Using Natural Language for Reward Shaping in Reinforcement Learning

Prasoon Goyal, Scott Niekum and Raymond J. Mooney

Presenter: Hsiang-Shun Shih hsiangss@uci.edu

Make learning more efficient

- Montezuma's revenge.
- Use reward shaping to reduce interaction time.
- Propose the LanguagE-Action Reward Network(LEARN) to map free-form natural language instructions to intermediate rewards.

Reward Shaping

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping.

• Rather than running reinforcement learning algorithm on MDP:

$$M = \{S, A, T, \gamma, R\}$$

• Run it on transformed MDP, M':

$$M' = \{S, A, T, \gamma, R'\}$$
$$R' = R + F$$

Shaping reward function

$$R' = R + F$$
$$F: S \times A \times S \mapsto \mathbb{R}$$

• In original MDP, if we receive reward R(s, a, s') from s to s' on a, in M', we would receive reward R(s, a, s') + F(s, a, s').

Some examples

 To encourage moving towards a goal, a possible shaping-reward function is:

$$\begin{cases} F(s, a, s') = r, & \text{if } s' \text{ is closer to the goal than } s \\ F(s, a, s') = 0, & \text{otherwise} \end{cases}$$

• To encourage taking action a_1 , set F as:

$$\begin{cases} F(s, a, s') = r, & \text{if } a = a_1 \\ F(s, a, s') = 0, & \text{otherwise} \end{cases}$$

Feasibility

- In many case, $M = \{S, A, T, \gamma, R\}$ is not explicitly given.
- We have to learn through taking actions and by observing the resulting state transition rewards.
- Make the observed reward R(s, a, s') + F(s, a, s').

Optimal policy guarantee

- M' is an aid to helping the agent to learn faster.
- We have to guarantee that $\pi_{M'}^*$, the optimal policy in M', will also be optimal in M?
- How can we find such forms of shaping-reward functions F?

Theorem

- If F(s, a, s') is a potential-based shaping function, then every optimal policy in M' will also be an optimal policy in M.
- If there is a real-valued function, $\phi \colon S \mapsto \mathbb{R}$, let $F(s, a, s') = \gamma \phi(s') \phi(s)$ We can say F is potential-based.

Proof

• For MDP M, the optimal Q function satisfies Bellman equation:

$$Q_M^*(s, a) = E_{s'}[R(s, a, s') + \gamma \max_{a' \in A} Q_M^*(s', a')]$$

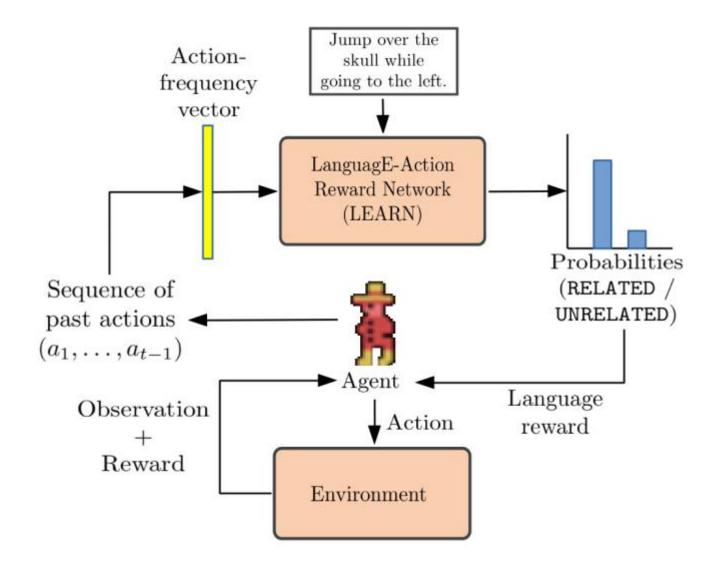
- For M', $Q_M^*(s,a) \phi(s)$ $= E_{s'} \left[R(s,a,s') + \gamma \phi(s') \phi(s) + \gamma \max_{a' \in A} Q_M^*(s',a') \phi(s') \right]$
- Define $\hat{Q}_{M'}(s,a) = Q_{M'}^*(s,a) \phi(s), F(s,a,s') = \gamma \phi(s') \phi(s),$

$$\widehat{Q}_{M\prime}(s,a) = E_{s\prime}[R'(s,a,s') + \gamma \max_{a' \in A} \widehat{Q}_{M\prime}(s',a')]$$

MDP+L

- An extension of the MDP framework.
- $< S, A, R, T, \gamma, l >, l \in L$
- L defines all possible language commands.
- Learn an optimal policy under reward function $(R_{ext} + R_{lang})$.

- Takes a pair of (trajectory, language).
- Predicts if the language describes the actions within the trajectory.



- Transform trajectory τ into action-frequency vector f_t $(\tau,l) \to (f,l)$
- The dimensionality of f is equal to the number of actions in the MDP+L. The kth component of f is the fraction of timesteps action k appears in τ
- Then, generate positive/negative examples of (f, l)

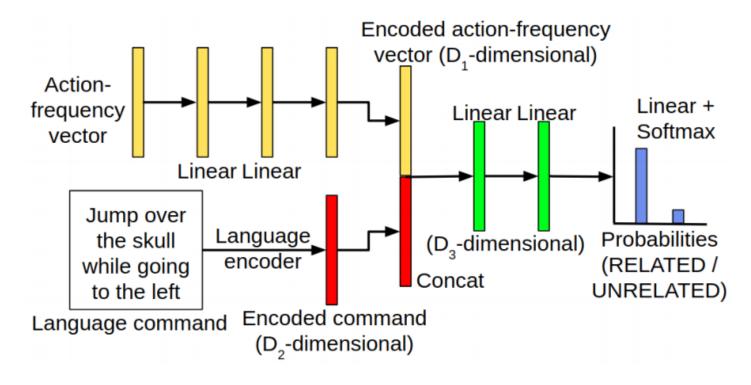


Figure 3: Neural network architecture for LEARN (Section 3.1)

To embed the natural language instruction into a vector, experiment with three models:

- 1. Infersent
- 2. GloVe+RNN
- 3. RNNOnly

The final output is a probability distribution over two classes:

- 1. Related
- 2. Unrelated

Language-aided RL

- Action-frequency vector f_t
- Softmax result:

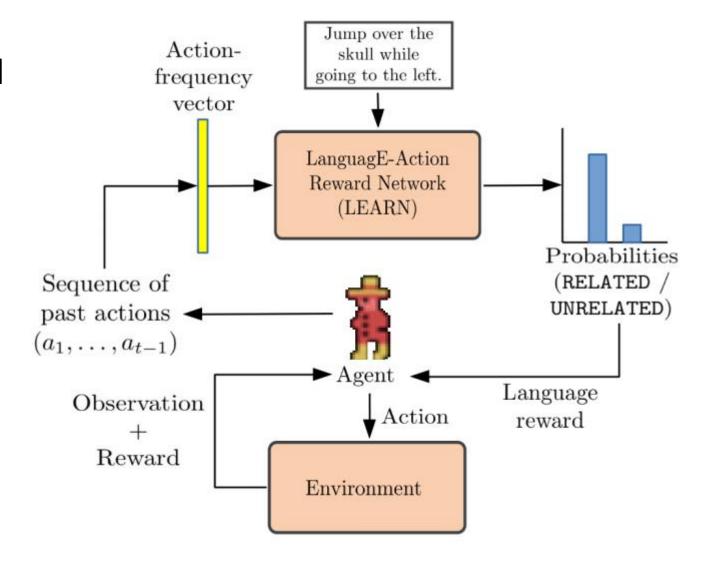
$$P_R(f_t) \Rightarrow \text{Related}$$

 $P_V(f_t) \Rightarrow \text{Unrelated}$

- Potential function $\phi(f_t) = P_R(f_t) P_V(f_t)$
- $R_{lang}(f_t) = \gamma \phi(f_t) \phi(f_{t-1})$
- $R_{ext} + R_{lang}$

Language-aided RL

 Given the trajectory executed by the agent so far and the language instruction, use LEARN to predict whether the agent is making progress.

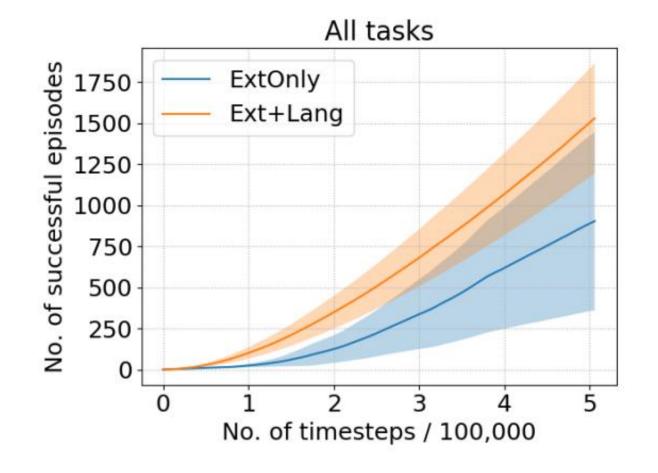


Experimental Evaluation

- Define a set of 15 diverse tasks in multiple rooms, each of which requires the agent to go from a fixed start position to a fixed goal position while interacting with some of the objects present in the path.
- For each task, the agent gets an extrinsic reward of +1 from the environment for reaching the goal, and an extrinsic reward of zero in all other cases.
- $R_{total} = R_{ext} + \lambda R_{lang}$
- Proximal Policy Optimization is used.

Experimental Evaluation RL

- ExtOnly: use the original environment reward.
- Ext+Lang: in addition to the rewards after completing the task successfully, R_{lang} is added.



Result

• On average: 30% speed-up, 60% success rate improvement.

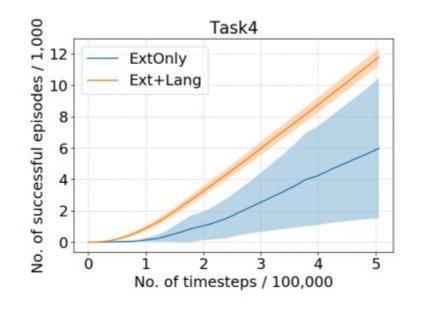
• For each case:

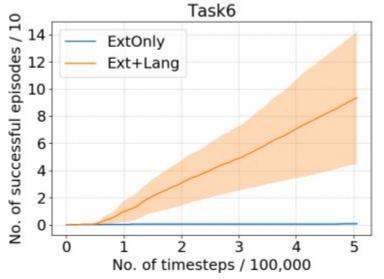
	Improvement	Deterioration	No difference		
AUC	11	1	3		
Final Policy	8	0	7		

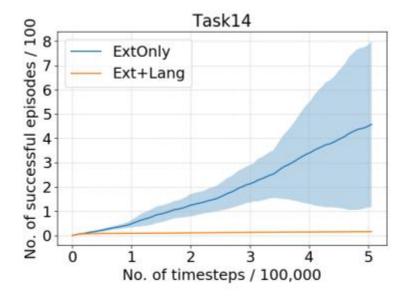
Analysis of language-based reward

Task Id	Description	Correlation coefficients of different actions								
Task Iu	Description	NO-OP	JUMP	UP	RIGHT	LEFT	DOWN	JUMP-	JUMP-	
								RIGHT	LEFT	
4	climb down the ladder	-0.60	-0.58	-0.59	-0.61	-0.55	0.07	-0.57	-0.56	
	go down the ladder to the bottom	-0.58	-0.58	-0.58	-0.60	-0.53	0.09	-0.59	-0.60	
	move on spider and down on the lader	-0.58	-0.54	-0.59	-0.60	-0.49	0.10	-0.58	-0.56	
6	go to the left and go under skulls and then down the ladder	-0.37	-0.40	-0.49	-0.43	0.33	0.16	-0.46	-0.01	
	go to the left and then go down the ladder	-0.24	-0.26	-0.35	-0.31	0.28	0.36	-0.34	-0.04	
	move to the left and go under the skulls	-0.16	-0.25	-0.60	-0.48	0.27	-0.63	-0.52	-0.40	
14	Jump once then down	0.00	0.07	-0.15	-0.13	0.51	0.50	0.09	0.52	
	go down the rope and to the bottom	-0.03	0.10	-0.16	0.56	0.54	0.33	0.28	0.01	
	jump once and climb down the stick	0.11	0.11	0.06	0.04	0.14	0.40	0.25	0.11	

Analysis of language-based reward







Question

 Describe the Language-aided method used in this paper. What steps should be taken to generate the immediate rewards for reinforcement learning?

Thanks for listening