Reasoning with graphical models

Slides Set 8:
Bounded Inference Non-iteratively;
Mini-Bucket Elimination

Rina Dechter

(Class Notes (8-9), Darwiche chapter 14)
Outline

• Mini-bucket elimination
• Weighted Mini-bucket
• Mini-clustering
• Re-parameterization, cost-shifting
• Iterative Belief propagation
• Iterative-join-graph propagation
Types of queries

<table>
<thead>
<tr>
<th>Types of Inference</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Inference</td>
<td>[f(x^*) = \max_x \prod_{\alpha} f_{\alpha}(x_{\alpha})]</td>
</tr>
<tr>
<td>Sum-Inference</td>
<td>[Z = \sum_x \prod_{\alpha} f_{\alpha}(x_{\alpha})]</td>
</tr>
<tr>
<td>Mixed-Inference</td>
<td>[f(x_M^*) = \max_{x_M} \sum_{x_S} \prod_{\alpha} f_{\alpha}(x_{\alpha})]</td>
</tr>
</tbody>
</table>

- **NP-hard**: exponentially many terms
- We will focus on **approximation** algorithms
 - **Anytime**: very fast & very approximate! Slower & more accurate
Queries

• Probability of evidence (or partition function)

\[P(e) = \sum_{X-\text{var}(e)} \prod_{i=1}^{n} P(x_i \mid pa_i) |_e \quad Z = \sum_{X} \prod_{i} \psi_i(C_i) \]

• Posterior marginal (beliefs):

\[P(x_i \mid e) = \frac{P(x_i, e)}{P(e)} = \frac{\sum_{X-\text{var}(e)-x_i} \prod_{j=1}^{n} P(x_j \mid pa_j) |_e}{\sum_{X-\text{var}(e)} \prod_{j=1}^{n} P(x_j \mid pa_j) |_e} \]

• Most Probable Explanation

\[\bar{x}^* = \arg \max_{\bar{x}} P(\bar{x}, e) \]
Bucket Elimination

Query: \(P(a \mid e = 0) \propto P(a, e = 0) \quad \text{Elimination Order: } d, e, b, c \)

\[
P(a, e = 0) = \sum_{c, b, e = 0} P(a)P(b \mid a)P(c \mid a)P(d \mid a, b)P(e \mid b, c)
\]
\[
= P(a)\sum_{c} P(c \mid a)\sum_{b} P(b \mid a)\sum_{e = 0} P(e \mid b, c)\sum_{d} P(d \mid a, b)
\]

Original Functions
- D: \(P(d \mid a, b) \)
- E: \(P(e \mid b, c) \)
- B: \(P(b \mid a) \)
- C: \(P(c \mid a) \)
- A: \(P(a) \)

Messages
- \(f_D(a, b) = \sum_{d} P(d \mid a, b) \)
- \(f_E(b, c) = P(e = 0 \mid b, c) \)
- \(f_B(a, c) = \sum_{b} P(b \mid a)f_D(a, b)f_E(b, c) \)
- \(f_C(a) = \sum_{c} P(c \mid a)f_B(a, c) \)
- \(P(a, e = 0) = p(A)f_C(a) \)

Bucket Tree

Time and space \(\exp(w^*) \)
Finding MPE/MAP

Algorithm BE-mpe (Dechter 1996, Bertele and Briochi, 1977)

\[
\text{MPE} = \max_{a, e, d, c, b} p(a) p(c | a) p(b | a) P(b)
\]

\[
= \max_b \prod_{x} p(b | a) p(d | b, a) p(e | b, c)
\]

bucket B: \(p(b | a) p(d | b, a) p(e | b, c) \)

bucket C: \(p(c | a) \lambda_{B \rightarrow C}(a, d, c, e) \)

bucket D: \(\lambda_{C \rightarrow D}(a, d, e) \)

bucket E: \(\mathbb{1}[e = 0] \lambda_{D \rightarrow E}(a, e) \)

bucket A: \(p(a) \lambda_{E \rightarrow A}(a) \)

\(\text{OPT} \)

\(W^* = 4 \)

“induced width” (max clique size)
Generating the Optimal Assignment

- Given BE messages, select optimum config in reverse order

\[
\begin{align*}
\mathbf{b}^* &= \arg \max_b p(b|a^*) p(d^*|b, a^*) p(e^*|b, c^*) \\
\mathbf{c}^* &= \arg \max_c p(c|a^*) \lambda_{B \to C}(a^*, c, d^*, e^*) \\
\mathbf{d}^* &= \arg \max_d \lambda_{C \to D}(a^*, d, e^*) \\
\mathbf{e}^* &= \arg \max_e \mathbb{1}[e = 0] \lambda_{D \to E}(a^*, e) \\
\mathbf{a}^* &= \arg \max_a p(a) \cdot \lambda_{E \to A}(a)
\end{align*}
\]

Return optimal configuration \((a^*, b^*, c^*, d^*, e^*)\)

\[
\text{OPT} = \text{optimal value}
\]
Approximate Inference

• Metrics of evaluation

• **Absolute error**: given $\epsilon > 0$ and a query $p = P(x|e)$, an estimate r has absolute error ϵ iff $|p-r| < \epsilon$

• **Relative error**: the ratio r/p in $[1- \epsilon, 1+ \epsilon]$.

• Dagum and Luby 1993: approximation up to a relative error is NP-hard.

• Absolute error is also NP-hard if error is less than $.5$
Outline

• Mini-bucket elimination
• Weighted Mini-bucket
• Mini-clustering
• Re-parameterization, cost-shifting
• Iterative Belief propagation
• Iterative-join-graph propagation
Mini-Buckets: “Local Inference”

• Computation in a bucket is time and space exponential in the number of variables involved

• Therefore, partition functions in a bucket into “mini-buckets” on smaller number of variables
Decomposition Bounds

• Upper & lower bounds via approximate problem decomposition
• Example: MAP inference

\[F(x) = f_1(x) \cdot f_2(x) \]

\[
\begin{array}{c|c}
X & F(X) \\
0 & 1.0 \\
1 & 4.0 \\
2 & 6.0 \\
3 & 0.0 \\
\end{array}
\quad = \quad
\begin{array}{c|c}
X & f_1(X) \\
0 & 1.0 \\
1 & 2.0 \\
2 & 3.0 \\
3 & 4.0 \\
\end{array}
\quad \times
\begin{array}{c|c}
X & f_2(X) \\
0 & 1.0 \\
1 & 2.0 \\
2 & 2.0 \\
3 & 0.0 \\
\end{array}
\]

\[
\max_x F(x) = \max_x \left[f_1(x) \times f_2(x) \right]
\]

\[
4.0 \leq \left[\max_x f_1(x) \times \max_x f_2(x) \right] = 4.0 \times 2.0 = 8.0
\]

• Relaxation: two “copies” of x, no longer required to be equal
• Bound is tight (equality) if \(f_1, f_2 \) agree on maximizing value x
Mini-Bucket Approximation

Split a bucket into mini-buckets \rightarrow bound complexity

\[\text{bucket } (X) = \{ f_1, f_2, \ldots f_r, f_{r+1}, \ldots f_n \} \]

\[\lambda_X(\cdot) = \max_x \prod_{i=1}^n f_i(x, \ldots) \]

\[\lambda_{X,1}(\cdot) = \max_x \prod_{i=1}^r f_i(x, \ldots) \]

\[\lambda_{X,2}(\cdot) = \max_x \prod_{i=r+1}^n f_i(x, \ldots) \]

\[\lambda_X(\cdot) \leq \lambda_{X,1}(\cdot) \lambda_{X,2}(\cdot) \]

Exponential complexity decrease: \(O(e^n) \longrightarrow O(e^r) + O(e^{n-r}) \)
Mini-Bucket Elimination

\[
\lambda_{B \rightarrow D}(a, d) = \max_b P(d|a, b) \cdot p(b|a)
\]
\[
\lambda_{B \rightarrow C}(e, c) = \max_b P(e|b, c)
\]
\[
\lambda_{B \rightarrow D}(a, d) = \max_d \quad \text{...}
\]

\[
U = \text{upper bound}
\]
Mini-Bucket Elimination

\[\lambda_{B\rightarrow D}(a, d) = \max_b P(d|a,b) P(b|a) \]
\[\lambda_{B\rightarrow C}(e, c) = \max_b P(e|b,c) \]
\[\lambda_{B\rightarrow D}(a, d) = \max_d \ldots \]

\[U = \text{upper bound} \]
Mini-Bucket Elimination

[Dechter and Rish, 1997; 2003]

\[
\begin{align*}
&\text{B: } P(e|b',c), \quad \lambda_{B\rightarrow C}(e,c) \\
&\text{C: } P(c|a) \\
&\text{D: } \quad \lambda_{B\rightarrow D}(a,d) \\
&\text{E: } \lambda_{C\rightarrow E}(a,c), \quad e=0 \\
&\text{A: } P(a), \quad \lambda_{E\rightarrow A}(a), \quad \lambda_{D\rightarrow A}(a)
\end{align*}
\]

\[U = \text{upper bound}\]

\[\max_B \prod f \]

\[\max_B \prod f \]

\[P(d|a,b) p(b|a) \]

\[P(e|b',c) \]

\[\lambda_{B\rightarrow C}(e,c) \]

\[\lambda_{B\rightarrow D}(a,d) \]

\[\lambda_{C\rightarrow E}(a,c), \quad e=0 \]

\[\lambda_{E\rightarrow A}(a), \quad \lambda_{D\rightarrow A}(a) \]

\[U = \text{upper bound}\]

Model relaxation:

[Dechter and Rish, 1997; 2003]

[Geffner et al., 2007]

[Choi et al., 2007]

[Johnson et al. 2007]
Mini-Bucket Decoding

- Assign values in reverse order using approximate messages

\[
\begin{align*}
 b^* &= \arg\max_b P(e^*/b, c^*)P(d/a^*, b) P(b/a^*) \\
 c^* &= \arg\max_e \lambda_{B \rightarrow C}(e^*, c) \\
 d^* &= \arg\max_d \lambda_{B \rightarrow D}(a^*, d) \\
 e^* &= 0 \\
 a^* &= \arg\max_a P(a) \lambda_{E \rightarrow A}(a) \lambda_{D \rightarrow A}(a)
\end{align*}
\]

Greedy configuration = lower bound

\[
\text{return}(a^*, e^*, d^*, c^*, b^*)
\]
Semantics of Mini-Bucket: Splitting a Node

Variables in different buckets are renamed and duplicated (Kask et. al., 2001), (Geffner et. al., 2007), (Choi, Chavira, Darwiche , 2007)
MBE-MPE(i): Algorithm MBE-mpe

- **Input**: \(i \) – max number of variables allowed in a mini-bucket
- **Output**: [lower bound (\(P \) of suboptimal solution), upper bound]

Example: MBE-mpe(3) versus BE-mpe

A: \(p(a) \) \(\lambda_{E \rightarrow A}(a) \) \(\lambda_{D \rightarrow A}(a) \)

B: \(P(e|b,c) \)

C: \(P(c|a) \)

D: \(\lambda_{B \rightarrow D}(a,d) \)

E: \(\lambda_{C \rightarrow E}(a,e) \quad e=0 \)

U = Upper bound

We can also use a bound on the number of functions in a bucket: \(m \)
Mini-Bucket Decoding (for min-sum)

\[
\hat{b} = \arg\min_b f(\hat{a}, b) + f(b, \hat{c}) + f(b, \hat{d}) + f(b, \hat{e})
\]

\[
\hat{c} = \arg\min_c \lambda_{B\rightarrow C}(\hat{a}, c) + f(c, \hat{a}) + f(c, \hat{e})
\]

\[
\hat{d} = \arg\min_d f(\hat{a}, d) + \lambda_{B\rightarrow D}(d, \hat{e})
\]

\[
\hat{e} = \arg\min_e \lambda_{C\rightarrow E}(\hat{a}, e) + \lambda_{D\rightarrow E}(\hat{a}, e)
\]

\[
\hat{a} = \arg\min_a f(a) + \lambda_{E\rightarrow A}(a)
\]

Greedy configuration = upper bound

\[
\lambda_{B\rightarrow C}(a, c) f(c, a) f(c, e) f(a, d) \lambda_{B\rightarrow D}(d, e) \lambda_{C\rightarrow E}(a, e) \lambda_{D\rightarrow E}(a, e) f(a) \lambda_{E\rightarrow A}(a)
\]

\[
L = \text{lower bound}
\]

[Dechter and Rish, 2003]
(i,m)-Partitionings

Definition 7.1.1 ((i,m)-partitioning) Let H be a collection of functions h_1, \ldots, h_t defined on scopes S_1, \ldots, S_t, respectively. We say that a function f is subsumed by a function h if any argument of f is also an argument of h. A partitioning of h_1, \ldots, h_t is canonical if any function f subsumed by another function is placed into the bucket of one of those subsuming functions. A partitioning Q into mini-buckets is an (i,m)-partitioning if and only if (1) it is canonical, (2) at most m non-subsumed functions are included in each mini-bucket, (3) the total number of variables in a mini-bucket does not exceed i, and (4) the partitioning is refinement-maximal, namely, there is no other (i,m)-partitioning that it refines.
MBE(i,m), MBE(i)

- Input: Belief network \(P_1, \ldots, P_n \)
- Output: upper and lower bounds
- Initialize: put functions in buckets along ordering
- Process each bucket from \(p=n \) to 1
 - Create \((i,m)\)-partitions
 - Process each mini-bucket
- (For mpe): assign values in ordering \(d \)
- Return: mpe-configuration, upper and lower bounds
Algorithm MBE.mpe(i,m)

Input: A belief network \(\mathcal{B} = \langle X, D, G, \mathcal{P}_G, \prod \rangle \), where \(\mathcal{P} = \{ P_1, \ldots, P_n \} \); an ordering of the variables, \(d = X_1, \ldots, X_n \); observations \(\omega \).

Output: An upper bound \(U \) and a lower bound \(L \) on the most probable configuration given the evidence. A suboptimal solution \(\hat{x}^\omega \) that provides the lower bound \(L = P(\hat{x}^\omega) \).

1. Initialize: Generate an ordered partition of the conditional probability function, \(\text{bucket}_1, \ldots, \text{bucket}_n \), where \(\text{bucket}_i \) contains all functions whose highest variable is \(X_i \). Put each observed variable in its bucket.

2. Backward: For \(p \leftarrow n \) downto 1, do for all the functions \(h_1, h_2, \ldots, h_j \) in \(\text{bucket}_p \), do

 - If (observed variable) \(\text{bucket}_p \) contains \(X_p = x_p \), assign \(X_p = x_p \) to each function and put each in appropriate bucket.
 - Else, Generate an \((i, m) \)-partitioning, \(Q' = \{ Q_1, \ldots, Q_r \} \) of \(h_1, h_2, \ldots, h_i \) in \(\text{bucket}_p \).
 - For each \(Q_l \in Q' \) containing \(h_1, \ldots, h_i \), do

 \[
 h_l \leftarrow \max_{X_1} \prod_{j=1}^{i} h_j \tag{8.1}
 \]

 Add \(h_l \) to the bucket of the largest-index in \(\text{scope}(h_l) \). Put constants in \(\text{bucket}_i \).

3. Forward:

 - Compute an mpe cost by maximizing over \(X_1 \), the product in \(\text{bucket}_1 \). Namely \(U \leftarrow \max_{X_1} \prod_{h_j \in \text{bucket}_1} h_j \).

 - (Generate an approximate mpe tuple): Given \(x_{(1 \ldots (i-1))} = (x_1, \ldots, x_{i-1}) \) choose \(x_i = \arg \max_{X_1} \prod_{h_j \in \text{bucket}_1} h_j (x_{(1 \ldots (i-1))}) \). \(L \leftarrow P(x_1, \ldots, x_n) \).

4. Output \(U \) and \(L \) and configuration: \(\tilde{x} = (x_1, \ldots, x_n) \).

Figure 8.2: Algorithm MBE.mpe(i,m).
Partitioning, Refinements

Clearly, as the mini-buckets get smaller, both complexity and accuracy decrease.

Definition 7.1.4 Given two partitionings Q' and Q'' over the same set of elements, Q' is a refinement of Q'' if and only if for every set $A \in Q'$ there exists a set $B \in Q''$ such that $A \subseteq B$.

It is easy to see that:

Proposition 7.1.5 If Q'' is a refinement of Q' in bucket p, then $h^p \leq g^p_{Q'} \leq g^p_{Q''}$.
Properties of MBE(i)

- **Complexity**: $O(r \exp(i))$ time and $O(\exp(i))$ space
- Yields a lower bound and an upper bound
- **Accuracy**: determined by upper/lower (U/L) bound
- Possible use of mini-bucket approximations
 - As anytime algorithms (up to memory resource)
 - As heuristics in search (true anytime)
- Other tasks (similar mini-bucket approximations)
 - Belief updating, Marginal MAP, MEU, WCSP, Max-CSP
 - [Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]
Anytime Approximation

Algorithm anytime-mpe(\epsilon)

Input: Initial values of \(i\) and \(m\), \(i_0\) and \(m_0\); increments \(i_{\text{step}}\) and \(m_{\text{step}}\), and desired approximation error \(\epsilon\).

Output: \(U\) and \(L\)

1. Initialize: \(i = i_0, m = m_0\).
2. do
3. \hspace{1em} run \textit{mbc-mpc}(i,m)
4. \hspace{1em} \(U \leftarrow\) upper bound of \textit{mbc-mpc}(i,m)
5. \hspace{1em} \(L \leftarrow\) lower bound of \textit{mbc-mpc}(i,m)
6. \hspace{1em} Retain best bounds \(U, L\), and best solution found so far
7. \hspace{1em} if \(1 \leq U/L \leq 1 + \epsilon\), return solution
8. \hspace{1em} else increase \(i\) and \(m\): \(i \leftarrow i + i_{\text{step}}\) and \(m \leftarrow m + m_{\text{step}}\)
9. \hspace{1em} while computational resources are available
10. Return the largest \(L\) and the smallest \(U\) found so far.
MBE for Belief Updating and for Probability of Evidence or Partition Function

- Idea mini-bucket is the same:

\[\sum_{x} f(x) \cdot g(x) \leq \sum_{x} f(x) \cdot \sum_{x} g(x) \]
\[\sum_{x} f(x) \cdot g(x) \leq \sum_{x} f(x) \cdot \max_{X} g(X) \]

- So we can apply a sum in each mini-bucket, or better, one sum and the rest max, or min (for lower-bound)

- MBE-bel-max(i,m), MBE-bel-min(i,m) generating upper and lower-bound on beliefs approximates BE-bel

- MBE-map(i,m): max mini-buckets will be maximized, sum mini-buckets will be sum-max. Approximates BE-map.
Algorithm MBE-bel-max(i,m)

Input: A belief network $\mathcal{B} = \langle X, \mathcal{D}, P_G, \mathcal{I} \rangle$, an ordering $d = (X_1, \ldots, X_n)$; evidence e

Output: an upper bound on $P(X_1, e)$ and an upper bound on $P(e)$.

1. **Initialize:** Partition $P = \{P_1, \ldots, P_n\}$ into buckets $\text{bucket}_1, \ldots, \text{bucket}_n$, where bucket_k contains all CPTs h_1, h_2, \ldots, h_t whose highest-index variable is X_k.

2. **Backward:** for $k = n$ to 2 do

 - If X_p is observed ($X_k = a$), assign $X_k \leftarrow a$ in each h_j and put the result in the highest-variable bucket of its scope (put constants in bucket_1).

 - Else for h_1, h_2, \ldots, h_t in bucket_k Generate an (i, m)-partitioning, $Q' = \{Q_1, \ldots, Q_r\}$. For each $Q_i \in Q'$, containing h_{l_1}, \ldots, h_{l_t}, do

 $h_l \leftarrow \sum_{X_k} \Pi_{j=1}^{t} h_{l_j}$, if $l = 1$

 $h_l \leftarrow \max_{X_k} \Pi_{j=1}^{t} h_{l_j}$, if $k \neq 1$

 Add h_l to the bucket of the highest-index variable in its scope $\bigcup_{j=1}^{t} \text{scope}(h_{l_j}) - \{X_k\}$. (put constant functions in bucket_1).

3. **Return** $P'(x_1, e) \leftarrow$ the product of functions in the bucket of X_1, which is an upper bound on $P(x_1, e)$.

 $P'(e) = \sum_{x_1} P'(\bar{x}_1, e)$, which is an upper bound on probability of evidence.

Figure 8.5: Algorithm MBE-bel-max(i,m).
CPCS Networks – Medical Diagnosis (noisy-OR model)

Test case: no evidence

Anytime-mpe(0.0001)
U/L error vs time

Time and parameter i

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>cpcs360</th>
<th>cpcs422</th>
</tr>
</thead>
<tbody>
<tr>
<td>elim-mpe</td>
<td>115.8</td>
<td>1697.6</td>
</tr>
<tr>
<td>anytime-mpe(ϵ), $\epsilon = 10^{-4}$</td>
<td>70.3</td>
<td>505.2</td>
</tr>
<tr>
<td>anytime-mpe(ϵ), $\epsilon = 10^{-1}$</td>
<td>70.3</td>
<td>110.5</td>
</tr>
</tbody>
</table>
Outline

• Mini-bucket elimination
• Weighted Mini-bucket
• Mini-clustering
• Re-parameterization, cost-shifting
• Iterative Belief propagation
• Iterative-join-graph propagation
Decomposition for Sum

\[\sum_{x} f_1(x) \cdot f_2(x) \leq \left[\sum_{x} f_1(x) \frac{1}{w_1} \right]^{w_1} \cdot \left[\sum_{x} f_2(x) \frac{1}{w_2} \right]^{w_2} \]

- Generalize technique to sum via Holder’s inequality:
 \[\sum_{x_1}^{w_1} f(x_1) = \left[\sum_{x_1} f(x_1) \frac{1}{w_1} \right]^{w_1} \]

- Define the weighted (or powered) sum:
 \[\sum_{x_1}^{w_1} \sum_{x_2}^{w_2} f(x_1, x_2) \neq \sum_{x_2}^{w_2} \sum_{x_1}^{w_1} f(x_1, x_2) \]

 - “Temperature” interpolates between sum & max:
 \[\lim_{w \to 0^+} \sum_{x}^{w} f(x) = \max_{x} f(x) \]

 - Different weights do not commute:
The Power Sum and Holder Inequality

The power sum is defined as follows:

$$\sum_{x}^{w} f(x) = (\sum_{x} f(x)^{\frac{1}{w}})^{w}$$ \hspace{1cm} (1.2)$$

where w is a non-negative weight. The power sum reduce to a standard summation when $w = 1$ and approaches max when $w \to 0^+$.

[Holder inequality] Let $f_i(x)$, $i = 1..r$ be a set of functions and $w_1, ..., w_r$ b a set of of non-zero weights, s.t., $w = \sum_{i=1}^{r} w_i$ then,

$$\sum_{x}^{w} \prod_{i=1}^{r} f_i(x) \leq \prod_{i=1}^{r} \sum_{x}^{w_i} f_i(x)$$
Working Example

• Model:
 • Markov network

• Task:
 • Partition function

\[Z = \sum_{A,B,C} f(A)f(B)f(C)f(A, B)f(A, C)f(B, C) \]
Mini-Bucket (Basic Principles)

- Upper bound

\[\sum_{i} a_i b_i \leq \left(\sum_{i} a_i \right) \max_{i} (b_i) \]

- Lower bound

\[\sum_{i} a_i b_i \geq \left(\sum_{i} a_i \right) \min_{i} (b_i) \]

(Qiang Liu slides)

I am using \(a_i b_i \) to represent the general constant.
Holder Inequality

\[\sum_i a_i b_i \leq \left(\sum_i a_i^{1/w_1} \right)^{w_1} \left(\sum_i b_i^{1/w_2} \right)^{w_2} \]

- Where \(a_i > 0, b_i > 0 \) and \(w_1 + w_2 = 1 \) \(w_1 > 0, w_2 > 0 \)

- When \(\frac{a_i^{1/w_1}}{\sum a_i^{1/w_1}} = \frac{b_i^{1/w_2}}{\sum b_i^{1/w_2}} \) the equality is achieved.

(Qiang Liu slides)

Reverse Holder Inequality

- If \(w_1 + w_2 = 1 \), but \(w_1 < 0, w_2 > 1 \)
- the direction of the inequality reverses.

\[
\sum_i a_i b_i \geq \left(\sum_i a_i^{1/w_1} \right)^{w_1} \left(\sum_i b_i^{1/w_2} \right)^{w_2}
\]

(Qiang Liu slides)

Weighted Mini-Bucket

(for summation)

Exact bucket elimination:

$$\lambda_B(a, c, d, e) = \sum_b [f(a, b) \cdot f(b, c) \cdot f(b, d) \cdot f(b, e)]$$

$$\leq \left[\sum_b f(a, b)f(b, c) \right] \cdot \left[\sum_b f(b, d)f(b, e) \right]$$

$$= \lambda_{B \rightarrow C}(a, c) \cdot \lambda_{B \rightarrow D}(d, e) \quad \text{(mini-buckets)}$$

where $$\sum_x f(x) = \left[\sum_x f(x)^{1/w} \right]^w$$ is the weighted or "power" sum operator

$$\sum_x f_1(x)f_2(x) \leq \left[\sum_x f_1(x) \right] \cdot \left[\sum_x f_2(x) \right]$$

where $$w_1 + w_2 = w$$ and $$w_1 > 0, w_2 > 0$$

(lower bound if $$w_1 > 0, w_2 < 0$$)

U = upper bound

[Liu and Ihler, 2011]
Algorithm Weighted WMBE\((i,m)\), \((w_1, \ldots w_n)\)

Input: A belief network \(\mathcal{B} = (X, D, P_G, \Pi)\), an ordering \(d = (X_1, \ldots, X_n)\); evidence \(e\)

Output: an upper bound on \(\sum_{X} \prod_{i=1}^{n} P_i\)

1. Initialize: Partition \(P = \{P_1, \ldots, P_n\}\) into buckets bucket\(_1\), \ldots, bucket\(_n\), where bucket\(_k\) contains all CPTs \(h_1, h_2, \ldots, h_t\) whose highest-index variable is \(X_k\).

2. Backward: for \(k = n\) to 1 do
 - If \(X_p\) is observed \((X_k = a)\), assign \(X_k \leftarrow a\) in each \(h_j\) and put the result in the highest-variable bucket of its scope (put constants in bucket\(_1\)).
 - Else for \(h_1, h_2, \ldots, h_t\) in bucket\(_k\) Generate an \((i,m)\)-partitioning, \(Q' = \{Q_1, \ldots, Q_r\}\). Select a set of weights \(w_1, \ldots w_r\) s.t \(\sum_i w_i = w\). For each \(Q_t \in Q'\), containing \(h_{i_1}, \ldots h_{i_t}\), do
 \[
 h_t \leftarrow \sum_{X_k} \prod_{j=1}^{t} h_{i_j} = \left(\sum_{X_k} \prod_{j=1}^{t} (h_{i_j})^{w_j}\right)^{\frac{1}{w_i}}
 \]
 Add \(h_t\) to the bucket of the highest-index variable in its scope (and put constant functions in bucket\(_1\)).

3. Return \(U \leftarrow\) the weighted product of functions in the bucket of \(X_1\), which is an upper bound on \(P(x_1, e)\).
Weighted-mini-bucket for Marginal Map
Bucket Elimination for MMAP

MAP* is the marginal MAP value
MB and WMB for Marginal MAP

\(X_M = \{A, D, E\} \)
\(X_S = \{B, C\} \)
\[\lambda_{B\to C}(a, c) = \sum_{b} w_1 f(a, b)f(b, c) \]
\[\lambda_{B\to D}(d, e) = \sum_{b} w_2 f(b, d)f(b, e) \]
\(\lambda_{E\to A}(a) = \max_{e} \lambda_{C\to E}(a, e)\lambda_{D\to E}(a, e) \)
\[U = \max_{a} f(a)\lambda_{E\to A}(a) \]

Marginal MAP

\[\Sigma_B \]
bucket B:
\[\begin{array}{ccc}
f(a, b) & f(b, c) & f(b, d) \\
\end{array} \]
\[\Sigma_C \]
bucket C:
\[\begin{array}{ccc}
\lambda_{B\to C}(a, c) & f(a, c) & f(c, e) \\
\end{array} \]
\[\Sigma_D \]
bucket D:
\[f(a, d) \lambda_{B\to D}(d, e) \]
\[\Sigma_E \]
bucket E:
\[\begin{array}{ccc}
\lambda_{C\to E}(a, e) & \lambda_{D\to E}(a, e) \\
\end{array} \]
\[U = \text{upper bound} \]

Can optimize over cost-shifting and weights (single pass “MM” or iterative message passing)

[Dechter and Rish, 2003]
[Liu and Ihler, 2011; 2013]
Process max buckets
With max mini-buckets
And sum buckets with weighted
Mini-buckets

Algorithm MBE-map(i,m)

Input: A Bayesian network $B = \langle X, D, P_I, \prod_P \rangle$, $P = \{P_1, ..., P_n\}$; a subset of hypothesis variables $A = \{A_1, ..., A_k\}$; an ordering of the variables, d, in which the A's are first in the ordering; observations e.

Output: An upper bound on the map and a suboptimal solution $A = a^*_k$.

1. **Initialize:** Partition $P = \{P_1, ..., P_n\}$ into $bucket_1, ..., bucket_m$, where $bucket_t$ contains all functions whose highest variable is X_t.
2. **Backwards** For $p \leftarrow n$ downto 1, do for all the functions $h_1, h_2, ..., h_j$ in $bucket_p$ do
 - If (observed variable) $bucket_p$ contains the observation $X_p = x_p$, assign $X_p = x_p$ to each h_i and put each in an appropriate bucket.
 - Else for $h_1, h_2, ..., h_j$ in $bucket_p$ generate an (i, m)-partitioning, $Q' = \{Q_1, ..., Q_t\}$.
 - If $X_p \notin A$ assign $w_p = 1$, otherwise $w_p = 0$. Select weights for the mini-buckets in X_p bucket: $w_{p_1}, ..., w_{p_k}$, s.t $\sum_{i} w_{p_i} = w_p$.

 foreach $Q_t \in Q'$, containing $h_{i_1}, ..., h_{i_t}$, do

 $h_t \leftarrow \sum_{X_k} \prod_{j=1}^{t} h_{i_j} = \left(\sum_{X_k} \prod_{j=1}^{t} h_{i_j} \right)^{w_{p_t}} \frac{1}{w_{p_t}}$

 Add h_t to the bucket of the highest-index variable in its scope.

3. **Forward:** for $p = 1$ to k, given $A_1 = a^*_1, ..., A_{p-1} = a^*_p$, assign a value a^*_p to A_p that maximizes the product of all functions in $bucket_p$, conditioned on earlier assignments.

4. Return An upper bound $U = \max_{a^*_1} \prod_{h \in bucket_1} h$ on the map value, computed in the first bucket, and the assignment $a^*_k = (a^*_1, ..., a^*_k)$.

Figure 8.7: Algorithm MBE-map(i,m).
Example 7.3.1. We will next demonstrate the mini-bucket approximation for MAP on an example of probabilistic decoding (see Chapter 2). Consider a belief network which describes the decoding of a linear block code, shown in Figure 7.7. In this network, U_i are information bits and X_j are code bits, which are functionally dependent on U_i. The vector (U, X), called the channel input, is transmitted through a noisy channel which adds Gaussian noise and results in the channel output vector $Y = (Y^n, Y^o)$. The decoding task is to assess the most likely values for the U's given the observed values $Y = (y^n, y^o)$, which is the MAP task where U is the set of hypothesis variables, and $Y = (y^n, y^o)$ is the evidence. After processing the observed buckets we get the following bucket configuration (lower case y's are observed values):

- $\text{bucket}(X_0) = P(y^n_0 | X_0), P(X_0 | U_0, U_1, U_2),$
- $\text{bucket}(X_1) = P(y^n_1 | X_1), P(X_1 | U_1, U_2, U_3),$
- $\text{bucket}(X_2) = P(y^n_2 | X_2), P(X_2 | U_2, U_3, U_4),$
- $\text{bucket}(X_3) = P(y^n_3 | X_3), P(X_3 | U_3, U_4, U_0),$
- $\text{bucket}(X_4) = P(y^n_4 | X_4), P(X_4 | U_4, U_0, U_1),$
- $\text{bucket}(U_0) = P(U_0), P(y^n_0 | U_0),$
- $\text{bucket}(U_1) = P(U_1), P(y^n_1 | U_1),$
- $\text{bucket}(U_2) = P(U_2), P(y^n_2 | U_2),$
- $\text{bucket}(U_3) = P(U_3), P(y^n_3 | U_3),$
- $\text{bucket}(U_4) = P(U_4), P(y^n_4 | U_4).$

Processing by \text{mbe-map}(4,1)$ of the first top five buckets by summation and the rest by maximization, results in the following mini-bucket partitions and function generation:
bucket(X_0) = \{ P(y_0^a | X_0), P(X_0 | U_0, U_1, U_2) \},
bucket(X_1) = \{ P(y_1^a | X_1), P(X_1 | U_1, U_2, U_3) \},
bucket(X_2) = \{ P(y_2^a | X_2), P(X_2 | U_3, U_4, U_5) \},
bucket(X_3) = \{ P(y_3^a | X_3), P(X_3 | U_5, U_6, U_7) \},
bucket(X_4) = \{ P(y_4^a | X_4), P(X_4 | U_7, U_8, U_9) \}.

bucket(U_0) = \{ P(U_0), P(y_0^a | U_0, U_1, U_2), h^{X_0}(U_0, U_1, U_2), h^{X_1}(U_1, U_2) \},
bucket(U_1) = \{ P(U_1), P(y_1^a | U_1, U_2, U_3), h^{X_1}(U_1, U_2, U_3), h^{X_3}(U_1, U_2) \},
bucket(U_2) = \{ P(U_2), P(y_2^a | U_2, U_3, U_4), h^{X_2}(U_2, U_3, U_4), h^{X_3}(U_2) \},
bucket(U_3) = \{ P(U_3), P(y_3^a | U_3, U_4, U_5), h^{X_4}(U_3, U_4, U_5), h^{X_4}(U_3) \},
bucket(U_4) = \{ P(U_4), P(y_4^a | U_4, U_5, U_6), h^{X_4}(U_4, U_5), h^{X_4}(U_4) \}.

The first five buckets are not partitioned at all and are processed as full buckets, since in this case a full bucket is a (4,1)-partitioning. This processing generates five new functions, three are placed in bucket U_0, one in bucket U_1 and one in bucket U_2. Then bucket U_0 is partitioned into three mini-buckets processed by maximization, creating two functions placed in bucket U_1 and one function placed in bucket U_3. Bucket U_1 is partitioned into two mini-buckets, generating functions placed in bucket U_2 and bucket U_5. Subsequent buckets are processed as full buckets. Note that the scope of recorded functions is bounded by 3.

In the bucket of U_4 we get an upper bound $U \geq MAP = P(U, \hat{y}^a, \hat{y})$ where \hat{y}^a and \hat{y} are the observed outputs for the U's and the X's bits transmitted. In order to bound $P(U|\epsilon)$, where $\epsilon = (\hat{y}^a, \hat{y})$, we need $P(\epsilon)$ which is not available. Yet, again, in most cases we are interested in the ratio $P(U = u_1 | \epsilon) / P(U = u_2 | \epsilon)$ for competing hypotheses $U = u_1$ and $U = u_2$ rather than in the absolute values. Since $P(U | \epsilon) = P(U, \epsilon) / P(\epsilon)$ and the probability of the evidence is just a constant factor independent of U, the ratio is equal to $P(U_1, \epsilon) / P(U_2, \epsilon)$.
Complexity and Tractability of MBE(i,m)

Theorem 8.10 Algorithm WMB(i,m) takes \(O(r \cdot k^i) \) time and space, where, \(k \) bounds the domain size and \(r \) is the number of input functions. For \(m = 1 \) the algorithm is time and space linear and is bounded by \(O(r \cdot \exp(|S|)) \), where \(|S| \) is the maximum scope of any input function, \(|S| \leq i \leq n \).
Outline

• Mini-bucket elimination
• Weighted Mini-bucket
• Mini-clustering
 • Re-parameterization, cost-shifting
 • Iterative Belief propagation
 • Iterative-join-graph propagation
Join-Tree Clustering (Cluster-Tree Elimination)

Exact algorithm

Time and space:

\[\exp(\text{cluster size}) = \exp(\text{treewidth}) \]

Equations:

1. \[h_{(1,2)}(b,c) = \sum_a p(a) \cdot p(b \mid a) \cdot p(c \mid a, b) \]
2. \[h_{(2,1)}(b,c) = \sum_{d,f} p(d \mid b) \cdot p(f \mid c,d) \cdot h_{(3,2)}(b,f) \]
3. \[h_{(2,3)}(b,f) = \sum_{c,d} p(d \mid b) \cdot p(f \mid c,d) \cdot h_{(1,2)}(b,c) \]
4. \[h_{(3,2)}(b,f) = \sum_e p(e \mid b,f) \cdot h_{(4,3)}(e,f) \]
5. \[h_{(3,4)}(e,f) = \sum_b p(e \mid b,f) \cdot h_{(2,3)}(b,f) \]
6. \[h_{(4,3)}(e,f) = p(G = g_e \mid e, f) \]
Mini-Clustering

Split a cluster into mini-clusters \Rightarrow bound complexity

We can replace the sum with power sum
For weights that sum to 1 in each mini-bucket

\[
\sum_{\text{elim } i=1}^{n} h_i \leq \left(\sum_{\text{elim } i=1}^{r} h_i \right) \cdot \left(\sum_{\text{elim } i=r+1}^{n} h_i \right)
\]

Exponential complexity decrease $O(e^n) \rightarrow O(e^{\text{var}(r)}) + O(e^{\text{var}(n-r)})$
Mini-Clustering, i-bound=3

\[h_{1,2}^1(b, c) = \sum_a p(a) \cdot p(b \mid a) \cdot p(c \mid a, b) \]

\[h_{2,3}^1(b) = \sum_{c, d} p(d \mid b) \cdot h_{1,2}^1(b, c) \]

\[h_{2,3}^2(f) = \max_{c, d} p(f \mid c, d) \]

APPROXIMATE algorithm

Time and space: \(\exp(i\text{-bound}) \)

Number of variables in a mini-cluster
Mini-Clustering - Example

\[H_{(1,2)}(b, c) := \sum_a p(a) \cdot p(b \mid a) \cdot p(c \mid a, b) \]

\[h_{(2,1)}(b) := \sum_{d,f} p(d \mid b) \cdot h_{(3,2)}(b, f) \]

\[H_{(2,1)}(c) := \max_{d,f} p(f \mid c, d) \]

\[h_{(2,3)}(b) := \sum_{c,d} p(d \mid b) \cdot h_{(1,2)}(b, c) \]

\[h_{(2,3)}(f) := \max_{c,d} p(f \mid c, d) \]

\[H_{(3,2)}(b, f) := \sum_c p(e \mid b, f) \cdot h_{(4,3)}(e, f) \]

\[h_{(3,4)}(e, f) := \sum_b p(e \mid b, f) \cdot h_{(2,3)}(b) \cdot h_{(2,3)}(f) \]

\[H_{(4,3)}(e, f) := p(G = g_e \mid e, f) \]
Cluster Tree Elimination vs. Mini-Clustering

CTE

1. ABC
 - $h_{(1,2)}(b,c)$

2. BCDF
 - $h_{(2,1)}(b,c)$
 - $h_{(2,3)}(b,f)$

3. BEF
 - $h_{(3,2)}(b,f)$
 - $h_{(3,4)}(e,f)$

4. EFG
 - $h_{(4,3)}(e,f)$

MC

1. ABC
 - $H_{(1,2)}$
 - $h_{(1,2)}^1(b,c)$

2. BCDF
 - $H_{(2,1)}$
 - $h_{(2,1)}^1(b)$
 - $h_{(2,1)}^2(c)$

3. BEF
 - $H_{(3,2)}$
 - $h_{(3,2)}^1(b,f)$

4. EFG
 - $H_{(4,3)}$
 - $h_{(4,3)}^1(e,f)$
Heuristics for Partitioning

(Dechter and Rish, 2003, Rollon and Dechter 2010)

Scope-based Partitioning Heuristic (SCP) aims at minimizing the number of mini-buckets in the partition by including in each minibucket as many functions as respecting the i bound is satisfied

- **Log relative error:**
 \[
 RE(f, h) = \sum_{t} (\log (f(t)) - \log (h(t)))
 \]

- **Max log relative error:**
 \[
 MRE(f, h) = \max_{t}\{\log (f(t)) - \log (h(t))\}
 \]

Partitioning lattice of bucket \{f_1, f_2, f_3, f_4\}.

Use greedy heuristic derived from a distance function to decide which functions go into a single mini-bucket.
Greedy Scope-based Partitioning

Procedure **Greedy Partitioning**

Input: \(\{h_1, \ldots, h_k\}, i\text{-}bound\);

Output: A partitioning \(mb(1), \ldots, mb(p) \) such that every \(mb(i) \) contains at most \(i\text{-}bound \) variables;

1. Sort functions by the size of their scopes. Let \(\{h_1, \ldots, h_k\} \) be the sorted array of functions, with \(h_1 \) having the largest scope.
2. **for** \(i = 1 \) to \(k \)

 if \(h_i \) can be placed in existing mini-buckets without making the scope greater than the \(i\text{-}bound \), place it in the one with the most functions.

 else create a new mini-bucket an place \(h_i \) in it.

endfor
Heuristic for Partitioning

Scope-based Partitioning Heuristic. The *scope-based* partition heuristic (SCP) aims at minimizing the number of mini-buckets in the partition by including in each mini-bucket as many functions as possible as long as the i bound is satisfied. First, single function mini-buckets are decreasingly ordered according to their arity from left to right. Then, each mini-bucket is absorbed into the left-most mini-bucket with whom it can be merged.

The time complexity of $\text{Partition}(B, i)$, where B is the bucket to be partitioned, and $|B|$, the number of functions in the bucket, using the SCP heuristic is $\mathcal{O}(|B| \log |B| + |B|^2)$.

The scope-based heuristic is quite fast, its shortcoming is that it does not consider the actual information in the functions.
Greedy Partition as a function of a distance function h

```
function GreedyPartition($B,i,h$)
1. Initialize $Q$ as the bottom partition of $B$;
2. While $\exists Q' \in ch(Q)$ which is an $i$-partition
   $Q \leftarrow \arg \min_{Q'} \{ h(Q \rightarrow Q') \}$ among child $i$-partitions of $Q$;
3. Return $Q$;
```

Figure 8.13: Greedy partitioning

Proposition 8.6.5 The time complexity of GreedyPartition is $O(|B| \times T)$ where $O(T)$ is the time complexity of selecting the min child partition according to h.
Comparing Mini-clustering against Belief Propagation.

What is belief propagation
Iterative Belief Propagation

- Belief propagation is exact for poly-trees
- IBP - applying BP iteratively to cyclic networks

No guarantees for convergence
- Works well for many coding networks
Linear Block Codes

Input bits

Parity bits

Received bits

Gaussian channel noise

σ

σ
Probabilistic Decoding

Error-correcting linear block code

State-of-the-art:
approximate algorithm – iterative belief propagation (IBP)
(Pearl’s poly-tree algorithm applied to loopy networks)
MBE-mpe vs. IBP

MBE-mpe is better on low w^* codes
IBP (or BP) is better on randomly generated (high w^*) codes.

Bit error rate (BER) as a function of noise (sigma):

Structured (50,25) block code, $P=7$

- IBP(1)
- IBP(10)
- elim-mpe
- $\text{approx-mpe}(i)$, $i=1$ and 7

Random (100,50) block code, $P=4$

- IBP(1)
- IBP(10)
- $\text{approx-mpe}(1)$
- $\text{approx-mpe}(7)$
Grid 15x15 - 10 evidence

NHD

- Absolute error
- Relative error
- Time (seconds)

MC and IBP results are compared across different i-bounds.
Outline

- Mini-bucket elimination
- Weighted Mini-bucket
- Mini-clustering
- Iterative Belief propagation
- Iterative-join-graph propagation
- Re-parameterization, cost-shifting
Iterative Belief Propagation

- Belief propagation is exact for poly-trees
- IBP - applying BP iteratively to cyclic networks

No guarantees for convergence
- Works well for many coding networks
- Lets combine iterative-nature with anytime--IJGP
Iterative Join Graph Propagation

• Loopy Belief Propagation
 • Cyclic graphs
 • Iterative
 • Converges fast in practice (no guarantees though)
 • Very good approximations (e.g., turbo decoding, LDPC codes, SAT – survey propagation)

• Mini-Clustering(i)
 • Tree decompositions
 • Only two sets of messages (inward, outward)
 • Anytime behavior – can improve with more time by increasing the i-bound

• We want to combine:
 • Iterative virtues of Loopy BP
 • Anytime behavior of Mini-Clustering(i)
IJGP - The basic idea

• Apply Cluster Tree Elimination to any join-graph

• We commit to graphs that are I-maps

• Avoid cycles as long as I-mapness is not violated

• Result: use minimal arc-labeled join-graphs
Tree Decomposition for Belief Updating
CTE: Cluster Tree Elimination

Time: \(O(\exp(w+1)) \)

Space: \(O(\exp(sep)) \)

For each cluster \(P(X|e) \) is computed, also \(P(e) \)
A tree decomposition for a belief network $BN = (X, D, G, P)$ is a triple $< T, \chi, \psi >$, where $T = (V, E)$ is a tree and χ and ψ are labeling functions, associating with each vertex $v \in V$ two sets, $\chi(v) \subseteq X$ and $\psi(v) \subseteq P$ satisfying:

1. For each function $p_i \in P$ there is exactly one vertex such that $p_i \in \psi(v)$ and $\text{scope}(p_i) \subseteq \chi(v)$
2. For each variable $X_i \in X$ the set $\{v \in V | X_i \in \chi(v)\}$ forms a connected subtree (running intersection property)
Minimal Arc-Labeled Decomposition

- Use a DFS algorithm to eliminate cycles relative to each variable

a) Fragment of an arc-labeled join-graph

a) Shrinking labels to make it a *minimal* arc-labeled join-graph
IJGP - The basic idea

• Apply Cluster Tree Elimination to any join-graph

• We commit to graphs that are I-maps

• Avoid cycles as long as I-mapness is not violated

• Result: use minimal arc-labeled join-graphs (in order to avoid over-counting)
Minimal arc-labeled join-graph

Figure 1.17: a) A belief network; b) A dual join-graph with singleton labels; c) A dual join-graph which is a join-tree

Figure 1.15: An arc-labeled decomposition
Message Propagation

Minimal arc-labeled:
sep(1,2)={D,E}
elim(1,2)={A,B,C}

Non-minimal arc-labeled:
sep(1,2)={C,D,E}
elim(1,2)={A,B}

$$h_{(1,2)}(de) = \sum_{a,b,c} p(a)p(c)p(b | ac)p(d | abe)p(e | bc)h_{(3,1)}(bc)$$

$$h_{(1,2)}(cde) = \sum_{a,b} p(a)p(c)p(b | ac)p(d | abe)p(e | bc)h_{(3,1)}(bc)$$
IJGP - Example

Belief network

Loopy BP graph
Arcs labeled with any single variable should form a **TREE**
Collapsing Clusters
Join-Graphs

more accuracy

less complexity
Bounded decompositions

• We want arc-labeled decompositions such that:
 • the cluster size (internal width) is bounded by i (the accuracy parameter)

• Possible approaches to build decompositions:
 • partition-based algorithms - inspired by the mini-bucket decomposition
 • grouping-based algorithms
Constructing Join-Graphs

G: (GFE)
E: (EBF) → (EF)
F: (FCD) → (BF)
D: (DB) → (CD)
C: (CAB) → (CB)
B: (BA) → (AB) → (B)
A: → (A)

a) schematic mini-bucket(i), i=3
b) arc-labeled join-graph decomposition
IJGP Properties

• IJGP(i) applies BP to min arc-labeled join-graph, whose cluster size is bounded by i

• On join-trees IJGP finds exact beliefs

• IJGP is a Generalized Belief Propagation algorithm (Yedidia, Freeman, Weiss 2001)

• Complexity of one iteration:
 • time: \(O(\text{deg} \cdot (n+N) \cdot k^{i+1}) \)
 • space: \(O(N \cdot k^i) \)
Empirical Evaluation

- Algorithms:
 - Exact
 - IBP
 - MC
 - IJGP

- Measures:
 - Absolute error
 - Relative error
 - Kulbach-Leibler (KL) distance
 - Bit Error Rate
 - Time

- Networks (all variables are binary):
 - Random networks
 - Grid networks (MxM)
 - CPCS 54, 360, 422
 - Coding networks
Coding Networks – Bit Error Rate

N=400, 1000 instances, 30 it, w*=43, $\sigma = .22$

N=400, 500 instances, 30 it, w*=43, $\sigma = .32$

N=400, 500 instances, 30 it, w*=43, $\sigma = .51$

N=400, 500 instances, 30 it, w*=43, $\sigma = .65$
CPCS 422 – KL Distance

CPCS 422, evid=0, w*=23, 1instance

CPCS 422, evid=30, w*=23, 1instance

evidence=0

evidence=30
CPCS 422 – KL vs. Iterations

CPCS 422, evid=0, w*=23, 1instance

CPCS 422, evid=30, w*=23, 1instance

KL distance

number of iterations

evidence=0

evidence=30
Coding networks - Time

Coding, N=400, 500 instances, 30 iterations, $w^*=43$
More On the Power of Belief Propagation

• BP as local minima of KL distance (Read Darwiche)
• BP’s power from constraint propagation perspective.
The Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL–divergence)

\[\text{KL}(\Pr'(X|e), \Pr(X|e)) = \sum_x \Pr'(x|e) \log \frac{\Pr'(x|e)}{\Pr(x|e)} \]

- KL(\Pr'(X|e), \Pr(X|e)) is non-negative
- equal to zero if and only if \(\Pr'(X|e) \) and \(\Pr(X|e) \) are equivalent.
The Kullback-Leibler Divergence

KL–divergence is not a true distance measure in that it is not symmetric. In general:

\[\text{KL}(\Pr'(\mathbf{X}|\mathbf{e}), \Pr(\mathbf{X}|\mathbf{e})) \neq \text{KL}(\Pr(\mathbf{X}|\mathbf{e}), \Pr'(\mathbf{X}|\mathbf{e})). \]

- KL(\Pr'(\mathbf{X}|\mathbf{e}), \Pr(\mathbf{X}|\mathbf{e})) weighting the KL–divergence by the approximate distribution \(\Pr' \)
- We shall indeed focus on the KL–divergence weighted by the approximate distribution as it has some useful computational properties.
The Kullback-Leibler Divergence

Let \(\Pr(X) \) be a distribution induced by a Bayesian network \(\mathcal{N} \) having families \(XU \).

The KL–divergence between \(\Pr \) and another distribution \(\Pr' \) can be written as a sum of three components:

\[
KL(\Pr'(X|e), \Pr(X|e)) = -\text{ENT}'(X|e) - \sum_{XU} \text{AVG}'(\log \lambda_e(X)\Theta_{X|U}) + \log \Pr(e),
\]

where

- \(\text{ENT}'(X|e) = -\sum_x \Pr'(x|e) \log \Pr'(x|e) \) is the entropy of the conditioned approximate distribution \(\Pr'(X|e) \).

- \(\text{AVG}'(\log \lambda_e(X)\Theta_{X|U}) = \sum_{xu} \Pr'(xu|e) \log \lambda_e(x)\theta_{x|u} \) is a set of expectations over the original network parameters weighted by the conditioned approximate distribution.
Lambda is Grounding for evidence e)

The Kullback-Leibler Divergence

A distribution $Pr'(X|e)$ minimizes the KL-divergence $KL(Pr'(X|e), Pr(X|e))$ if it maximizes

$$\text{ENT}'(X|e) + \sum_{X \in \mathcal{U}} \text{AVG}'(\log \lambda_e(X) \Theta_{X|U})$$

Competing properties of $Pr'(X|e)$ that minimize the KL–divergence:

- $Pr'(X|e)$ should match the original distribution by giving more weight to more likely parameters $\lambda_e(x)\theta_{x|u}$ (i.e., maximize the expectations).

- $Pr'(X|e)$ should not favor unnecessarily one network instantiation over another by being evenly distributed (i.e., maximize the entropy).
Let $\Pr(X)$ be a distribution induced by a Bayesian network \mathcal{N} having families XU. Then IBP messages are a fixed point if and only if IBP marginals $\mu_u = \text{BEL}(u)$ and $\mu_{xu} = \text{BEL}(xu)$ are a stationary point of:

$$\text{ENT}'(X|e) + \sum_{XU} \text{AVG}'(\log \lambda_e(X) \Theta_{X|U})$$

$$= - \sum_{XU} \sum_{xu} \mu_{xu} \log \frac{\mu_{xu}}{\prod_{u \sim u} \mu_u} + \sum_{XU} \sum_{xu} \mu_{xu} \log \lambda_e(x) \theta_{x|u},$$

under normalization constraints:

$$\sum_u \mu_u = \sum_{xu} \mu_{xu} = 1$$

for each family XU and parent U, and under consistency constraints:

$$\sum_{xu \sim y} \mu_{xu} = \mu_y$$

for each family instantiation xu and value y of family member $Y \in XU$.

Theorem: Yedidia, Frieman and Weiss 2005
Optimizing the KL-Divergence

- IBP fixed points are stationary points of the KL–divergence: they may only be local minima, or they may not be minima.
- When IBP performs well, it will often have fixed points that are indeed minima of the KL–divergence.
- For problems where IBP does not behave as well, we will next seek approximations $P_{\theta'}$ whose factorizations are more expressive than that of the polytree-based factorization.
Iterative JoinGraph Propagation

Let $\Pr(X)$ be a distribution induced by a Bayesian network \mathcal{N} having families \mathbf{XU}, and let C_i and S_{ij} be the clusters and separators of a join graph for \mathcal{N}.

Then messages M_{ij} are a fixed point of IJGP if and only if IJGP marginals $\mu_{c_i} = BEL(c_i)$ and $\mu_{s_{ij}} = BEL(s_{ij})$ are a stationary point of:

$$
\begin{align*}
\text{ENT}'(X|e) + \sum_{C_i} \text{AVC}'(\log \Phi_i) \\
= -\sum_{C_i} \sum_{c_i} \mu_{c_i} \log \mu_{c_i} + \sum_{S_{ij}} \sum_{S_{ij}} \mu_{s_{ij}} \log \mu_{s_{ij}} + \sum_{C_i} \sum_{c_i} \mu_{c_i} \log \Phi_i(c_i),
\end{align*}
$$

under normalization constraints:

$$
\sum_{C_i} \mu_{c_i} = \sum_{S_{ij}} \mu_{s_{ij}} = 1
$$

for each cluster C_i and separator S_{ij}, and under consistency constraints:

$$
\sum_{c_i \sim s_{ij}} \mu_{c_i} = \mu_{s_{ij}} = \sum_{c_j \sim s_{ij}} \mu_{c_j}
$$

for each separator S_{ij} and neighboring clusters C_i and C_j.
A spectrum of approximations.

IBP: results from applying IJGP to the dual joingraph.

Jointree algorithm: results from applying IJGP to a jointree (as a joingraph).

In between these two ends, we have a spectrum of joingraphs and corresponding factorizations, where IJGP seeks stationary points of the KL–divergence between these factorizations and the original distribution.
Outline

• Mini-bucket elimination
• Weighted Mini-bucket
• Mini-clustering
• Iterative Belief propagation
• Iterative-join-graph propagation
• Re-parameterization, cost-shifting
Cost-Shifting

(Reparameterization)

\[A \cdot B \cdot f(A,B) \]

\[b \cdot b \cdot 6 + 3 \]

\[b \cdot g \cdot 0 - 1 \]

\[g \cdot b \cdot 0 + 3 \]

\[g \cdot g \cdot 6 - 1 \]

\[B \cdot C \cdot f(B,C) \]

\[b \cdot b \cdot 6 - 3 \]

\[b \cdot g \cdot 0 - 3 \]

\[g \cdot b \cdot 0 + 1 \]

\[g \cdot g \cdot 6 + 1 \]

\[A \cdot B \cdot C \cdot f(A,B,C) \]

\[b \cdot b \cdot b \cdot 12 \]

\[b \cdot b \cdot g \cdot 6 \]

\[b \cdot g \cdot b \cdot 0 \]

\[b \cdot g \cdot g \cdot 6 \]

\[g \cdot b \cdot b \cdot 6 \]

\[g \cdot b \cdot g \cdot 0 \]

\[g \cdot g \cdot b \cdot 6 \]

\[g \cdot g \cdot g \cdot 12 \]

\[B \cdot \lambda(B) \]

\[b \cdot 3 \]

\[g \cdot -1 \]

Modify the individual functions

- but –

keep the sum of functions the same
Tightening the bound

- Reparameterization (or, “cost shifting”)
 - Decrease bound without changing overall function

\[
\begin{align*}
\text{max}_{a,b} f_1(a,b) & + \max_{b,c} f_2(b,c) \\
& + \lambda_{B\rightarrow AB}(b) \\
& + \lambda_{B\rightarrow BC}(b)
\end{align*}
\]

\[
\begin{align*}
\lambda_{B\rightarrow AB}(b) + \lambda_{B\rightarrow BC}(b) &= 0 \\
\text{(Adjusting functions cancel each other)}
\end{align*}
\]

\[
\begin{align*}
\text{(Decomposition bound is exact)}
\end{align*}
\]

\[
\begin{array}{cccc}
A & B & f_1(A,B) & \lambda_{,B} \\
0 & 0 & 2.0 & 0 \\
1 & 0 & 3.5 & +1 \\
0 & 1 & 1.0 & \text{Bold} \\
1 & 1 & 3.0 & \text{Red}
\end{array}
\]
Dual Decomposition

\[F^* = \min_x \sum_\alpha f_\alpha(x) \geq \sum_\alpha \min_x f_\alpha(x) \]

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
Dual Decomposition

\[F^* = \min_x \sum_{\alpha} f_{\alpha}(x) \quad \geq \quad \max_{\lambda_{i \to \alpha}} \min_x \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right] \]

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by reparameterization
 - Enforce lost equality constraints via Lagrange multipliers
Dual Decomposition

\[F^* = \min_x \sum_{\alpha} f_\alpha(x) \geq \max_{\lambda_i \rightarrow \alpha} \sum_{\alpha} \min_x \left[f_\alpha(x) + \sum_{i \in \alpha} \lambda_i \rightarrow \alpha(x_i) \right] \]

Many names for the same class of bounds:

- Dual decomposition [Komodakis et al. 2007]
- TRW, MPLP [Wainwright et al. 2005; Globerson & Jaakkola, 2007]
- Soft arc consistency [Cooper & Schiex, 2004]
- Max-sum diffusion [Warner 2007]
Dual Decomposition

\[F^* = \min_x \sum_{\alpha} f_\alpha(x) \geq \max_{\lambda_{i \rightarrow \alpha}} \sum_{\alpha} \min_x \left[f_\alpha(x) + \sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}(x_i) \right] \]

Many ways to optimize the bound:
- Sub-gradient descent \([\text{Komodakis et al. 2007; Jojic et al. 2010}]\)
- Proximal optimization \([\text{Ravikumar et al, 2010}]\)
- ADMM \([\text{Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013}]\)
Optimizing the bound

- Can optimize the bound in various ways:
 - (Sub-)gradient descent

\[
\begin{array}{c|c|c|c}
A & B & f_1(A,B) & \lambda_{B\rightarrow AB} \\
0 & 0 & 1.0 & 0 \\
1 & 0 & 0.0 & 0 \\
0 & 1 & 0.0 & 0 \\
1 & 1 & 2.5 & 0 \\
0 & 2 & 1.0 & 0 \\
1 & 2 & 3.0 & 0 \\
\end{array}
+ \begin{array}{c|c|c|c}
B & C & f_2(B,C) & \lambda_{B\rightarrow BC} \\
0 & 0 & 5.0 & 0 \\
0 & 1 & 2.0 & 0 \\
1 & 0 & 1.0 & 0 \\
1 & 1 & 1.5 & 0 \\
2 & 0 & 0.2 & 0 \\
2 & 1 & 0.0 & 0 \\
\end{array}
\]

\[
\max_x f_1(a, b) + \lambda_{B\rightarrow AB}(b) + \max_x f_2(b, c) + \lambda_{B\rightarrow BC}(b)
\]
Optimizing the bound

• Can optimize the bound in various ways:
 • (Sub-)gradient descent

\[
\begin{align*}
\max_x f_1(a, b) &\quad + \lambda_{B \to AB}(b) \\
&\quad + \max_x f_2(b, c) &\quad + \lambda_{B \to BC}(b)
\end{align*}
\]
Optimizing the bound

• Can optimize the bound in various ways:
 • (Sub-)gradient descent

\[
\max_x f_1(a, b) + \lambda_{B \to AB}(b) + \lambda_{B \to BC}(b)
\]
Optimizing the bound

- Can optimize the bound in various ways:
 - (Sub-)gradient descent

\[
\max_x f_1(a, b) + \lambda_{B\to AB}(b) + \lambda_{B\to BC}(b) = \max_x f_2(b, c)
\]
Various Update Schemes

- Can use any decomposition updates
 - (message passing, subgradient, augmented, etc.)

- **FGLP**: Update the original factors

- **JGLP**: Update clique function of the join graph

- **MBE-MM**: Mini-bucket with moment matching
 - Apply cost-shifting within each bucket only
Factor graph Linear Programming

- Update the original factors (FGLP)
 - Tighten all factors over x_i simultaneously
 - Compute max-marginals $\forall \alpha, \gamma_\alpha(x_i) = \max_{x_\alpha \setminus x_i} f_\alpha$
 - & update:

\[
\forall \alpha, f_\alpha(x_\alpha) \leftarrow f_\alpha(x_\alpha) - \gamma_\alpha(x_i) + \frac{1}{|F_i|} \sum_\beta \gamma_\beta(x_i)
\]
Mini-Bucket as Decomposition [Ihler et al. 2012]

- Downward pass as cost shifting
- Can also do cost shifting within mini-buckets: “Join graph” message passing
- “Moment-matching” version: One message exchange within each bucket, during downward sweep
- Optimal bound defined by cliques ("regions") and cost-shifting f’n scopes ("coordinates")

Join graph:

B: {A,B,C} → {B} → {B,D,E}

C: {A,C,E} → {A,C} → {A,D,E}

D: {A,E} → {D,E}

E: {A,E} → {A,D,E}

A: {A} → {A}

U = upper bound
MBE-MM: MBE with moment matching

\[\max_B \Pi \overbrace{P(A) \ P(B|A) \ P(D|A,B) \ P(E|B,C) \ P(C|A)}^{m_{11}} \]

\[\max_B \Pi \overbrace{P(B|A) \ P(B|A) \ P(D|A,B) \ P(E|B,C) \ P(C|A)}^{m_{12}} \]

\[h^B(A,D) \]

\[h^C(A,E) \]

\[h^E(A) \]

\[W=2 \]

\[m_{11}, m_{12} - \text{moment-matching messages} \]

\[E = 0 \]

\[W=2 \]

\[\text{MPE}^* \text{ is an upper bound on MPE} \]

\[\text{Generating a solution yields a lower bound} \]

slides 8 276 2020
MBE-MM (MBE with Moment-Matching)

Algorithm 26: Algorithm MBE-MM

Input: A graphical model $\mathcal{M} = (\mathbf{X}, \mathbf{D}, \mathbf{F}, \Sigma)$, variable order $o = \{X_1, \ldots, X_n\}$, i-bound parameter i

Output: Upper bound on the optimum value of MPE cost

//Initialize:
1. Partition the functions in \mathbf{F} into $\mathbf{B}_{X_1}, \ldots, \mathbf{B}_{X_n}$, where \mathbf{B}_{X_k} contains all functions f_j whose highest variable is X_k.
2. // processing bucket \mathbf{B}_{X_k}
3. for $k \leftarrow n$ down to 1 do
4. Partition functions g (both original and messages generated in previous buckets) in \mathbf{B}_{X_k} into the mini-buckets defined $Q_{X_k} = \{q_{k_i}^1, \ldots, q_{k_i}^r\}$, where each $q_{k_i}^r$ has no more than $i+1$ variables;
5. Find the set of variables common to all the mini-buckets of variable X_k:
 - $S_k = \text{Scope}(q_{k_1}^1) \cap \cdots \cap \text{Scope}(q_{k_i}^r)$;
6. Find the function of each mini-bucket
 - $q_k^* = \prod_{g \in g_k} g$;
7. Find the max-marginals of each mini-bucket
 - $\gamma_k^* = \max_{\text{Scope}(q_k^*)} s_k(F_k^*);
8. Update functions of each mini-bucket
 - $F_k^* = F_k^* - \gamma_k^* + \sum_{j=1}^r \gamma_{k_i}^*$;
9. Generate messages $h_k^* = \max_{X_m \in \text{Scope}(q_k^*)} F_k^*$ and place each in the bucket of highest in the ordering of variable X_m in $\text{Scope}(q_k^*)$;
10. return All the buckets and the cost bound from B_1;

Theorem 5.3 (Complexity of MBE-MM). Given a problem with n variables having domain of size k and an i-bound i, the worst-case time complexity of MBE-MM is $O(n \cdot Q \cdot k^{i+1})$ and its space complexity is $O(n \cdot k^i)$, where Q bounds the number of functions having the same variable X_k in their scopes.
Anytime Approximation

- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly
Anytime Approximation

- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly
Anytime Approximation

- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly
Outline

• Mini-bucket elimination
• Weighted Mini-bucket
• Mini-clustering
• Iterative Belief propagation
• Iterative-join-graph propagation
• Re-parameterization, cost-shifting