [A. Becker and Geiger, 1999; Bar-Yehuda et al., 1998; Becker et al., 2000; Bidyuk and Dechter, 2004]. However, like in the special case of a cycle-cutset we can settle for a non-minimal q-cutset relative to a given variable ordering. Namely,

Example 7.4 Consider as another example the constraint graph of a graph coloring problem given in Figure 7.3a. The search space over a 2-cutset, and the induced-graph of the conditioned instances are depicted in 7.3b.
Example: 2-cutset conditioning (VEC(2))

- Inference may require too much memory
- **Condition** on some of the variables

Graph Coloring problem
VEC(q) : Variable Elimination with Conditioning;

- VEC for Probability of evidence:
- Identify a q-cutset, C, of size |C| of the network
- For each assignment to C=c solve by CTE or BE the conditioned sub-problem.
- Accumulate probability.
- Time complexity: \(nk^{|c|+q+1} \)
- Space complexity: \(nk^q \)
Time vs Space for w-cutset

- Random Graphs (50 nodes, 200 edges, average degree 8, $w^* \approx 23$)

- W-cutset time $O(\exp(w+\text{cutset-size}))$
- Space $O(\exp(w))$

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)
VEC(q) : Variable Elimination with Conditioning;

• VEC for Probability of evidence:
• Identify a q-cutset, C, of size |C| of the network
• For each assignment to C=c solve by CTE or BE the conditioned sub-problem.
• Accumulate probability.
• Time complexity: $nk^{|c|+q+1}$
• Space complexity: nk^q

What w should we use?
W=1? W=0? W=w*
Depends on the graph
Practice: use the largest w allowed by space
Alternate conditioning and elimination?
Hybrid: Cutset-Conditioning

Variable Branching by Conditioning

A --- B
 | |
 | |
 | |
D --- C --- E
Variable Branching by Conditioning

Select a variable
Hybrid: Cutset-Conditioning

Variable Branching by Conditioning

Select a variable

A = 0
A = 1
A = k

A = 0

A = 1

A = k
Hybrid: Cutset-Conditioning

Variable Branching by Conditioning

General principle:
Condition until tractable
Solve each sub-problem efficiently

Select a variable

A = 0
A = 1
A = k

A = 0
A = 1
A = k

D E
C B
D E
C B
D E
C B

slides9 828X 2019
Hybrids Variants

• **Condition, condition, condition, ...** and then only eliminate (w-cutset, cycle-cutset VEC(i))

• **Eliminate, eliminate, eliminate, ...** and then only search

• **Alternate** conditioning and elimination steps (elim-cond(i), ALT-VEC(i))
Eliminate First
Eliminate First

Solve the rest of the problem by any means
Alternate Conditioning and Elimination

[Larrosa and Dechter, 2002]
Alternate Conditioning and Elimination
Alternate Conditioning and Elimination
And/or W-CUTSET
OR w-Cutset

Graph Coloring problem

- Inference may require too much memory
- **Condition** on some of the variables
AND/OR w-cutset

graphical model
pseudo tree
1-cutset tree
AND/OR w-cutset

3-cutset

2-cutset

1-cutset
w-Cutset Trees Over AND/OR Space

• **Definition:**
 – T_w is a w-cutset tree relative to pseudo-tree T, iff T_w roots T and when removed, yields tree-width w.

• **Theorem:**
 – $AO(i)$ time complexity for pseudo-tree T is time $O(exp(i+m_i))$ and space $O(i)$, m_i is the depth of the T_i tree.

• Better than w-cutset: $O(exp(i+c_i))$ when c_i is the number of nodes in T_i
Summary: AND/OR Cutset-Conditioning

• Trade memory for time.

• We never improve time: cycle-cutset size is larger of equal to treewidth+1

• Sometime we do not worsen the time and memory can be much better (e.g., when the induced-width is high)
Software

• aolib
 (standalone AOBB, AOBF solvers)

• daoopt
 – https://github.com/lotten/daoopt
 (distributed and standalone AOBB solver)

• merlin
 (standalone WMB, AOBB, AOBF, RBFAOO solvers)
 open source, BSD license
UAI Probabilistic Inference Competitions

- **2006**
 - (aolib)

- **2008**
 - (aolib)

- **2012**
 - (daoopt)

- **2014**
 - (daoopt)
 - (merlin)

Marginal Map
Summary of Search

• AND/OR search spaces, pseudo-trees
 – AND/OR search trees
 – AND/OR search graphs
 – Generating good pseudo-trees
 – Brute-force search

• Heuristic search for AND/OR spaces
 – Depth-first AND/OR branch and bound
 – Best-first AND/OR search
 – The Guiding MBE heuristic
 – Marginal Map (max-sum-product)

• Hybrids of search and Inference
• Summary and Class 2