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When we look at the software libraries available for implementing deep learning 
and neural networks, the clear market winner is Google’s TensorFlow . TensorFlow has 1

become ubiquitous in this space, with a few competitors finding niches in which they 
thrive. For a comparison of these libraries, see this footnote . 2

I bring this up because the thesis of this paper is that the situation for libraries for 
implementing PGMs is quite different. There is no clear market leader. There is no 
TensorFlow analog for graphical models. Instead, what we see in this space is a fracas 
of small libraries, each seeming to vie for the attention of researchers, students, and 
interested observers. 

I propose this question: Are graphical models as mature in theory as neural 
networks? Is the application space for graphical models as rich as the application space 
for neural networks? If the answer to these questions is yes, then what’s holding PGMs 
back from being as widely accepted, adopted, and implemented in commercial 
applications as neural networks? 

I suspect that it’s the deficit in software solutions for PGMs that has held it back 
from achieving the kind of success we see with neural networks. Another contributing 
factor for neural network’s popularity may be that the applications where neural 
networks have achieved the greatest degree of success tend to be spectacular in the 
sense that the results are quite striking. Images require little interpretation. This may 
have contributed to the high degree of interest in neural networks, but this is a flawed 
argument because graphical models can also be applied to the many of these 
problems. Therefore, it’s reasonable to conclude that the lack of high quality software 
for PGMs is a significant factor in their adoption rate lagging behind other AI techniques. 

When we consider the fragmentation of the software libraries that can be used 
for PGMs, several observations become apparent. The first issue is that there has 
historically been a problem with data ingestion. The data that is used to populate a PGM 
has lacked a consistent data format. This isn’t an insurmountable issue. The data that 
neural networks operate on, for example, isn’t always consistent in its format. What is 
true, however, is that the lack of a universal format has encouraged researchers to 
develop their own toolsets on an individual basis. This has resulted in a seemingly 
perpetual reinvention of the wheel as library after library has implemented the same 
algorithms to tackle different problems based solely on the need to handle disparate 
datasets. This reflects a lack of prowess in engineering, however. What is needed is a 
modularization of code. The data ingestion code should be loosely coupled with the 
actual algorithms. We see this kind of architecture in libraries like TensorFlow.  

The second observation we can make about software libraries for graphical 

1 https://www.tensorflow.org/ 
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models is that there is a spectrum of usability to generality. The more general a library 
is, the harder it is to use. Conversely, when a library is easy to use, it typically sacrifices 
generality in the sense that the variety of models and algorithms is reduced. 

The Python library pgmpy  lies on the usable side of this spectrum. It offers high 3

level abstractions that are easy to interact with. The code is often quite concise and 
easy to read. What is sacrificed is efficiency since Python is an interpreted language, 
and the library offers fewer algorithms and models than some of its more heavyweight 
counterparts. 

The C++ library OpenGM2  lies on the general side of this spectrum. It boasts a 4

seemingly endless supply of algorithms which can be leveraged against a given 
problem, and since C++ is a compiled language, it executes much faster than a 
language like Python. What you pay for this power is that the library is harder to use, 
requiring much more from the user to get up and running. 

What can be done about this apparent catch 22? I make the following 
suggestion: Embrace a hierarchical approach. We see this with TensorFlow and Keras, 
for example. TensorFlow is complicated, leaving many details up the the user. Luckily, 
Keras is an abstraction over TensorFlow that makes simple tasks easy and hard tasks 
possible. What PGMs need to become more mainstream is for something like 
TensorFlow to emerge, and for something like Keras to be built on top of it. This would 
provide the user with options. If the application demands a complex solution, opt for the 
lower level of the hierarchy. If the application lends itself to a simpler solution, use the 
high level tools. This would facilitate rapid prototyping in the initial stages of 
implementation and a detailed, tailored final solution. 

 TensorFlow’s predecessor, a closed source proprietary machine learning system 
called DistBelief, evolved into TensorFlow at Google Brain. This process took 6 years.  5

It wasn’t an overnight success. It’s unreasonable to think that a software library for 
graphical models will rise to prominence overnight, but what is reasonable is to think 
that somewhere there might be a library in an incubation stage which will rise to such 
prominence, and, if that is the case, then it’s likely to happen in one of two places; either 
at a university or at a major software company. 

For this to happen, however, I believe the software needs to meet certain criteria. 
First, the software needs to be open source and available under a license which would 
permit it to be used for commercial applications. Second, the software would need to be 
implemented in one of the more popular programming languages, such as Python. 
Finally, the institution which has developed the software needs to both use the software 
internally and promote its use externally. This includes providing extensive 
documentation, tutorials, and marketing so that the relevant users know of the software, 
its use cases, and how to use it. 

Pgmpy and OpenGM2 seem to be the most likely candidates at this time, but 
neither seem to be reaching the critical mass necessary for widespread adoption. 
Pgmpy is limited in terms of its applicability due to its lightweight nature, which is 
paradoxically its most valuable asset. OpenGM2 suffers from the opposite issue; it 
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appears to be collapsing under its own weight. Please see the accompanying slides for 
more information about these libraries, such as their authors. 

Time will tell what will happen in this space. Will PGMs ever get its TensorFlow? 
Or will PGMs be fated to see the same algorithms implemented over and over again? 
The answer to these questions is unclear at this time, but I’m optimistic that PGMs will 
eventually become as mainstream as deep learning. 

The 2011 best selling “Thinking Fast and Slow”, by Nobel Prize Laureate Daniel 
Kahneman, presents a fascinating glimpse into how the mind works. The core claim of 
the book is that the mind actually has two distinct systems, what the author calls 
“System 1” and “System 2”. The book’s Wikipedia entry provides a clear description of 
both, “The central thesis is a dichotomy between two modes of thought: ‘System 1’ is 
fast, instinctive and emotional; ‘System 2’ is slower, more deliberative, and more 
logical.”  6

Some examples of the different types of problems the respective systems 
perform well at are that System 1 handles tasks like reading text on a billboard or 
driving a car on an empty road. System 2 is responsible for tasks such as calculating 
the price to quality ratio of two computer systems or determining the validity of a 
complex logical reasoning task. This is not pure conjecture. There is significant 
evidence to support the idea that there are, factually, different systems in the mind that 
handle these tasks. 

Perhaps you can already see where I’m going with this. System 1 solves the 
types of problems that deep learning and neural networks have historically been 
proficient at, while System 2 is needed to solve the kinds of problems we hope to be 
able to solve with graphical models. If we ever want to replicate human like intelligence, 
we will need both. 

This is a bold claim, but I believe there is sufficient reason to believe it to be true, 
and I don’t think I’m alone in this thinking. The probabilistic programming language 
Edward  is an abstraction over TensorFlow, and it combines neural networks with 7

probabilistic concepts. This is a promising new direction, and I’m very interested to see 
how this language evolves in the future. It could represent a paradigm shift in how we 
think about artificial intelligence. 

As a species, we’ve devoted an enormous amount of time and energy into 
engineering systems that can solve System 1 problems well. Speech recognition and 
image recognition have come a long way due to advances in this space, but the time is 
on the horizon when we will need to turn our attention to solving the System 2 problems 
that obfuscate the path to true artificial intelligence. Graphical models and probabilistic 
reasoning are the best tools we have at this time to make progress on these problems, 
and I believe that once the AI community realizes and accepts this, we will see 
graphical models become just as popular as deep learning and neural networks, and 
the software tools we have will reflect this. 

6 https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow 
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