1. (Extra credit, 5 pts). Read Dechter chapter 5 and provide comments on clarity and typos.

2. (30) Given the directed graph G in Figure 1 (used also in homework 2),

 (a) Show the bucket-tree associated with the ordering $d_1 = F, C, A, G, D, H, E, B$ and display all the messages (πs and λs) along the tree.

 (b) Assuming you performed all the computation without any evidence. How can you extract the marginal probability of D? Explain.

 (c) Assuming you observed $F = 1$ and $B = 1$, explain how you would compute (update) $BEL(D) = P(D|F = 1, B = 1)$.

 (d) Give a bound on the time and space complexity for solving this problem using O notation.

 (e) Assume you have evidence over F. Describe how the loop-cutset scheme can find the belief for every variable. What is its time and space complexity?

 (f) Assume you compute the beliefs using join-tree clustering. What would be the time and space complexity? Explain.

 (g) Suggest an efficient scheme for solving the network without recording more than unary functions. Discuss your proposals.

 \[\text{Figure 1: A directed graph} \]

3. (20 pts) (revised question 4.5 in Pearl’s book) Consider the network in Figure 2.

 (a) What is the dual graph of this network
Figure 2: A two layer network

(b) Find a join-tree representation for the network and show how you would compute $Bel(D_1|M_2 = false, M_3 = true, M_4 = false)$ schematically (demonstrating the type of messages that would be passed).

4. (10) (extra credit) Let (G,P) be a Bayesian network where G is an directed acyclic graphs over variables X and let $C \subseteq X$ be a subset of variables that form a loop-cutset. Prove that $P(C = c)$ can be computed in linear time and space.

5. (10) (extra credit) Which method has better time complexity, the loop-cutset method or join-tree clustering? Prove your claims.

6. (10) Consider the network in Figure 3.

(a) What will be the complexity of loop-cutset conditioning on the network?
(b) How would it compare with BE-bel?
(c) How would it compare with join-tree clustering?

Figure 3: A chain directed graph

7. Consider the Bayes network DAG in Figure 4:

(a) (5) Generate a bucket-tree for this network.
(b) (5) Suppose you want to compute the probability of evidence. What would be the time and space complexity of doing so using Bucket-elimination? a. when the evidence is on variable E? b. when the evidence is I? c. when you want to compute the belief of $P(A|I = 0)$?

(c) (5) Assume that you have a Markov network grid when the potential are pair-wise (same as the above figure but remove the arrows). Answer the above question relative to such a grid markov network.

(d) (10) Assume you want to solve the problem in Figure 4 using algorithm cycle-cutset conditioning, what is the smallest cycle-cutset you can find (1-cutset) relative to the moral graph? What is the smallest 2-cutset you can find?

(e) (10) Describe how would 2-cutset conditioning can be applied to this problem. What would be the time and memory of 2-cutset conditioning on this problem?