Software Libraries for PGMs

Kevin Rothi

Very popular tools for ML/NNs/Deep Learning...

- SciKit Learn
- Tensorflow
- Keras
- Torch
- CUDA
- Theano
- Caffe

No shortage of small libraries for graphical models...

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

(Last updated 16 June 2014)

69 Libraries

Bucket Elimination, AND/OR search for P(evidence), MPE in Bay

Nome Number Number <th>Name</th> <th>Authors</th> <th>Src</th> <th>Cts</th> <th>GUI</th> <th>Params</th> <th>Struct</th> <th>Utility</th> <th>Free</th> <th>Undir</th> <th>Inference</th> <th>Comments</th>	Name	Authors	Src	Cts	GUI	Params	Struct	Utility	Free	Undir	Inference	Comments
Number Number </td <td></td>												
Number Number<		Lumina	N	G	Y	N	N	Y	\$	D	sampling	
Number		U. Helsinki	N	Cd	Y	Y	Y	N	0	D		Runs on their server: view results using a web browser.
Number Number </td <td>Banjo</td> <td>Hartemink</td> <td>Java</td> <td>Cd</td> <td>N</td> <td>N</td> <td>Y</td> <td>N</td> <td>0</td> <td>D</td> <td>none</td> <td>structure learning of static or dynamic networks of discrete variables</td>	Banjo	Hartemink	Java	Cd	N	N	Y	N	0	D	none	structure learning of static or dynamic networks of discrete variables
Bayes Bayes <t< td=""><td>Bassist</td><td>U. Helsinki</td><td>C++</td><td>G</td><td>N</td><td>Y</td><td>N</td><td>N</td><td>0</td><td>D</td><td>MH</td><td>Generates C++ for MCMC. (No longer maintained)</td></t<>	Bassist	U. Helsinki	C++	G	N	Y	N	N	0	D	MH	Generates C++ for MCMC. (No longer maintained)
Description Des	BayesBuilder	Nijman (U. Nijme	N	D	Y	N	N	N	0	D	?	-
matrix	BayesiaLab				2	-	5 L		\$			Structural learning, adaptive questionnaires, dynamic models
Base More Market More	Bayes-Scala	Daniel Korzekwa	Scala	D	N	Y	N	N	Y	UD	Loopy BP	
Baseling	2	0				W.			-		Deleveration	
Bandbard Bandb			N	G	ř V				5		Relevance free,	
Norm											r Variational	
Image Boy U.X.Med V <td>Bayes not learne</td> <td></td>	Bayes not learne											
Bundle outley							5				2	,
Network Normal Market Normal Market Normal Market Normal Market Normal Market Normal Market 											MCMC. SMC	General MC toolkit, also bandles non-narametric Bavesian models
IND No <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>												
Number Number </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td>Y</td> <td>N</td> <td></td> <td></td> <td></td> <td>-</td>						N	Y	N				-
Dial LongenerNoN		frank rijmen	Matlab	D	N	N	N	N				Supports (ordinal) logistic regression CPDs and EM learning
Control Nome N			N			Y	N	N			Gibbs	-
SectorSectorOVVONOVNONNDegration of the sector of		Vanderbilt	N	- 2	-	N	Y	N	0	D	*	structure learning only
Diame Climate Climate Norma Climate Norma Climate Norma N		Badsberg (U. Aa	C/lisp	D	Y	Y	CI	N	0	U	Jtree	
Signal with with with with with with with with		Poole et al. (UBC	Java	D	Y	N	N	N	0	D	Varelim	-
DistanceName<		Schmidt and Mu	Matlab/C	N	N	Y	N	N	0	U	Loopy BP	Conditional random fields, arbitrary structure
Deckase Beckase R. G. Y Y N N Non- Non-answaring Non-answaring Distate Develowel LC N C Y Y Y N N N Non-answaring <	Darwin	Stephen Gould	C++	N	N	N	N	N	Y	U	Various	Approx. Inference, focus on CRFs for vision applications
Diverse LLC N N P Y Y P <th< td=""><td>DBNbox</td><td>Roberts et al</td><td>Matlab</td><td>Y</td><td>N</td><td>Y</td><td>N</td><td>N</td><td>Y</td><td>D</td><td>Various</td><td>DBNs</td></th<>	DBNbox	Roberts et al	Matlab	Y	N	Y	N	N	Y	D	Various	DBNs
Dista Dista Not No No <	Deal	Bottcher et al	R	G	Y	Y	Y	N	0	D	None	Structure learning.
Diment State Network MATURAB 200 C, C, C N V N O DLO, C Bind Address Edge Maconstrik Jaw C, C, C V V V V C DLO, C Bind Address Edge Maconstrik Jaw C, C, C V V V V C DLO, C Bind Address Edge Maconstrik Jaw C L N	Derivelt			?	?	Y	Y	?	\$	D	Jtree, Gibbs	Exploits local structure in CPDs.
DigNeek yetwoNeek yetwoNee	Dimple				N	Y	N	N			BP,G,MH	Parameter learning is mostly limited to EM for now
IndexNorw	Elvira	Elvira consortium	Java	Cd,Cx	Y	Y	Y	Y	0	D	JTree,varelim,IS	Also includes classification, abductive inference and model fusion
Entrol Mamoch au (C+- D N N N N N D Theo. VMM Abs nagets (Debined) GDAGAM Mikmon (L), N C G N<	Ergo	Noetic systems	N	D	Y	N	N	N	\$	D	jtree	-
Figue Air Peterior and Same I.e. Y.e. Y.e	Factorie	Andrew McCallu	Scala	N	N	Y	N	N	0	U	Various	Also supports relational factor graphs
Display Wittensort, Wei Carton Wittensort, Wei	Fastinf	Jaimovich et al (I	C++	D	N	Y	N	N			JTree,G,VMP	Also supports GBP,TRBP
Section System Solution Sy	Figaro	Avi Pfeffer/ Char	Scala		-	Y	Y	Y			S	Also supports probabilistic relational models
Good Meet at Link C Good N				G		N					Exact	Bayesian analysis of large linear Gaussian directed models.
Subset Num Num<	GeNIe and SMIL			Cs,equations	W,U,M	Y						
GLNDEBillings (M)VNNN <td>GGM</td> <td>West et al (Duke</td> <td>C++</td> <td>G</td> <td>N</td> <td>Y</td> <td>Y</td> <td>N</td> <td></td> <td></td> <td>SL</td> <td>MCMC and stochastic search for structure learning of GGMs</td>	GGM	West et al (Duke	C++	G	N	Y	Y	N			SL	MCMC and stochastic search for structure learning of GGMs
COUNT Y D N N Y N N Y N <td>GMREsim</td> <td>Rue (U. Trondhe</td> <td>С</td> <td>G</td> <td>N</td> <td></td> <td></td> <td></td> <td>0</td> <td>U</td> <td>MCMC</td> <td>Bayesian analysis of large linear Gaussian undirected models.</td>	GMREsim	Rue (U. Trondhe	С	G	N				0	U	MCMC	Bayesian analysis of large linear Gaussian undirected models.
gB Lamitter nts. R I	GMTk	Bilmes (UW), Zw	N	0		A					Jtree	Designed for speech recognition.
Data description R D N N N N D Date at all other at al	GOBNILP			D	N	N	Y	N			none	exact structure learning from data or local scores, k-best learning possible
HSBCS Dorin and Vivel C++ G N Y Y N 0 U S. stochastic search for structure learning of GGMs Hagen Zeerd Warres Java C6 Y Y N N 0 UD McRC -		Econation of our		÷	-	-	-	-			÷	Various packages
Isage_Degret Hagin N G Ww Y Cl Y S CG Jace Image Bdxus Anstania Co Y N N N O UD MeMC Image Imag												•
Install Warmes Java Cs Y N N O U.D McCC Mc												stochastic search for structure learning of GGMs
Bayes Antical trendinger N N N N O Junch III Junch III Junch III Junch III Junch IIII Junch IIII Junch IIIII Junch IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			1.5									•
Interview Y N Y N N N O Y VAPE Draits Bayesian parameter estimation as well Image of the parameter estimation as well JAGS Manipro Purmel Jawa Y N N N O Y Value Jawa D Y N N O Y N N Y N N O Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y <					1							•
JAGS Mampe Purmer Java Y N Y N N N O Y GB0s Similar DUGS Java Barge Corama (CMU) N N N Y N O D Variant Marge C LADE Structure learning of maskes static or dynamic rebords Structure learning of maskes static or dynamic rebords Structure learning of maskes static or dynamic rebords IBDA Mong et al. C++ D N Y N N O D Structure learning of maskes static or dynamic rebords Moding Marge C++ D N Y Y N N O D Structure learning Structure learning of maskes static or dynamic rebords D D Bios Structure learning D												-
Jane Bayery Commer (CMU) Java D Y N N Y D D Variable												
LAB Shucture Datal N Cd N N V N S D none Shucture learning of maskive static or dynamic networks LAB Fieldman (Heat) V N V N N O Shucture learning of maskive static or dynamic networks IBAD Mong et al. C++ D N Y Y N N C Jint Shuture learning of maskive static or dynamic networks Mong et al. C++ D N Y Y N N C Display Structure learning of maskive static or dynamic networks Marking U. Opperfands C++ D N N N N Display Structure learning of maskive static or dynamic networks Marking U. Opperfands First G N N N N Display Structure learning of maskive static or dynamic networks Marking N N N N N Display Jint Structure learning of maskive static or dynamic networks Marking						-						Similar to BUGS
LBD Fledman (Heter N D N Y Y N O D Stucture tearring D N Y N O D Stucture tearring D N Y N N O D Stucture tearring D N Y N N O D Stucture tearring D D N Y N N O D Stucture tearring D D C D						53						
IBDA Mong et												
MM HyperGraph Soft N G Y Y N S CG Jite Up to 52 vurtables. Image: Control of the statute of the st												
Macage: U. Cogentration C++ G N Y N N 0 Cold Gibbs Support for arree/onal statistics Image: Cold Support for arree/onal statistics Support for arree												
MBB/sk Meroson N D W N N Y 0 D Jate - Image - <td></td>												
Netrys N G W Y N Y S D Jie												Support for directional statistics
Operational B. Andres. T. Ber, C++, Mattab, Py(D) V N N N D Figure Additional Figure Additional Additedite Additio Additio Addi									0			-
Deprecision B. Andres, T. Bell C++. Matab. Pycl V N N N Deprecision methods based on all decomposition, and mary more. Includes wappers for several other related or projects. OpendMarkov CISADQLANED, E V Cs,Cd Y Y Y Y Y Y UD prevant and ther related or projects. Jama, open source, extensible, object oriented networks, object oriented ne	Netica	Norsys	N	G	w	Y	N	Y	\$	D	Jtree	
OperMany CISADQUNED Y Ca.Cd Y	200023000									2.0.01		methods based on dual decomposition, and many more. Includes wrappers for
OpenAddatory CISIAQUEND, 5/* Cx,Cd Y Y Y Y Y U Dimensional memory learning, procModEXU, format DMI Paylord, BU, Mathico: D N Y N N D Special purpose A	OpenGM2	b. Andres, I. Bel	CTT, Matiab, Pyt	U	T	N	IN .	N	0	ryiapn	mariy	
PArdiot. (20) MattabiC D N Y N N 0 Special purpose PML Enthmory (mel) C++ D N Y N 0 D special purpose	OpenMarkov	CISIAD/UNED S	Y	CsCd	Y	Y	Y	Y	Y	UD	itree varelim san	
Enhance (mel) C++ D N Y Y N 0 U.D Jine A C++vacion of BNT, will be released 1203. Datametia RPOA Lup D Y N N O D 7 Uses valuation yethers for non-probabilistic calual. BLSD Dottine (U.C.L) G Y N N N O P Publishing to the valuation yethers for non-probabilistic calual. BLSD Dottine (U.C.L) G Y N N O P Publishing to the valuation yethers for non-probabilistic caluation. Sami			Matlab/C		N	Y	N	N	0			-
Patiential RIDIA Lep D Y N N N 0 D ? Uses valuation systems for non-probabilistic calual. RISD Doller (U. Colved-Java G Y N N N 0 D Polytice Distributed implementation. Stand and Derived (U.CLA G ? Y N N ? Y O D Recursive contif Alko does sensitivity Analysis Stand and Derived (U.CLA G ? Y N N N O D Recursive contif Alko does sensitivity Analysis Stand and Derived (U.CLA N G N N N O D Hydrit Monie Caleenetice efficient MCMC code tof BUGS-like models Tetrad CMU N G N N N O D Approximation system for non-possibilities caluad in the system for non-possitilities caluad in the sy			C++						0			A C++ version of RNT will be released 12/03
FIESO Dodier (UColord Java) G Y N N 0 D Polyte Distribution implementation. Stam Lan Dearche (UCL) M+ G 2 Y Y N 2 O D Recurste vord/LA dood costs ensity/Analysis Second Second Second D Recurste vord/LA dood costs ensity/Analysis Second Second <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>N</td><td></td><td></td><td></td><td></td><td>?</td><td></td></td<>			-			N					?	
Sama Derwiche (UCLA) № G ? Y N N Y 0 D Recursive condit Also dess sensitivity Analysis Sama Gehann et al. (C2, C+ Y N Y N 0 D Hybrid Northe Cal Generate sensitivity Analysis Sama Gehann et al. (C2, C+ Y N N N 0 D Hybrid Northe Cal Generates efficient MCMC code for BUGS-He models Little CMU N G N Y Cl N 0 U.D. SL - ULCIone Dechter (UC) Y D N N N 0 D Monthe Cal Generates embodings capacita models. MRE In Bayesian networks ULBSBayes Profit Marcela Lal Java G. Cs. Cd Y Y Y O Ipree. G. samplifts: capacita models. MSRN. OORN HML and MEBN. Unnext Technical Univer N G. Cs. CK Y Y N 0 D VMP here - Gaussian, con-Gaussian copula. Functional models. Mindical models. MSRN. OORN HML and MEBN. Vibris Win (MSR Cam ¹ Java C				-							Polytree	
Statu Gemma at ICC C++ Y N Y N N 0 D Hybrit Monte C4 Generates efficient MCMC code for BUGS-like models Jatrati CAU N G N QL N 0 UD SL - Julic Living Dechter (UC) Y D N N N 0 UD SL - Julic Living Dechter (UC) Y D N N N 0 UD AND/OR Search for P(evidence), MPE in Bayesian networks Julic Living Port Marcela La Java G, CS, Cd Y Y Y O D prev. (s.sampting Supports other probabilistic organization networks Unitity Technical Univer, N G, CS, CK Y Y Y O D prev. (s.sampting frameworks) Analyceal transform orbabilistic organization networks United Technical Univer, N G, CS, CK Y Y N 0 UD sampting frameworks Analyceal transform orbabilistic organization networks Supports other orbabilistic organization coputa method with Gaussian coputa framedod with Gau												
Tate CANU N G N Y Cl N 0 U.D. SL					1	-						
Ultrainst Dechter (UC) Y D N N N N 0 U/D ANDOR Search [Bucket Elimination, ANDOR Search (Medianek), MEE In Bayesian networks LInBibility Prof. Marcolo Laj Java G, CS, Cd Y Y Y 0 D jtee, G, samplini Supports other probabilities graphical models: graphical model: graphical mo												-
Lineszysz Prof. Marceloi Laj Java G, Cs, Cd Y Y Y 0 D jpree, G, sampling Supports other probabilistic graphical models: MSBN, OOBN, PRM, and MEBN. Linesz Technical Univer N G, Cs, Ck Y Y Y 0 D jpree, G, sampling Supports other probabilistic graphical models: MSBN, OOBN, PRM, and MEBN. Linesz Technical Univer N G, Cs, Ck Y Y N 0 UD sampling inglical models: models: msSupported discastance optia. Functional analysical through rough castana optia. Functional manifering modes are supported by sampling. Vitables Winn (MSR Cam Java Cr. Y N N 0 VMP WinnMine Min (MSR Cam Java Cr. Y Y N 0 ULIV Learns BN or dependency net structure.												Bucket Elimination, AND/OR search for P(evidence), MPE in Bayesian networks
United Technical University Cs. Cr. V Y Y N 0 U All protebabilities (odes (decreted, Gaussian, toor Gaussian) are supported analytically transport Vibres Winn (MSR Cam) Java C.s. Y Y N 0 D VMP Winn (MSR Cam) Java C.s. Y Y N 0 D VMP Winn(mode Microsoft N C.s. Y Y N 0 D VMP												
Unnext Technical Univer N G, G, Cx Y Y N 0 UD sampling sampling Modes are supported by sampling Vides analytical provide are supported by sampling Vides Modes are su	2000 March 199	La marcelo La		2, 30, 04	-				0	-	,	
Unnex Technical University G, Cs, Cx Y Y N 0 UD sampling nodes are supported by sampling. Vibrars Winn (MSR Cam) Java Cx Y Y N N 0 D VMP Winnform Microsoft N Cx Y Y N 0 UD SL Learns BN or dependency net structure.												analytically through the Vine-Copula method with Gaussian copula. Functional
WinNine Microsoft N Cx Y Y Y Y N O U,D SL Learns BN or dependency net structure.					Y	Y						nodes are supported by sampling.
XBAVES 2.0 Cowell (City U,) N G Y N Y 0 CG Jtree -												Learns BN or dependency net structure.
	XBAIES 2.0	Cowell (City U.)	N	G	Y	Y	N	Y	0	CG	Jtree	*

Of these...

23 use junction trees for inference (some use Jtrees in addition to other algos)

5 use gibbs sampling

Many seem to be defunct, unsupported, or abandoned...

Why are there so many of these?

"It's hard to strike a balance between generality and usability." -Prof. Ihler

Positive qualities of software libraries... (CISQ)

Reliable

Efficient

Secure

Maintainable

Appropriately Scoped (Size)

"CISQ has defined five major desirable characteristics of a piece of software needed to provide business value..." (https://en.wikipedia.org/wiki/Software_quality)

The rest of this talk will focus on the libraries that can begin to convincingly claim to fulfill these qualities (in my opinion)

About 27,500,000 results (0.38 seconds)

Scholarly articles for graphical models library

... for discrete approximate inference in graphical models - Mooij - Cited by 256

... : A program for analysis of Bayesian **graphical models** ... - Hornik - Cited by 2332 Learning in **graphical models** - Jordan - Cited by 1767

GitHub - pgmpy/pgmpy: Python Library for Probabilistic Graphical ...

https://github.com/pgmpy/pgmpy ▼ pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official site http://pgmpy.org/ Pgmpy · Pgmpy_pgmpy_notebook · Issues 155

GitHub - opengm/opengm: A C++ Library for Discrete Graphical Models

https://github.com/opengm/opengm -

OpenGM is a C++ template **library** for discrete factor graph **models** and distributive operations on these **models**. It includes state-of-the-art optimization and inference algorithms beyond message passing. ... The **graphical model** data structure, inference algorithms and different encodings ...

machine learning - Good libraries for working with probabilistic ...

https://stats.stackexchange.com/.../good-libraries-for-working-with-probabilistic-graph...
Nov 7, 2013 - A relatively new (and rapidly evolving) python library is pgmpy (Github Link).

...

Edward - Home

edwardlib.org/ -

Edward is a Python library for probabilistic modeling, inference, and criticism. ... Directed graphical models; Neural networks (via libraries such as tf.layers and ...

"Python library for Probabilistic Graphical Models"

- Details are sparse, but it seems that this library has its origins as a Google Summer of Code project. There appear to be 4 major contributors: Ankur Ankan from Radboud University, Yashu Seth, Abinash Panda, Utkarsh Khalibartan, and an unnamed GitHub user contributing under the handle "vivek425ster".
- Open source
- Version 0.1.2
- Still under development (last commit on April 11)
- MIT License
- 48 contributors

Models

Bayesian Model Markov Model Factor Graph Cluster Graph Junction Tree Markov Chain NoisyOr Model Naive Bayes **DynamicBayesianNetwork**

Sampling Methods

Gibbs Sampler Bayesian Model Samplers Hamiltonian Monte Carlo No U-Turn Sampler

Algorithms

Variable Elimination Belief Propagation MPLP Dynamic Bayesian Network Inference

Positives

Very approachable (well documented)

Actively supported (bug fixes, features added)

Python

Negatives

Not backed by Big 4 company

Development seems to be slowing down (fewer commits over time)

2nd half of talk will focus on examples of what you can do with pgmpy...

"A C++ Library for Discrete Graphical Models"

- Developed at The Heidelberg Collaboratory for Image Processing at the University of Heidelberg. There are 3 main developers: Bjoern Andres, Thorsten Beier, and Joerg H. Kappes.
- Open source
- Version 2.0.2
- Still under development (last commit on April 5)
- MIT License
- 38 contributors
- Wrappers for Python and Matlab

Models

Graphs of any order and structure, from second order grid graphs to irregular higher-order models

Algorithms

- Combinatorial/Global Optimal Methods
- Linear Programming Relaxations
- Message Passing Methods
- Move Making Methods
- Sampling
- Wrapped External Code for Discrete Graphical Models

(41 total by my count)

Positives

Highly general

C++

Extensive Documentation

Negatives

Not backed by a Big 4 company

Highly general

C++

Edward

"Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming."

"Formally, Edward is a Turing-complete probabilistic programming language."

- Developed at Columbia University. Primary Developer: Dustin Tran
- Open source
- Version 1.3.5
- Still under development (last commit on June 1)
- MIT License
- 77 contributors

An abstraction over tensorflow

Directed graphical models

Neural networks (via libraries such as tf.layers and Keras)

Implicit generative models

Bayesian nonparametrics and probabilistic programs

Inference with...

Variational inference

Black box variational inference Stochastic variational inference Generative adversarial networks Maximum a posteriori estimation Monte Carlo Gibbs sampling Hamiltonian Monte Carlo Stochastic gradient Langevin dynamics Compositions of inference **Expectation-Maximization** Pseudo-marginal and ABC methods

Message passing algorithms

"Samlam is a comprehensive tool for modeling and reasoning with Bayesian networks"

- Developed at University of California, Los Angeles by the Automated Reasoning Group of Professor Adnan Darwiche.
- Closed source

Kevin's notes on Samlam

I took a look at this tool. It's impressive in the sense that the UI is very well designed and the fact that it's a Java program means that it can run on any machine with a Java virtual machine implementation, but the project is not open source. I can call into the code, but I can neither see nor edit the code. In my opinion, this is a serious issue. Why *not* host the code on Github? Also, it's not clear what the licensing is for this software. Can I use it in an industrial/commercial application? All of these factors limit SamIam's utility, unfortunately.

Installation...

pip install if you're on linux

Easy, fast, basically error-proof

(As an aside...)

There's an R package called bnlearn (http://www.bnlearn.com/)

If you go to <u>http://www.bnlearn.com/bnrepository/</u> there are Bayesian networks (large and small) to test with!

Name	Nodes	Arcs	Parameters
ASIA	8	8	18
CANCER	5	4	10
EARTHQUAKE	5	4	10
SACHS	11	17	178
SURVEY	6	6	21
Medium N	vetworks (2	0-50 node:	<u>s)</u>
Name	Nodes	Arcs	Parameters
ALARM	37	46	509
BARLEY	48	84	114005
CHILD	20	25	230
INSURANCE	27	52	984
MILDEW	35	46	540150
WATER	32	66	10083
Large Ne	tworks (50	-100 nodes	;)
Name	Nodes	Arcs	Parameters
HAILFINDER	56	66	2656
HEPAR II	70	123	1453
WIN95PTS	76	112	574
Very Large N	letworks (1	00–1000 nc	des)
Name	Nodes	Arcs	Parameters
ANDES	223	338	1157
DIABETES	413	602	429409
LINK	724	1125	14211
MUNIN (4 subnetworks)	186-1041	273-1388	15622-80352
PATHFINDER	135	200	77155
PIGS	441	592	5618
Massive M	vetworks (>	1000 node	<u>s)</u>
Name	Nodes	Arcs	Parameters
MUNIN (full network)	1041	1397	80592
MUNIN (4 subnetworks)	186-1041	273-1388	15622-80352

(As another aside...)

daft-pgm.org

More..

Daft is a Python package that uses <u>matplotlib</u> to render pixel-perfect *probabilistic* graphical models for publication in a journal or on the internet. With a short Python script and an intuitive model-building syntax you can design directed (Bayesian Networks, directed acyclic graphs) and undirected (Markov random fields) models and save them in any formats that matplotlib supports (including PDF, PNG, EPS and SVG).

```
from matplotlib import rc
     rc("font", family="serif", size=12)
     rc("text", usetex=True)
     import daft
     pgm = daft. PGM([3.6, 2.7], origin=[1.15, 0.65])
     pgm.add node(daft.Node("Pollution", r"Pollution", 2, 3, aspect=2))
     pgm.add node(daft.Node("Smoker", r"Smoker", 4, 3, aspect=2))
     pgm.add node(daft.Node("Cancer", r"Cancer", 3, 2, aspect=2.1))
     pgm.add node(daft.Node("Xray", r"Xray", 2, 1, aspect=2.4))
     pgm.add node(daft.Node("Dyspnoea", r"Dyspnoea", 4, 1, aspect=2.4))
     pgm.add edge("Pollution", "Cancer")
     pgm.add edge("Smoker", "Cancer")
     pgm.add edge("Cancer", "Xray")
     pgm.add edge("Cancer", "Dyspnoea")
     pgm.render()
     pgm.figure.savefig("wordy.pdf")
     pgm.figure.savefig("wordy.png", dpi=150)
20
```


Back to pgmpy...


```
from pgmpy.factors.discrete import TabularCPD
     cpd poll = TabularCPD(variable='Pollution', variable card=2,
                           values=[[0.9], [0.1]])
     cpd smoke = TabularCPD(variable='Smoker', variable card=2,
                            values=[[0.3], [0.7]])
     cpd cancer = TabularCPD(variable='Cancer', variable card=2,
                             values=[[0.03, 0.05, 0.001, 0.02],
15
                                     [0.97, 0.95, 0.999, 0.98]],
                             evidence=['Smoker', 'Pollution'],
                             evidence card=[2, 2])
     cpd xray = TabularCPD(variable='Xray', variable card=2,
                           values=[[0.9, 0.2], [0.1, 0.8]],
                           evidence=['Cancer'], evidence card=[2])
     cpd dysp = TabularCPD(variable='Dyspnoea', variable card=2,
                           values=[[0.65, 0.3], [0.35, 0.7]],
                           evidence=['Cancer'], evidence card=[2])
```

- 26 # Associating the parameters with the model structure.
- 27 cancer_model.add_cpds(cpd_poll, cpd_smoke, cpd_cancer, cpd_xray, cpd_dysp)
- 28 # Checking if the cpds are valid for the model.
- 29 cancer_model.check_model()
- 30 assert(cancer_model.is_active_trail('Pollution', 'Smoker') == False)
- 31 assert(cancer_model.is_active_trail('Pollution', 'Smoker', observed=['Cancer']) == True)
- 32 print(cancer_model.get_independencies())

32 print(cancer_model.get_independencies())

(Xray _|_ Dyspnoea, Smoker, Pollution | Cancer) (Xray _|_ Smoker, Pollution | Dyspnoea, Cancer) (Xray | Dyspnoea, Pollution | Smoker, Cancer) (Xray _|_ Dyspnoea, Smoker | Cancer, Pollution) (Xray | Pollution | Dyspnoea, Smoker, Cancer) (Xray | Smoker | Dyspnoea, Cancer, Pollution) (Xray _|_ Dyspnoea | Smoker, Cancer, Pollution) (Dyspnoea | Xray, Smoker, Pollution | Cancer) (Dyspnoea | Smoker, Pollution | Xray, Cancer) (Dyspnoea | Xray, Pollution | Smoker, Cancer) (Dyspnoea | Xray, Smoker | Cancer, Pollution) (Dyspnoea ____ Pollution | Xray, Smoker, Cancer) (Dyspnoea | Smoker | Xray, Cancer, Pollution) (Dyspnoea _|_ Xray | Smoker, Cancer, Pollution) (Smoker | Pollution) (Smoker _|_ Xray, Dyspnoea | Cancer) (Smoker | Dyspnoea | Xray, Cancer) (Smoker _|_ Xray | Dyspnoea, Cancer) (Smoker | Xray, Dyspnoea | Cancer, Pollution) (Smoker | Dyspnoea | Xray, Cancer, Pollution) (Smoker _|_ Xray | Dyspnoea, Cancer, Pollution) (Pollution | Smoker) (Pollution | Xray, Dyspnoea | Cancer) (Pollution _|_ Dyspnoea | Xray, Cancer) (Pollution | Xray | Dyspnoea, Cancer) (Pollution _|_ Xray, Dyspnoea | Smoker, Cancer) (Pollution _|_ Dyspnoea | Xray, Smoker, Cancer) (Pollution | Xray | Dyspnoea, Smoker, Cancer)

- 35 from pgmpy.inference import VariableElimination
- 36 cancer_infer = VariableElimination(cancer_model)
- 37 q = cancer_infer.query(variables=['Cancer'], evidence={'Pollution': 0, 'Smoker': 0})
- 38 print(q['Cancer'])

Cancer	phi(Cancer)
Cancer_0	0.0300
Cancer_1	0.9700

40 print(cancer_infer.induced_width(['Pollution', 'Smoker', 'Cancer', 'Xray', 'Dyspnoea']))

I hope this was helpful, interesting, or provided some ideas about potential future work.

Thank you!

Questions?