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Abstract of \Algorithms for Sequential Decision Making"by Michael Lederman Littman, Ph.D., Brown University, May 1996.Sequential decision making is a fundamental task faced by any intelligent agent inan extended interaction with its environment; it is the act of answering the question\What should I do now?" In this thesis, I show how to answer this question when\now" is one of a �nite set of states, \do" is one of a �nite set of actions, \should" ismaximize a long-run measure of reward, and \I" is an automated planning or learningsystem (agent). In particular, I collect basic results concerning methods for �ndingoptimal (or near-optimal) behavior in several di�erent kinds of model environments:Markov decision processes, in which the agent always knows its state; partially observ-able Markov decision processes (pomdps), in which the agent must piece together itsstate on the basis of observations it makes; and Markov games, in which the agentis in direct competition with an opponent. The thesis is written from a computer-science perspective, meaning that many mathematical details are not discussed, anddescriptions of algorithms and the complexity of problems are emphasized. New re-sults include an improved algorithm for solving pomdps exactly over �nite horizons, amethod for learning minimax-optimal policies for Markov games, a pseudopolynomialbound for policy iteration, and a complete complexity theory for �nding zero-rewardpomdp policies.
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Chapter 1IntroductionThis thesis document was submitted to the Graduate School at Brown Uni-versity on February 27th, 1996. This technical report (version 2.0) containsonly minor modi�cations from the original.A frog jumps around a barrier to get to a delicious mealworm. A commuter tries anunexplored route to work and ends up having to stop and ask for directions. A majorairline lowers prices for its overseas ights to try to increase demand. A pizza-deliverycompany begins a month-long advertising blitz. These are examples of sequential de-cision making; the purpose of this thesis is to explore automatic methods for choosingthe best action in situations such as these.The essence of sequential decision making is that decisions that are made nowcan have both immediate and long-term e�ects; the best choice to make now dependscritically on future situations and how they will be faced. In this thesis, I explore algo-rithms, or automated procedures, for making the right decision in di�erent sequentialdecision-making problems. Each chapter of the thesis presents a speci�c formal modeland various algorithms for �nding optimal behavior in that model. In the remainder ofthis chapter, I discuss sequential decision-making problems at a high level and explorewhat it means to solve them.Some of the solution algorithms presented are extremely complicated. In the re-mainder of this section, I give some example sequential decision-making scenarios forwhich choosing the optimal or nearly optimal decision can be di�cult; this should pro-vide motivation for the importance of automatic sequential decision making, as wellas help reveal why these problems require complicated algorithms. The examples are1



2meant to be interesting problems worthy of additional study; none has yet been im-plemented as a large-scale system. For some example problems being solved in scienceand industry, along with estimates of how many millions of dollars their automatedsolutions are saving, see Puterman's recent textbook [126].Budget Setting You are in charge of setting the budget for a large organization.Unfortunately, poor planning and bad management has left your organization with ahuge amount of debt. It is your job to decide how to get the organization back in theblack. You know that over the next few years some amount of spending must be cut,but cutting too much too soon will result in severe hardship for some members of yourorganization, while cutting too slowly will result in no budget balancing at all, becauseinterest on the massive debt continues to compound.Making things even more di�cult are the e�ects on the budget of unpredictablefactors, such as the precise amount of your organization's income over the next fewyears, its overall productivity, world-wide ination, and the introduction of innovationsthat might help the organization save or even make money. On your side, you havedetailed and accurate economic models for predicting the result of various budget-cutting options. The models can be used to reveal the probability that innovation willbe curtailed by a 5% decrease in the budget, for example. Of course, simply knowingthe probability of various events does not allow you to predict the future with certainty,but it gives you the ability to gauge the probability, over all possible futures, that thebudget will eventually be balanced.How can you use your knowledge of economic models and the current state of yourorganization to construct a budget-cutting plan for the next decade or so that bringsdown the debt with high probability as quickly as possible without destroying theorganization in the process?Baseball Pitching Now you are a professional pitcher facing a batter you knowquite well. He hits .342, which makes him a high average hitter, but worse, he is wellknown for being a great home-run hitter. He is a lefty and you a righty, so you willnot be able to get a curve ball to break away on him. There is one runner on second,and your team is ahead by 1 in the �fth inning.A fast ball gives you the best chance of a quick strikeout, but it is likely that thebatter is ready for it, and therefore that he has a good shot at hitting the ball out of



3the park. An inside slider might be a good idea, except that if it is o� by even a little,he will belt it. What pitch do you throw to maximize your team's chances of winningthe game, since you know the opposing batter will try to prevent you from winning?Network Monitoring As an electrical engineer, it is your responsibility to designa piece of equipment that plugs into the telephone network to monitor and correctfaults in a speci�c section of the network. The network consists of a set of switchingcomputers and cables that connect the switching computers to one another. At anymoment in time, the switching computers can be up or down and lightly or heavilyloaded, and the cables can be transmitting or not transmitting information.The monitoring equipment has access to various signals and alarms emitted by theswitching computers, and it can send its own query signals to the switching computersto elicit feedback on their status. However, it is not possible to know with certaintythe state of the network at any moment; for example, if a switching computer failsto respond to a query, is this because it is overloaded, because it has gone down, orbecause one of its incoming cables has stopped transmitting data?In spite of the unreliable and sometimes inaccurate information, the monitoringequipment must keep the network running as smoothly as possible. To do this, it cansend query and reset signals to the switching computers and can call for a repair personto physically examine any of the switching computers or cables. Of course, sending outa person can be expensive, especially late at night, but this expense is small whencompared to the revenue lost due to the failure of a switching computer. Because ofthe di�culty in assessing when a switching computer has gone down, this can be anextremely di�cult decision. How do you design the monitoring equipment to make thistrade-o� properly?1.1 Sequential Decision MakingIn this section, I begin to lay the groundwork for a formal model of sequential decisionmaking. I describe the decision maker or agent, the environment with which it interacts,the behavior it exhibits, and the problems it might face.



41.1.1 The AgentThrough overuse, the word \agent" has come to mean very di�erent things to di�erentgroups of people. In the context of this work, an agent is simply the system responsiblefor interacting with the world and making decisions. In the examples in the previoussection, the agents are the budget director, the pitcher, and the network monitoringequipment. Agents can also be robots or software programs or medical equipment.The agents \live" in an environment: a particular economic model, a baseball game,a telephone network, the oor of an o�ce building. The state of the environment is adescription of everything that might change from moment to moment. In the baseballexample, the state would include the position of the runners, the score, the inning, theidentity of the current batter, and the number of balls and strikes. It probably wouldnot include the color of the �eld, the number of bases, or the shape of home plate.Figure 1.1 depicts a generic embedded agent [72] interacting with its environment.The agent is represented by a robotic �gure and the environment as a blob. Althoughthe agent is a decision-making entity, it is not enough for it simply to make decisions;it needs to turn these decisions into a selection of an action a to be taken to inuencethe state of the environment. The transition function T controls how actions alter thestate s of the environment. In all but the most trivial environments, the agent's actionchoice should be a function of its perception z of the state. The component labeled O inthe �gure represents the agent's perception function, which transforms the environmentstate into a perception. For many environments, O is the identity function; that is,the agent has access to the true state of the environment. In others, such as in thenetwork-monitoring example, the state of the environment is only partially observableto the agent. The function that maps perception to action choice is labeled in the �gurewith a B (for \behavior"). The component R is the agent's reward function and r theagent's reward; these are discussed in more detail in Section 1.1.3.1.1.2 The EnvironmentRoughly, the environment is anything external to the agent. For the purposes of thisthesis, I assume that environments are neither capricious nor malicious, but are insteadoblivious of the agent and its goals. More concretely, I assume that the environmentchanges from state to state in response to the actions of the agent according to a �xedset of rules. The transitions might be stochastic; that is, it is not necessary that the
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RFigure 1.1: An embedded agent interacting with its environment.same transition occur every time the agent takes a particular action in a particularstate. However, the probabilities that govern these stochastic transitions must remainconstant over time.This de�nition of environment is somewhat restrictive and deserves a bit of elab-oration. In most real-world problems, it is possible to identify the quickly changingaspects of the environment that constitute the state and the �xed aspects that are theenvironment. However, there are often aspects of the problem that change slowly overtime. These can be modeled as part of the state, often with a large increase in com-plexity of the state description, or can be approximated as being static and made partof the �xed environment. A more accurate perspective would consider the environmentto be non-stationary. Such environments are of interest because they make it possibleto consider a broader range of sequential decision-making problems; however, they aremore complex mathematically and few formal models have been proposed [42]. Forthis reason, previous attempts at handling non-stationary environments have focusedalmost exclusively on empirical studies [93, 156]. In this thesis, I am most concernedwith the theoretical analysis of algorithms, and therefore restrict the discussion toenvironments that do not change over time.Although I focus exclusively on time-invariant environments, I do not always assumethat the agent has access to a complete environmental description. When this is thecase, it is often possible for an agent to discover the time-invariant properties andexploit them; these problems are modeled in the reinforcement-learning frameworkdescribed below.Elements external to the agent that obey their own (not necessarily �xed) rules cansometimes be modeled as independent agents. For example, in the idealized baseballexample, the players on the �eld follow the coaches' orders to the best of their abilities;



6they are part of the environment. The opposing batter, however, is making decisions ina way that is purposely unpredictable and combative; for this reason, the environmentcan best be described as containing multiple agents.1.1.3 RewardTo describe a sequential decision-making problem, it is not enough to specify the agentand the environment alone. The agent's actions need to serve some purpose: in theproblems I consider, their purpose is to maximize reward . In a sense, reward is externalto both the agent and the environment. It constitutes a speci�cation of the problemthe agent is to solve in the course of its interaction with the environment. In manysequential decision-making situations, there is a designer who can say for sure whichactions and states are good and which are bad, and thus can explicitly specify thereward.In the network-analyzer situation, for example, the rewards to the agent could betied to the money spent and earned by the owners of the network: this informationwould be built into the agent by the designer. In the baseball example, the runsthemselves would not be considered rewards, as they are not good or bad in and ofthemselves; the only true reward comes from winning the game. In the budget example,the reward criterion would need to be very complex and would probably be a sourceof considerable disagreement among the organization's management.An important aspect of rewards is that they are the basis of the objective crite-rion used to judge agents' performance; however, for rewards to have any inuenceon behavior, agents must have subjective access to them. In the abstract models ofenvironments considered in this thesis, rewards can be predicted by agents using theirperception of the environment; this is a de�ning property of these models.An interesting issue is whether there can be a notion of rewards in the \undesigned"environments faced by biological agents. In particular, the only true reward signalin a biological system is death, which is perceptible by the agent too late to be ofuse. Simulation experiments [3] have shown that, over the span of many generations,arti�cial agents can evolve their own proximal reward functions that are useful inpredicting the relative goodness and badness of situations; in principle, even biologicalagents can compute their own reward functions. There is also evidence that speci�cstructures in the brain of some animals are reward centers [110] that behave much like



7the reward functions used throughout this thesis. Of course, such analogies must notbe taken too literally.1.1.4 PoliciesA policy is an agent's prescription for behavior. In general, an agent's policy is verycomplicated, including changes in behavior conditioned on events in the distant past.However, when the structure of the environment is known in advance, an agent cansometimes behave successfully with a much simpler policy.A plan is the name for a particularly simple kind of policy in which the agentcarries out a �xed sequence of actions \with its eyes closed;" that is, it takes the samesequence of actions regardless of what it perceives. Plans are important in completelypredictable environments when the initial state of the agent is known in advance, as isthe case, for example, with manufacturing robots.A conditional plan admits a small amount of variation in the sequence of actionsselected. For example, a part-painting robot might be built to work successfully even ifit receives a part upside down. Its plan might have the form: gather part, check paintlevel in sprayer, request more paint if paint level too low, check orientation of part,use painting procedure A if part rightside up, use painting procedure B if part upsidedown.An extreme form of conditional plan is a stationary policy , sometimes called a\universal plan" [138]. This type of policy has no speci�ed sequence at all; instead,the agent examines the entire state at each step and then chooses the action mostappropriate in the current state. For an agent to follow such a plan, it must haveaccess to some function that returns an action choice for every possible state. A partialpolicy [43] can be used to overcome the di�culty of constructing and manipulatingcomplicated universal plans; however, few theoretical tools are available to assess thesuccess of a partial policy.Stationary policies have several important properties that make them extremelyimportant. First, in highly unpredictable environments, nearly any state can followany other state, so any partial list of contingencies would be inadequate. Second, forthe complex success criteria I discuss in this thesis, it is hard to imagine �nding optimalbehavior without reasoning about action choices in all possible states. Because of theircentral importance to algorithms for sequential decision making, we often use the word



8\policy" as an abbreviation for \stationary policy."Policies can also be stochastic if the agent must ip a weighted coin to decidewhich action to take. This can be especially useful in competitive situations when it isimportant for the agent to be somewhat unpredictable; see Chapter 5.1.1.5 Problem ScenariosMy purpose in this thesis is to examine methods for producing policies that maximizea measure of the long-run reward to an agent following it in a speci�c environment.These policies can be produced under two di�erent problem scenarios that di�er in theinformation available for constructing the policy: planning and reinforcement learning .Planning In planning, a complete model of the environment is known in advance.This makes it possible to separate the decision-making problem into two components:the planner and the agent. The planner is responsible for taking a description of theenvironment and generating a policy, typically a stationary policy. This policy is then\downloaded" into the agent for execution in the environment. The task faced by theplanner has a well-de�ned input and output, which makes it relatively easy to analyzefrom a traditional computer-science perspective. I undertake this type of analysisthroughout the thesis.Planning has been one of the primary subject areas in arti�cial intelligence sincethe development of the STRIPS system [53]. Early work on planning focused on thegeneration of plans for reaching some goal state in a deterministic environment. A morerecent trend has been to consider decision-theoretic planning, in which more complexenvironmental models and optimality criteria are the norm. My interest in planningstems from this later work; I compare my work to relevant work in decision-theoreticplanning in Section 8.1.Reinforcement Learning The reinforcement-learning scenario is closely related toplanning, although the two frameworks di�er with respect to the information availableabout the environment. For a planner to function, it must have a complete descriptionof the environment's states, actions, rewards, and transitions. Reinforcement learningcan be used when a model of the environment is unknown or di�cult to work withdirectly. The only access a reinforcement-learning agent has to information aboutits environment is via perception and action, making reinforcement learning a fairly
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Model-based RL plannermodel policyFigure 1.2: A collection of sequential decision-making scenarios.di�cult problem. Reinforcement learning removes the distinction between planner andagent: a reinforcement-learning agent is responsible for gathering information aboutthe environment, organizing it to determine a policy, and behaving according to thepolicy.An ideal reinforcement-learning agent chooses each action to maximize its long-term reward, perfectly selecting between actions to gain information about the envi-ronment and actions to gain reward. This goal is extremely di�cult to achieve, andmost reinforcement-learning algorithms focus on gathering information so that, overtime, an optimal stationary policy can be generated. From this perspective, reinforce-ment learning and planning are closely related: a reinforcement learner carries out itsplanning in the context of direct interactions with the environment.Hybrid Scenarios Although reinforcement learning is de�ned by the absence of ana priori model of the environment and planning by the presence of such a model, thetechniques used to solve reinforcement-learning problems are useful for planning andvice versa. Figure 1.2 illustrates some of the various ways techniques can be combinedto generate policies.In model-based reinforcement learning , an agent uses its experience with the en-vironment to construct an approximate model, which can be used as the input to aplanning algorithm. This approach makes excellent use of available experience, whichis often very expensive to gather, at the cost of invoking a full-edged planning systemwhenever the agent needs to update its policy. An intermediate approach is to planincrementally as new experience is encountered [155, 111, 119].



10In simulated reinforcement learning , a reinforcement-learning agent is introducedinto an environment with a known structure, but is forced to behave as if the structureis not known. Although this approach seems wasteful|how could throwing away infor-mation make decision making easier?|it can actually be a good idea if the environmentis complex and building a complete universal plan is infeasible. Using a reinforcement-learning algorithm in such an environment can help the agent �nd appropriate behaviorfor the most common and important states [9, 43]. The most noteworthy example ofthis technique remains one of the biggest successes of reinforcement learning|Tesauro'sbackgammon-learning program [159], which is now reliably ranked as one of the world'sbest players.1.2 Formal ModelsSo far, I have been very casual in discussing environments and their models. To exploremethods for automatically �nding optimal behavior for environments, however, I mustnow be very speci�c about the models I am concerned with and what we mean byoptimal behavior.Russell and Norvig [132] argue that any problem in arti�cial intelligence can beviewed as a situation faced by an agent interacting with some environment. Followingtheir example, I list below some dimensions along which environments may vary, andwhere the environments I address in this thesis fall on these dimensions.� �nite vs. continuous statesIs there a �nite collection of states in which the environment can be, like theboard positions in a game of chess, or are the states better viewed as lying in acontinuum, like the position of the sun in the sky? Continuous state-space envi-ronments can be turned into �nite state-space environments by discretizing thestate space, although this can make them di�cult to solve. I will focus on �nitestate spaces; however, in Chapter 7 I will show how to reason about a continuumof possible beliefs that result from a particular �nite-state problem. I also con-sider a particular limiting case of �nite state spaces, that of an environment witha single state. Other authors [112] have addressed environments with continuousstate spaces.� �nite vs. continuous actions



11The set of action choices can also be either �nite or continuous; again I will bemainly concerned with the �nite case, although Chapter 5 examines a model inwhich the selected actions are actually continuous probability distributions over a�nite set of choices. Continuous actions can also be discretized, although speci�calgorithms [8] can solve this type of environment more e�ectively.� episodic vs. sequentialIn an episodic environment, the agent faces the same problem over and over again.I am more concerned with sequential environments, in which the agent makes asequence of interrelated decisions without necessarily being reset to a startingstate. Episodic environments can be viewed as a degenerate type of sequentialenvironment.� accessible vs. inaccessibleThe agent makes its decisions on the basis of its perception of the environment.If the observations it makes are su�cient to reveal the entire state of the envi-ronment, the environment is accessible, or completely observable; otherwise it isinaccessible, or partially observable. Partially observable environments in whichthe perception of the agent does not change over time are unobservable. I considerboth accessible and inaccessible environments in this thesis.� Markovian vs. non-MarkovianIn a Markovian environment1, the future evolution of the system can be predictedon the basis of the environment's state. In non-Markovian environments, suchas the non-stationary environments mentioned earlier, it is often important toremember something about earlier states to predict the future accurately. My fo-cus is on Markovian environments because of their relative tractability, although Ialso consider environments that appear non-Markovian because they are partiallyobservable.� �xed vs. dynamic1Markov was a Russian mathematician whose work made use of the assumption that history iscompletely disregarded. Gilbert Strang, feeling this assumption provided a pessimistic view of humanexistence, commented [152], \Perhaps even our lives are examples of Markov processes, but I hopenot." In fact, all the Markov assumption really says is that anything about a system's history that isrelevant to how it will develop in the future is somehow present in the description of the current state,an assumption most physicists are willing to make about our universe.



12An agent in a dynamic environment must contend with the fact that the statemay change while it is deliberating on a choice of action. I focus exclusively onthe simpler �xed environments, although they less accurately reect the problemsfaced by real agents. This class of environments is de�ned by the assumption thatthe agent can make decisions fast enough that the state does not change betweenperception and action.� deterministic vs. stochasticAs mentioned earlier, it is important for algorithms to deal with the possibilitythat the environment contains stochastic transitions. I sometimes narrow thefocus to situations in which all transitions are deterministic|there is exactly onenext state for each combination of state and action|to help understand howdecision making is simpli�ed in this case.� synchronous vs. asynchronousIn the synchronous environments I consider, time advances only when the agenttakes an action. Put another way, precisely one state transition in the environ-ment occurs for each action the agent takes. In asynchronous or continuous-timemodels, the environment does not \wait" for the agent to take an action butinstead changes continually; the actions serve as synchronizing events duringwhich the agent and environment interact. Asynchronous environments are moregeneral, although assuming a synchronous environment is weaker than assumingthat each action takes a �xed amount of time. It is possible to approximate anasynchronous environment by a synchronous one by discretizing time [61].� single vs. multiple agentFor simplicity, I consider environments with either one or two agents. Environ-ments with more agents are worthy of study but can be extremely complicatedto analyze because of the many ways the goals and experiences of the di�erentagents can interact.In summary, the environments covered in this thesis share the properties of being�nite state, �nite action, sequential, Markovian, �xed, and synchronous, can be com-pletely or partially observable, stochastic or deterministic, and can contain one or twoagents.



13single agent multiagentstate known mdp Markov gamestate observedindirectly pomdp incomplete-informationgameTable 1.1: Relationships among several Markov models.In later chapters, I examine six related models in detail: Markov decision processes,generalized Markov decision processes, alternating Markov games, Markov games, par-tially observable Markov decision processes, and information-state Markov decisionprocesses. To illustrate the relationships among these models, Table 1.1 arranges sev-eral of them into a 2 � 2 grid. Markov decision processes (mdps) are �xed, stochasticenvironments in which a single agent issues actions given knowledge of the currentstate. Markov games generalize this model to allow a pair of agents to control statetransitions, either jointly or in alternation. A partially observable Markov decisionprocess (pomdp) consists of a single agent that must make decisions given only par-tial knowledge of its current state. In incomplete-information games, multiple agentscontrol the transitions in the environment and the agents have incomplete and perhapsdi�ering knowledge of the environment's state.To date, mdps have been the most actively studied of these models. They havereceived nearly 40 years of attention from the operations-research community, and area current favorite topic among reinforcement-learning and decision-theoretic planningresearchers. Markov games were developed in the economics and game-theory commu-nities and predate even mdps. Reinforcement-learning researchers have studied thesemodels in some detail. pomdps have recently been the focus of much excitement in thearti�cial-intelligence and machine-learning communities. Although their study datesback to the early 1960s, they have not received nearly the attention enjoyed by mdps,in part because of their complexity. I do not address incomplete-information games;although these model are of great interest to individuals studying, for example, thecoordination of multiple robots, only one group of researchers has explored algorithmsfor incomplete-information games [85], and only for a subset of these models.



141.3 Evaluation CriteriaThe previous section began a formal treatment of environment models that I will ex-pand upon in the coming chapters. In this section, I describe how policies, planningalgorithms, and reinforcement-learning algorithms can be evaluated and compared.1.3.1 PoliciesA policy induces a probability distribution over the set of all possible sequences ofstates and actions for each possible initial state of the environment. This means that,in principle, it is possible to take a description of a policy, an environment, and aninitial state, and compute the probability that a given sequence of states and actionswill occur.An objective function takes the set of possible state and action sequences and theirprobabilities and produces a single number, called a value. Planning and reinforcement-learning algorithms seek an optimal policy, one that maximizes the objective function,so the choice of objective function is a critical part of the statement of the problem tobe solved. In this section, I present a set of objective functions that can be used toevaluate policies. Many of these objective functions have found their use in applications,others have not. My classi�cation is intended not to exhaust cover the range of possibleobjective functions, but to provide a vocabulary for expressing the objective functionsappearing in later chapters.Many important objective functions can be constructed using the general frameworkin Table 1.2, which shows how a value can be de�ned as a set of transformations onthe set of all possible sequences of states and actions.1. Starting with the set of all possible state and action sequences, the objectivefunction replaces each transition with a transition value, which is a representationof its \goodness." For an objective function measuring rewards, each transitionis replaced by its reward value. For an objective function measuring steps, eachtransition is assigned a constant value, say �1. For an objective function sensitiveonly to goals, all transitions are assigned a value of zero unless the transition isto a goal state.2. The sequence of transition values can be truncated according to the horizon;



15�nite-horizon criteria cut o� the sequence at a prespeci�ed length, while goal-based criteria cut o� each sequence when it �rst enters a goal.3. Each sequence of remaining transition values is then summarized. Undiscountedcriteria compute a simple sum of transition values, discounted criteria computea sum in which later terms are scaled down according to the discount factor �,and average-reward criteria compute an average of the transition values.24. At this point, each possible sequence of states and actions has been reduced toa single summary value. The sequence values now need to be summarized tocompute a single summary value for the policy. Under expected-reward criteria,this involves taking an average of the sequence values weighted by the probabil-ity of the associated sequence. Best-case and worst-case criteria are de�ned bysummarizing according to the largest and smallest sequence values, respectively.5. In multiagent environments, an additional step must be introduced. It is possiblethat the other agents can modify the probability of various sequences of statesand actions. In a cooperative environment, other agents act so as to maximizethe objective function, whereas in a competitive environment, they act so as tominimize the objective function.The elements of Table 1.2 make it possible to evaluate a �xed policy. An optimalpolicy is one that maximizes the value.Two hundred forty-three objective functions can be constructed by combining oneelement from each category. Although all these combinations appear to be meaningful,several deserve special mention because of the attention they have received in theliterature. Table 1.3 lists several combinations and a sample of references that haveused them.The algorithms in this thesis �nd policies that maximize or minimaximize expecteddiscounted reward over the in�nite horizon. I chose these objective functions becausethey have mathematical properties that make them easy to work with. In addition,all the other objective functions can be viewed as special cases of the in�nite-horizonexpected discounted reward objective function,3 although specialized algorithms arealmost always more e�cient in these cases.2In the case of in�nite-horizon average reward, it is necessary to compute the average as a limit.3For example, the �nite-horizon criterion can be constructed by making copies of the states, andoptimal average-reward policies can be found by setting the discount factor close to 1.
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q1: s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 s6 a6 s7 a7 …→,→,→,→,→,→,→,

q2: s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 s6 a6 s7 a7 …→,→,→,→,→,→,→,

q3: s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 s6 a6 s7 a7 …→,→,→,→,→,→,→,

…

state/action sequences

q1:  +0.2, +0.1, -9.0, +0.0, +7.1, +5.0, -2.2, -8.7, +3.9,…

q2:  +2.8, +4.0, +4.8, +2.9, +7.4, -2.4, -2.8, +0.4, +4.0,…

q3:  +3.3, -3.7, +5.0, +6.2, +0.0, +6.9, -3.6, -1.9, -5.7,…

…

transition values

horizon truncation

q1:  +0.2, +0.1, -9.0, +0.0, +7.1, +5.0, -2.2, -8.7, +3.9,…

q2:  +2.8, +4.0, +4.8, +2.9, +7.4, -2.4, -2.8, +0.4, +4.0,…

q3:  +3.3, -3.7, +5.0, +6.2, +0.0, +6.9, -3.6, -1.9, -5.7,…

…

sequence summary

q1:  -2.38

value summary

q2:  +11.45 q3:  6.13 …

 -16.13Figure 1.3: Creating objective functions.



17transition valuesreward rt := reward function for state st and action atsteps rt := �1goals rt := +1 if st+1 is a goal, +0 otherwisehorizon truncation�nite k := �xed valuein�nite k :=1goal k := �rst step into goalsequence summarydiscounted v(q) :=Pkt=0 �trtundiscounted v(q) :=Pkt=0 rtaverage v(q) := limkl=0Plt=0 rt=lvalue summaryexpected Pq v(q) Pr(q)worst case minq v(q)best case maxq v(q) other agentsnone {cooperative maximumcompetitive minimumTable 1.2: Choices for the components of the objective function.maximum expected discounted reward over the in�nite horizon (Chapter 2)minimax expected discounted reward over the in�nite horizon (Chapter 5)maximum worst-case discounted reward over the in�nite horizon [62]minimax expected average reward over the in�nite horizon [183]maximum expected average reward over the in�nite horizon [102]maximum expected undiscounted reward until goal (cost-to-go) [29]minimax expected undiscounted goal probability [36]maximum expected undiscounted goal probability [87]maximum multiagent discounted expected reward [22]Table 1.3: Several popular objective functions.



18Under the discounted objective, the discount factor 0 < � < 1 controls how muche�ect future rewards have on the decisions at each moment, with small values of � em-phasizing near-term gain and larger values giving signi�cant weight to later situations.Concretely, a reward of r received t steps in the future is worth �tr to the agent now.Mathematically, the discount factor has the desirable property that if all immediaterewards are bounded, then the in�nite sum of the discounted rewards is also bounded.From an applications perspective, the discount factor can be thought of as the prob-ability that the agent will be allowed to continue gathering reward after the currentstep, or, from an economic perspective, as an inverse interest rate on reward [126].1.3.2 Planning AlgorithmsWhen is one planning algorithm better or worse than another? There is no uniquebest choice of evaluation criterion for comparing algorithms. In fact, any of the criteriafrom the previous section for evaluating the possible sequences of rewards gained bya policy could be used to evaluate the possible sequences of policies produced by asuccessive-approximation planning algorithm.As a �rst cut, algorithm A is better than algorithm B if A can �nd an optimalpolicy and B cannot, or if A is more likely than B to �nd an optimal policy. I ammainly interested in algorithms that are guaranteed to �nd an optimal policy, althoughsometimes it is important to tolerate a �xed margin of error.When both algorithms can �nd optimal policies, the better algorithm is the onethat can do so more quickly. Of course, not all algorithms perform well on all problemsand some algorithms use randomization, so once again it is important to decide howto summarize the run time of algorithms over a class of environments. As in theprevious section, algorithms can be summarized according their average performanceover all environments or on one that makes them perform the worst, and by averageor worst-case run times.In this thesis, an algorithm's run time is measured by its worst-case expected runtime; that is, the average run time of the algorithm on the worst possible probleminstance. This measure is very popular in theoretical computer science because itcaptures the reality that the algorithm has no control over the problem instance itmust solve.More concretely, the complexity of a planning algorithm is its worst-case average run
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intractable

presumed intractable

presumed tractable

tractable

EXPTIME-complete
PSPACE-complete
NP-complete
NP   co-NP

P
NC

RP

∩Figure 1.4: Some complexity classes.time expressed as a function of the size of a description of the environment, primarily thenumber of transition probabilities and rewards. For most of the problems in this thesis,I use a very coarse measure of complexity that is relatively insensitive to the details ofhow environments are described. For present purposes, an algorithm is e�cient if itscomplexity can be bounded above by some polynomial function, for example n5 wheren is the size of the environment description. If an exponential function is a lower boundon the complexity of an algorithm, the algorithm is ine�cient.For many problems, it can be shown that it is unlikely that any e�cient algorithmexists by appealing to results from complexity theory, which classi�es problems by theirdi�culty. Figure 1.4 summarizes some of the most important classes used in this thesis.Of these, the problems in RP, P, and NC are the only ones known to be solvable inpolynomial time. For the other classes, the best known algorithms take exponentialtime. However, the range of di�culty among these classes is large: problems in NP\co-NP might be solvable in polynomial time by the best algorithm; NP-complete problemscan often be approximated in polynomial time; PSPACE-complete problems are oftenquite di�cult to approximate; and EXPTIME-complete problems are known not to besolvable in polynomial time in the worst case.Much of the uncertainty here derives from the famous open problem \Does P equalNP?" If P=NP, then all the classes in Figure 1.4 from NP-complete down to NC havee�cient algorithms. If P6=NP, then the classes from NP-complete up to EXPTIME donot have e�cient algorithms. Additional background information on complexity classescan be found in Papadimitriou's textbook [115] and the summary in Section A.1.



201.3.3 Reinforcement-learning AlgorithmsIn a reinforcement-learning scenario, the agent must solve the same basic problem facedin planning, but must do so without a correct description of the environment. As aresult, the range of choices for evaluating reinforcement-learning algorithms are quitelarge; it is reasonable to measure the complexity of the per-experience computation,the number of experiences needed to identify a near-optimal policy, and the valueattained by a policy learned after a particular number of experiences. A truly optimalreinforcement-learning agent would take actions to maximize the objective functionunder the restriction that its knowledge of the environment is incomplete. Such anapproach can be formalized [108], but is believed to be intractable except in the simplestcase in which there is only one state: see Gittins' groundbreaking work on this topic [56].In the interest of simplicity, other measures are typically used to compare reinforce-ment-learning algorithms. One approach is to measure the regret , the amount of ad-ditional reward an algorithm would have received had it behaved according to theoptimal policy all along. This model seems quite appropriate for evaluating reinforce-ment learning, but has received little formal attention.An even simpler approach is to compare reinforcement-learning algorithms by ignor-ing the learning phase altogether and asking whether an agent will, in the limit, discoveroptimal behavior. This is the best-studied approach and the one I use here. It basicallycategorizes reinforcement-learning algorithms as \good" if they can be used to producea sequence of policies that become arbitrarily close to optimal, and \bad" otherwise.While this is an important and useful way to categorize algorithms, a better categoriza-tion would be based on how quickly algorithms identify near-optimal policies; becausesuch convergence-rate analyses can be quite complex, very little theoretical work hasbeen done in this direction.1.4 Thesis SummaryA main concern of researchers in arti�cial intelligence is how to formalize real-worldproblems. This translates to the search for models that trade o� two conicting forces:models should be simple enough to permit e�cient computer manipulation and complexenough to capture the relevant aspects of the real world. Although I do not propose anynovel models of real-world problems, the new results I present extend the understanding



21of several existing models. In particular, I show how several existing models can bemanipulated more easily, analyzed more precisely, and viewed more generally than waspossible previously.Each chapter of the thesis examines a particular model in detail. They are, bychapter,2. Markov decision processesCompletely observable, single-agent environments. The most basic sequentialdecision-making problem. This chapter provides much of the conceptual frame-work for the remainder of the thesis. A new result in this chapter is an analysisof the complexity of the policy-iteration algorithm.3. Generalized Markov decision processesA set of models with a common mathematical framework. Includes all the othermodels discussed in the thesis. This model is new, as is the convergence proof forreinforcement learning in this model. The chapter itself is very mathematicallyoriented.4. Alternating Markov gamesCompletely observable, two-agent zero-sum environments. Each agent takes somenumber of actions and then turns control over to the other agent. I present the�rst convergence proof for reinforcement learning in games.5. Markov gamesAlternating games in which agents take actions simultaneously. I present amethod for �nding optimal stochastic policies in this class of games.6. Partially observable Markov decision processesPartially observable, single-agent environments. Very di�cult to solve. The focusin this chapter is on complexity results and I give the �rst proof of intractabilityfor this class of models.7. Information-state Markov decision processesA type of continuous state-space Markov decision process derived from partiallyobservable environments. I present a new algorithm for solving �nite-horizon



22problems, along with theoretical results that show it is the most e�cient algorithmof its kind.To help highlight the similarities and di�erences among the algorithms for solvingthese models, each chapter follows the same organization:1. IntroductionDescribes the relevant aspects of the model, how it is similar to and di�erent fromother models, and its relation to real-world problems.2. The modelThe formal de�nition of the model, what it means to act optimally in the model,and foundational mathematical results.3. Algorithms for solving the modelDescribes the major approaches to solving the model along with enough analysisto clarify the basic structure of the approaches.4. Algorithmic analysisAnalyses of the computational complexity of the algorithms.5. Complexity resultsAnalyses of the di�culty of �nding optimal policies in the model and its varia-tions.6. Reinforcement learning in the modelDescription of relevant reinforcement-learning algorithms and convergence re-sults.7. Open problemsList of outstanding unresolved questions pertaining to planning and reinforcementlearning in the model.8. Related workSummary of relevant contributions from other researchers.



239. ContributionsSummary of the new results presented in the chapter.In addition, each chapter has an associated appendix with important results whoseformal arguments are too complex or otherwise unenlightening to be included in themain text.1.5 Additional RemarksThe focus of this thesis is on algorithms, and there are important mathematical de-tails that are left unproven. Wherever possible, I refer to other sources for additionalmathematical background. Similarly, a great deal of relevant information is left unsaidregarding the e�cient implementation of these algorithms on existing computer sys-tems using existing computer languages. In nearly all cases, I provide \pseudocode"implementations of the important algorithms; that is, I describe the algorithms in acomputer-language-like notation that, with some work, could be made to run on a com-puter. The conventions I use for describing algorithms are explained in Section A.2.The mathematical sophistication assumed is roughly at the level of basic analysis.However, even the most mathematical of the results can be appreciated without thisbackground. The rest of the material should be accessible to a typical computer scien-tist. One possible exception is that I assume a familiarity with linear programming. Abrief overview of this topic is given in Section A.3.I present example environments throughout in a graphical notation of which Fig-ure 1.5 is a simple example. The circles are the states of the environment, with their\names" written inside. Each arrow that leaves a state is an action and is labeledwith its name. The numerical label on the action is the immediate reward; I writeimmediate reward values with a leading sign to help distinguish them from transitionprobabilities. Arrows sometimes split; this represents a stochastic transition, with theindividual transitions labeled with their probability. Thus in Figure 1.5, action a2 fromstate s1 results in an immediate reward of +1 and a transition back to state s1 withprobability 0:2.
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a1
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a1 s0s2
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+5

a2

a2

0.2a2

+1 0.8

a1Figure 1.5: An illustration of a simple environment.1.6 Related WorkThe baseball example was inspired by a passage in a book by pitcher Tom Seaver [142];the hypothetical batter is Babe Ruth. The network-monitoring example was inspired byconversations with my colleagues at Bellcore; a simple study of reinforcement learningin a di�erent telecommunications domain was undertaken by Boyan and Littman [27].Additional applications are described in Puterman's textbook [126].Kaelbling's book [72] provides a philosophical discussion of agents, along with an ex-ploration of several kinds of sequential decision-making problems. Russell and Norvig'sintroductory textbook [132] views all of arti�cial intelligence from an agent perspective.Interrelationships between the undiscounted-reward and the discounted-reward cri-teria were discussed by Blackwell [19]. A survey of results concerning the average-reward criterion was written by Arapostathis et al. [4]. Fern�andez-Gaucherand, Ghoshand Marcus [52] explored combinations of discounted and average reward as a wayto better trade o� short-term and asymptotic reward. In the area of reinforcement-learning, the average-reward criterion was studied �rst by Schwartz [141] and later indetail by Mahadevan [102].1.7 ContributionsThis chapter introduced the core concepts used in the remainder of the thesis: agents,environments, rewards, policies, planning and learning. I showed where the problemsI address fall on a categorization of environments inspired by a similar categorizationdescribed by Russell and Norvig [132]. I explained how algorithms and policies areevaluated in my work, and presented a novel categorization of objective functions thatincludes those used in my work as well as those used by many other researchers.



Chapter 2Markov Decision ProcessesPortions of this chapter have appeared in earlier papers: \Planning and act-ing in partially observable stochastic domains" [73] with Kaelbling and Cas-sandra, \An introduction to reinforcement learning" [74] with Kaelbling andMoore, and \On the complexity of solving Markov decision problems" [96]with Dean and Kaelbling.Consider the problem of creating a policy to guide a robot through an o�ce build-ing. The robot's actions take it from hallway intersection to intersection, but are notcompletely reliable. Sometimes an action fails, overshoots, or results in the robot turn-ing too far. Fortunately, perfect sensors allow the robot to perceive the e�ects of itserror-plagued actions.The assumption of perfect sensors is central to this chapter. Because the agent candirectly perceive all aspects of its current state that might be necessary to predict theprobability of the next state given its action, it is not necessary for the agent to retainany history of its past actions or states to make optimal decisions.2.1 IntroductionIn this chapter I address the problem of choosing optimal actions in completely ob-servable stochastic domains. The robot problem described above can be modeled asa Markov decision process (mdp), as can other problems in robot navigation, factoryprocess control, transportation logistics, and a variety of other complex real-world sit-uations. 25
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AGENT

ActionsStates

EnvironmentFigure 2.1: An mdp models the synchronous interaction between agent and environ-ment.The problem addressed is, given a complete and correct model of the environmentdynamics and a goal structure, �nd an optimal way to behave. Versions of this problemhave been addressed in the arti�cial-intelligence literature as planning problems, wherethe focus is on goal-oriented problems in large, deterministic domains. Because weare interested in stochastic domains, we must depart from the traditional model andcompute solutions in the form of policies instead of action sequences.Much of the content of this chapter is a recapitulation of work in the operations-research literature [126, 15, 44, 46, 68, 13] and the reinforcement-learning literature [153,173, 10, 145]. The concepts and background introduced here will be built upon in allthe succeeding chapters.2.2 Markov Decision ProcessesMarkov decision processes are the simplest family of models I will consider. Laterchapters depend on the results and concepts introduced here to address more complexgeneralizations of mdps. An mdp is a model of an agent interacting synchronouslywith its environment. As shown in Figure 2.1, the agent takes as input the state ofthe environment and generates as output actions, which themselves a�ect the state ofthe environment. In the mdp framework, it is assumed that, although there may bea great deal of uncertainty about the e�ects of an agent's actions, there is never anyuncertainty about the agent's current state|it has complete and perfect perceptualabilities.2.2.1 Basic FrameworkA Markov decision process is a tuple M = hS;A; T; R; �i, where



27� S is a �nite set of states of the environment;� A is a �nite set of actions;� T : S � A ! �(S) is the state transition function, giving for each state andagent action, a probability distribution over states (T (s; a; s0) is the probabilityof ending in state s0, given that the agent starts in state s and takes action a);� R : S � A ! R is the reward function, giving the expected immediate rewardgained by the agent for taking each action in each state (R(s; a) is the expectedreward for taking action a in state s); and� 0 < � < 1 is a discount factor.In this chapter, I consider mdps with �nite state and action spaces. Many of theimportant results apply to in�nite-state mdps as well. Chapter 3 examines these resultsfrom a more general perspective.2.2.2 Acting OptimallyAgents should act in such a way as to maximize some measure of the long-run reward re-ceived. Section 1.3.1 presented several objective functions, including discounted �nite-horizon optimality, average-reward optimality, and discounted in�nite-horizon optimal-ity. I focus on algorithms for the discounted in�nite-horizon case with some attentionto the simpler �nite-horizon case. Most of the results for in�nite-horizon discountedmdps apply to undiscounted problems in which agents are guaranteed to reach a zero-reward absorbing state regardless of policy, the all-policies-proper case (see Chapter 3for more details).A policy is a description of the behavior of an agent. I consider two importantkinds of policies: stationary and non-stationary. A stationary policy , � : S ! A,speci�es, for each state, an action to be taken. The choice of action depends only onthe state and is independent of the time step. A non-stationary policy is a sequence ofstate-action mappings, indexed by time. In the non-stationary policy � = h�t; : : : ; �1i,the mapping �t is used to choose the action on the tth-to-last step as a function of thecurrent state. In the �nite-horizon model, there is rarely a stationary optimal policy|the way an agent chooses its actions on the �nal step is generally di�erent than the way



28it chooses them when it has a large number of steps left. In the discounted in�nite-horizon model, the quantity 1� � can be viewed as the probability that the agent willcease to accrue additional reward; therefore, it is as if the agent always has a constantexpected number of steps remaining: 1=(1� �). Because the expected distance to thehorizon never changes, there is no reason to change action strategies as a function oftime|there is a stationary optimal policy [15].Given a policy, we can evaluate the expected long-run value an agent could expectto gain from executing it. In the �nite-horizon case, let � = h�k; : : : ; �1i be a k-stepnon-stationary policy and let V �t (s) be the expected future reward starting in state sand executing non-stationary policy � for t steps. The value of the �nal step is theimmediate reward V �t1 (s) = R(s; �1(s)). For t > 1, we can de�ne V �tt (s) inductively byV �tt (s) = R(s; �t(s)) + � Xs02S T (s; �t(s); s0)V �tt�1(s0):The t-step value of being in state s and executing non-stationary policy � is the im-mediate reward, R(s; �t(s)), plus the discounted expected value of the remaining t� 1steps. To evaluate the remaining steps, we consider all possible resulting states s0, thelikelihood of their occurrence T (s; a; s0), and their (t � 1)-step value under policy �,V �t�1(s0).Let V �(s) be the expected discounted future reward for starting in state s andexecuting stationary policy � inde�nitely. The in�nite-horizon value is recursivelyde�ned by V �(s) = R(s; �(s)) + � Xs02S T (s; �(s); s0)V �(s0):The value function for policy � is the unique solution of this set of simultaneous linearequations, one for each state s. A subroutine for �nding the in�nite-horizon valuefunction for a given policy appears in Table 2.1; it will be used later in more complexalgorithms. The system of linear equations can be solved by Gaussian elimination orany of a number of other methods [40].Now we know how to compute a value function, given a policy. We can also de�nea policy based on a value function. Given any value function V , the greedy policy withrespect to that value function, �V , is de�ned as�V (s) = argmaxa 24R(s; a) + � Xs02S T (s; a; s0)V (s0)35 :



29evalMDP(�; hS;A; T;R; �i) := fSolve the following system of linear equations:�nd: v[s]s.t.: v[s] = R(s; �(s)) + �Ps02S T (s; �(s); s0)v[s0], for all s 2 Sreturn vg Table 2.1: Computing the value function for a given policy.This policy is obtained by taking the action in each state with the best one-step valueaccording to V .It is not hard to �nd the optimal �nite-horizon policy for a given mdp, ��k =h��k; : : : ; ��1i. For 1 � t � k, we can de�ne ��t as follows. On the �nal step, theagent should maximize its immediate reward,��1(s) = argmaxa R(s; a):We can de�ne ��t in terms of the value function for the optimal (t� 1)-step policy V ��kt�1(written for simplicity as Vt�1):��t (s) = argmaxa 24R(s; a) + � Xs02S T (s; a; s0)Vt�1(s0)35 ;it need not be unique.In the discounted in�nite-horizon case, given an initial state s, we want to executethe policy � that maximizes V �(s). Howard [68] showed that there exists a stationarypolicy �� that is optimal for every starting state. The value function for this policy,written V �, is de�ned by the set of equationsV �(s) = maxa 24R(s; a) + � Xs02S T (s; a; s0)V �(s0)35 ; (2.1)and any greedy policy with respect to this value function is optimal [126].The presence of the maximization operator in Equation 2.1 means the system ofequations is not linear|Gaussian elimination is not su�cient to solve it. In the nextsection, I explore algorithms that solve the mdp problem; they �nd an optimal policyand value function for an mdp, given its description in terms of T , R, and �.



30ValueIterationMDP(hS;A; T;R; �i; �) := fforeach s 2 S V0(s) := 0t := 0loopt := t+ 1foreach s 2 S fforeach a 2 AQt(s; a) := R(s; a) + �Ps02S T (s; a; s0)Vt�1(s0)�t(s) := argmaxaQt(s; a)Vt(s) := Qt(s; �t(s))guntil maxs jVt(s)� Vt�1(s)j < �return �tg Table 2.2: The value-iteration algorithm for mdps.2.3 Algorithms for Solving Markov Decision ProcessesThere are many methods for �nding optimal policies for mdps. In this section, Idescribe several of the more basic approaches. All of these can be found in Puterman'stextbook [126].2.3.1 Value IterationValue iteration proceeds by computing the sequence Vt of discounted �nite-horizonoptimal value functions, as shown in Table 2.2. It makes use of an auxiliary function,Qt(s; a), which is the t-step value of starting in state s, taking action a, then continuingwith the optimal (t � 1)-step non-stationary policy; these state-action value functionsare also known asQ functions . The algorithm terminates when the maximum di�erencebetween two successive value functions, the Bellman error magnitude, is less than somepredetermined �.It can be shown that there exists a t�, polynomial in jSj, jAj, logmaxs;a jR(s; a)j,and 1=(1� �), such that the greedy policy with respect to Vt� is an optimal in�nite-horizon policy [162]. Rather than calculating a bound on t� in advance and runningvalue iteration for that long, we can use the Bellman error magnitude to decide whenour current value function is good enough to generate a near-optimal greedy policy. To



31state this precisely, if jVt(s)� Vt�1(s)j < � for all s, then the value of the greedy policywith respect to Vt does not di�er from V � by more than 2��=(1��) at any state. Thatis, maxs2S jV �Vt (s)� V �(s)j < 2� �1� � :This result [180] is discussed in more detail in Section 3.3.2. Tighter bounds may oftenbe obtained using the span semi-norm on the value function [126].2.3.2 Policy IterationIn the version of value iteration discussed in the previous section, each value functionVt can be interpreted as an approximation of the value function of the optimal in�nite-horizon policy ��, or as the value function for the optimal non-stationary policy for at-step discounted �nite-horizon mdp. This second interpretation comes from the factthat the initial value function, V0, is de�ned to be zero for all states.A di�erent interpretation is possible when we de�ne V1 as follows: let �0 be thegreedy policy for the zero value function, V0, and let V1 = V �0 , the value functionfor policy �0. De�ne a sequence of in�nite-horizon non-stationary policies where �t =h�t; : : : ; �1; �0; �0; �0; : : :i, that is, �t is the in�nite-horizon policy that follows �t, then�t�1, and so on down to �0, which is repeated inde�nitely. We can view Vt, the valuefunction obtained on the tth iteration starting from V1, as the in�nite-horizon valuefunction corresponding to �t.This revised value-iteration algorithm shares the convergence properties attributedto the algorithm in Table 2.2 (see Section 3.3.1), and possesses a few special propertiesof its own. Since Vt is the value function for the non-stationary in�nite-horizon policy�t, and V � is the optimal in�nite-horizon policy, then V �(s) � Vt(s) for all s. Thisis because no in�nite-horizon policy, stationary or not, can have a higher expecteddiscounted reward from any state than that given by the optimal value function [15].As a result, Vt converges to V � from below.A more useful fact is that by adopting the state-action mapping �t as a stationaryin�nite-horizon policy, an agent is guaranteed total expected reward that is no worsethan it would obtain following �t [126]. That is, V �t(s) � V t(s), for all s 2 S.Combining these insights leads to an elegant approach to solving mdps, due toHoward [68]. Like value iteration, policy iteration (Table 2.3) computes a sequence ofvalue functions, Vt. In policy iteration, however, each value function Vt is the value



32PolicyIterationMDP(M = hS;A; T; R; �i) := fforeach s 2 S V0(s) := 0t := 0loopt := t+ 1foreach s 2 S and a 2 A fQt(s; a) := R(s; a) + �Ps02S T (s; a; s0)Vt�1(s0)�t(s) := argmaxaQt(s; a)Vt := evalMDP(�t;M)guntil Vt�1(s) = Vt(s) for all sreturn �tg Table 2.3: The policy-iteration algorithm for mdps.function for the greedy policy with respect to the previous value function Vt�1.Puterman [126] shows that the sequence of value functions produced in policy it-eration converges to V � no more slowly than the value functions produced in valueiteration; this result is discussed in some detail in Section B.1. Policy iteration canconverge in fewer iterations than value iteration; however, the increased speed of con-vergence of policy iteration can be more than o�set by the increased computation periteration.Another fundamental di�erence between value iteration and policy iteration is thestopping criterion. Whereas value iteration can converge to the optimal value functionvery gradually, policy iteration proceeds in discrete jumps. In particular, each valuefunction generated in policy iteration is associated with a particular policy (of whichthere are jAjjSj), and each value function Vt is strictly closer to V � than is Vt�1 [126].Putting these facts together tells us that policy iteration requires at most jAjjSj itera-tions to generate an optimal value function.2.3.3 Linear ProgrammingWe saw earlier that the in�nite-horizon value function for a policy � can be expressedas the solution to a system of simultaneous linear equations. Table 2.1 shows howthis mathematical equivalence can be exploited to derive an e�cient algorithm forcomputing V � .



33mdpLP(hS;A; T; R; �i) := fSolve the following linear program:minimize: Ps v[s]s.t.: v[s] � R(s; a) + �Ps02S T (s; a; s0)v[s0], for all s 2 S and a 2 Avariables: v[s] for all s 2 Sreturn vg Table 2.4: Solving an mdp via linear programming.We also saw that the optimal value function V � can be expressed as the solutionto a system of simultaneous equations, given in Equation 2.1. Unfortunately, themaximization operators in these equations render them non-linear, so nothing as simpleas Gaussian elimination will su�ce to solve them.The V � equations can be expressed in the more descriptive mathematical languageof linear programming . A linear program consists of a set variables, a set of linearinequalities over these variables, and a linear objective function. D'Epenoux [45] showedhow to solve an mdp by expressing the system of equations de�ning the optimal valuefunction as a linear program (Table 2.4).The intuition here is that, for each state s, the optimal value from s is no less thanwhat would be achieved by �rst taking action a, for each a 2 A. The minimizationensures that we choose the least upper bound (the maximum, in other words) for eachof the v[s] variables.An important fact from the theory of linear programming is that every linear pro-gram has an equivalent linear program in which the roles of the variables and theconstraints are reversed. The resulting linear program, known as the dual , can also beused to solve mdps. One advantage of the dual formulation is that it makes it possibleto express and incorporate additional constraints on the form of the policy found [88].The dual linear program appears in Table 2.5. The f [s0; a] variables can be thoughtof as indicating the amount of \policy ow" through state s0 that exits via action a.Under this interpretation, the constraints are ow-conservation constraints that saythat the total ow exiting state s0 is equal to the ow beginning at state s0 (always1) plus the ow entering state s0 via all possible combinations of states and actionsweighted by their probability. The objective, then, is to maximize the value of the



34mdpDUAL(M = hS;A; T; R; �i) := fSolve the following linear program:maximize: PaPsR(s; a)f [s; a]s.t.: Pa2A f [s0; a] = 1 + �Ps2SPa2A T (s; a; s0)f [s; a]; for all s0 2 Svariables: f [s; a] for all s 2 S and a 2 Aforeach s 2 S �(s) := argmaxa f [s; a]return evalMDP(�;M)g Table 2.5: Solving an mdp via the linear programming dual.ow.If the f [s; a] variables constitute a feasible solution to the dual (i.e., they jointlysatisfy the constraints), then PsPaR(s; a)f [s; a] can be interpreted as the sum of thestate values of the stationary stochastic policy that chooses action a in state s withprobability f [s; a]=Pa2A f [s; a]. The stochastic policy corresponding to the optimalvalue of the f [s; a] variables is optimal, as is any deterministic policy that choosesaction a in state s where f [s; a] > 0.2.3.4 Other MethodsThere are many other methods for solving mdps, including methods that acceleratethe convergence of value iteration by keeping explicit suboptimality bounds [15] andby grouping and regrouping states throughout the process [17].A di�erent approach is illustrated in modi�ed policy iteration [127], which has thebasic form of policy iteration with the di�erence that a successive-approximation algo-rithm (basically value iteration with the policy held �xed) is used to �nd an approx-imation to the value function for policy �t. The connection between value iterationfor mdps and successive approximation for evaluating stationary policies is explored insomewhat more detail in Chapter 3.2.3.5 Algorithms for Deterministic mdpsIn this section I show that deterministic mdps can be solved very e�ciently by present-ing a novel formulation that leads to a fast algorithm.



35determMDP(hS;A; N;R; �i) := fforeach s 2 S fforeach s0 2 S A1[s; s0] := �1foreach a 2 AA1[s;N(s; a)] := max(A1[s;N(s; a)];R(s; a))gforeach k 2 [2 : : : jSj] fforeach s 2 S fforeach s00 2 SAk[s; s00] := maxs02S(A1[s; s0] + �Ak�1[s0; s00])ggforeach s 2 SV [s] := maxs002S;k2[0:::jSj];l2[0:::jSj]Ak [s; s00] + �k+1Al[s00; s00]=(1 + �l)return Vg Table 2.6: Computing the value function for a deterministic mdp.A deterministic mdp is one in which T (s; a; s0) is either 0 or 1 for all s; s0 2 S,a 2 A. The notation N(s; a) represents the unique next state resulting from takingaction a from state s in a deterministic mdp. In this section, I present two algorithmsfor this problem; one runs e�ciently in parallel, and the other links the deterministicmdp problem to a general class of shortest-path problems, which results in an e�cientsequential algorithm.Papadimitriou and Tsitsiklis [116] give a dynamic-programming algorithm for solv-ing deterministic mdps e�ciently on a parallel machine. A sequential version of theiralgorithm (given in Table 2.6) runs in jSj2 + jSjjAj+ 2jSj4 time. Here Ak[s; s00] repre-sents the maximum reward on any path of length k from state s to state s00. The valuefor state s can then be expressed as the maximum value path from s to s00, and thenfrom s00 back to itself inde�nitely.Deterministic mdps can be cast in the closed semiring framework, and then solvedin polynomial time using a generic algorithm for solving closed semiring problems [40].In Section B.3, I de�ne the deterministic mdp closed semiring and prove that it hasthe necessary properties.Cormen, Leiserson and Rivest [40] present a generic algorithm for solving pathproblems on closed semirings. The algorithm can �nd the optimal value function for a



36deterministic mdp in jSj2 + jSjjAj+ jSj3 time.There are a few things to note about this new closed-semiring-based algorithm.First, its sequential run time is an improvement over the algorithm given by Papadim-itriou and Tsitsiklis, which was designed to prove that the problem is in NC. Second,casting the problem in a more general framework helps highlight the similarities be-tween deterministic mdps and general path-related problems. Third, any advances inthe area of algorithms for closed semirings immediately translate into advances fordeterministic mdps.2.4 Algorithmic AnalysisThis section provides complexity analyses of the algorithms described in the previoussection. For several of the bounds, it is necessary to assume that the components ofthe reward and transition matrices are represented by rational numbers. We use B todesignate the maximum number of bits needed to represent any numerator or denomi-nator of � or one of the components of T or R. Although none of the individual resultsin this section are novel, they are presented in a way that highlights the connectionsbetween linear programming, value iteration, and policy iteration, which allows me todraw some novel conclusions concerning their complexity.2.4.1 Linear ProgrammingThe linear program in Table 2.4 has jSjjAj constraints and jSj variables and the dualgiven in Table 2.5 has jSj constraints and jSjjAj variables. In both linear programs, thecoe�cients have a number of bits polynomial in B. There are algorithms for solvingrational linear programs that take time polynomial in the number of variables andconstraints as well as the number of bits used to represent the coe�cients [78, 79].Thus, mdps can be solved in time polynomial in jSj, jAj, and B. Descendants ofKarmarkar's algorithm [78] are considered among the most practically e�cient linear-programming algorithms.It is popular to solve linear programs by variations of Dantzig's simplex method [41],which works by choosing a subset of constraints to satisfy with equality and solving theresulting linear equations for the values of the variables. The algorithm proceeds byiteratively swapping constraints in and out of the selected subset, continually improvingthe value of the objective function. When no swaps can be made to improve the



37objective function, the optimal solution has been found. Simplex methods di�er as totheir choice of pivot rule, the rule for choosing which constraints to swap in and out ateach iteration.Although simplex methods seem to perform well in practice, Klee and Minty [81]showed that one of Dantzig's choices of pivoting rule could lead the simplex algorithmto take an exponential number of iterations on some linear programs. Since then, otherpivoting rules have been suggested and almost all have been shown to result in expo-nential run times in the worst case; none has been shown to result in a polynomial-timeimplementation of simplex. Note that these results may not apply to the use of linearprogramming to solve mdps: the set of linear programs resulting from mdps might notinclude the counterexample linear programs. Some progress has been made speedingup simplex-based methods, for instance, through the introduction of randomized ver-sions of pivoting rules [20], some of which have been shown to result in subexponentialcomplexity [75].The fact that the optimal value function for an mdp can be expressed as the solutionto a polynomial-size linear program has several important implications. First of all, itprovides a theoretically e�cient way of solving mdps. Secondly, it provides a practicalmethod for solving mdps using commercial-grade implementations. Thirdly, it puts aconvenient bound on the complexity of the optimal value function, as we will see in amoment.Theorem 2.1 Let M = hS;A; T;R; �i be an mdp with transitions, rewards, and thediscount factor expressed as rational numbers with numerator and denominator needingno more B bits. The components of the optimal value function for M are rationalnumbers with numerator and denominator needing no more B� bits, and B� is boundedby a polynomial in jSj, jAj, and B.Proof: It is well known [140, 162] that the solution to a rational linear program inwhich each numerator and denominator is represented using no more than B bits, canitself be written using rational numbers. The value of each variable in the solutioncan be represented in B� bits where B� is polynomial in the size of the linear programand B. The argument is based on a use of Cramer's rule to get a closed form for thesolution of a system of linear equations in terms of determinants. Bounding the sizeof the determinant is not hard and gives a bound on the size of the components of theoptimal solution.



38Because the optimal value function for M is the solution to just such a linearprogram, B� also bounds the number of bits needed to express the optimal valuefunction for M. �More on the relationship between linear programming and mdps appears in Sec-tion 2.4.3.2.4.2 Value IterationIn this section, we analyze the value-iteration algorithm described in Section 2.3.1.When the discount factor is less than one, the sequence of value functions produced inthe course of value iteration converges to the optimal value function [126].In the general case, each iteration takes jAjjSj2 steps. The focus of this section ison the number of iterations required to reach an optimal policy. Drawing from earlierwork, I will sketch an upper bound on the number of iterations and show that thereare mdps that take nearly that long to solve. More detailed discussions can be foundin papers by Tseng [162] (upper bound) and Condon [37] (lower bound).Lemma 2.1 The number of iterations required by value iteration to reach an optimalpolicy is bounded above by a polynomial in jSj, jAj, B, and 1=(1� �).Proof: The proof consists of 5 basic steps.1. Bound the di�erence between the initial value function and the optimal valuefunction, over all states.Let M = maxs2S;a2A jR(s; a)j, the magnitude of the largest immediate reward.Since P1t=0 �tM = M=(1� �), the value function for any policy will have com-ponents in the range [�M=(1� �);M=(1� �)]. Thus, any choice of initial valuefunction with components in this range cannot di�er from the optimal valuefunction by more than 2M=(1� �) at any state.2. Show that each iteration results in an improvement of a factor of at least � in thedistance between the current and optimal value functions.This is the standard \contraction mapping" result for mdps [126] that explainswhy the value functions in value iteration converge. It is proven in a general formin Chapter 3, though the proof for the mdp case is somewhat simpler.



393. Give an expression for the di�erence between current and optimal value functionsafter t iterations. Show how this gives a bound on the number of iterations requiredfor an �-optimal policy.After t iterations, the current value function can di�er from the optimal valuefunction by no more than 2M�t=(1 � �) at any state. Solving for t and usingthe result relating the Bellman error magnitude to the value of the associatedgreedy policy (Sections 2.3.1 and 3.3.2), we can express the maximum number ofiterations needed to �nd an �-optimal policy, i.e., one that has an expected valuewithin � of the optimal policy, ast� � B + log(1=�) + log(1=(1� �)) + 11� � : (2.2)4. Argue that there is a value for � > 0 for which an �-optimal policy is, in fact,optimal.Theorem 2.1 says that each component of the optimal value function for an mdpcan be written using B� bits, where B� is polynomial in jSj, jAj and B. Thismeans that if we can �nd a policy that is � = (1=2B�+1)-optimal, the policy mustbe optimal.5. Substitute the value of � from step 4 into the bound in step 3 to get a bound onthe number of iterations needed for an exact answer.Substituting for � in Equation 2.2 reveals that running value iteration for a num-ber of iterations polynomial in jSj, jAj, B, and 1=(1� �) guarantees an optimalpolicy. �This analysis shows that value iteration runs in pseudopolynomial time, and, for�xed discount factor �, it runs in polynomial time. Next, I examine a lower boundthat indicates that number of iterations can grow linearly with 1=(1��) log(1=(1��));showing that value iteration is not a polynomial-time algorithm in general.Lemma 2.2 Determining an optimal in�nite-horizon policy via value iteration takesa number of iterations proportional to 1=(1� �) log(1=(1� �)) in the worst case.Proof: Figure 2.2 illustrates a family of deterministic mdps, each of which consists of3 states, labeled s0, s1, and s2. From state s0, action a1 causes a transition to state s1
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s2Figure 2.2: Value iteration requires number of iterations proportional to 1=(1 ��) log(1=(1� �)) to generate an optimal solution for this family of mdps.and action a2 causes a transition to state s2. Action a1 has no immediate reward butonce in state s1, there is a reward of �1 for every timestep thereafter. Action a2 hasan immediate reward of ��2=(1� �) but state s2 is a zero-cost absorbing state.1The discounted in�nite-horizon value of choosing action a1 from state s0 is ��=(1��) whereas the value for action a2 is ��2=(1 � �) (larger, since 0 < � < 1). If weinitialize value iteration to the zero value function, the estimates of the values of thesetwo choices are: ��(1 � �t)=(1� �) and ��2=(1 � �) at iteration t > 1. Therefore,value iteration will continue to choose the suboptimal action until iteration t� where��(1� �t�)1� � < ��21� � ;or t� � log(1� �)log � � 12 log� 11� �� 1(1� �) :Thus, in the worst case, value iteration has a run time that grows faster than1=(1� �). �2.4.3 Policy IterationSince there are jAjjSj distinct policies, and each iteration of policy iteration strictlyimproves the approximation [126], it is obvious that policy iteration terminates in atmost an exponential number of steps.Each step of policy iteration consists of a value-iteration-like policy-improvementstep, which can be performed in O(jAjjSj2) arithmetic operations; and a policy-evalu-ation step, which can be performed in O(jSj3) operations by solving a system of linear1Note that these rewards can be speci�ed by B � log(�2=(1� �)) = O(log(1=(1� �))) bits.



41equations2. The total run time, therefore, hinges on the number of iterations neededto �nd an optimal policy.While direct complexity analyses of policy iteration have been scarce, several re-searchers have examined a simpli�ed family of variations of policy iteration, which Idiscuss in the following section.Sequential Improvement Policy IterationWhereas standard policy iteration de�nes the policy on step t to be�t(s) = argmaxa Qt(s; a)(see Table 2.3), sequential improvement policy iteration de�nes �t(s) = �t�1(s) for allbut one state. To be more precise, from the set of states s for which Qt(s; �t�1(s)) <maxaQt(s; a) (the previous action choice for s is no longer maximal), one is selectedand �t(s) is set to argmaxaQt(s; a).A detailed analogy can be constructed between the choice of state to update insequential improvement policy iteration and the choice of pivot rule to use in simplex.Denardo [44] shows that the feasible bases for the linear program in Table 2.4 are inone-to-one correspondence with the stationary deterministic policies.As with simplex, examples have been constructed that make sequential improve-ment policy iteration require an exponential number of iterations. Melekopoglou andCondon [107] examine the problem of solving cost-to-go mdps using several variationson the sequential-improvement-policy-iteration algorithm. In a version they call simplepolicy iteration, every state is labeled with a unique index and, at each iteration, thepolicy is updated at the state with the smallest index of those at which the policy canbe improved. They show that the family of examples suggested by Figure 2.3, froma particular starting policy, takes an exponential number of iterations to solve usingsimple policy iteration.An example can be constructed for each whole number n (n = 5 in Figure 2.3).There are 2n states and they are divided into three classes: decision states (labeleds0 through sn�1), random states (labeled s01 through s0n�1), and an absorbing state,sn. From each decision state si, there are two actions available: action a1 results in atransition to decision state si+1 and action a2 results in a transition to random state2In theory, policy evaluation can be performed faster, because it primarily requires inverting ajSj � jSj matrix, which can be done in O(jSj2:376) time [39].
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1–Figure 2.3: Simple policy iteration requires an exponential number of iterations togenerate an optimal solution to the family of mdps illustrated here.s0i+1. From random state s0i, there is no choice of action and instead a random transitiontakes place with probability 1=2 of reaching random state s0i+1 and probability 1=2 ofreaching decision state si+1. Actions from decision state sn�1 and random state s0n�1both result in a transition to the absorbing state sn. This transition has a reward of�1 in the case of decision state sn�1, whereas all other transitions have zero cost.The initial policy is �0(s) = a1 for all s 2 S, so every decision state si selects theaction that takes it to decision state si+1. In the unique optimal policy, ��(s) = a1for s 6= sn�2 and ��(sn�2) = a2. Although these two policies are highly similar,Melekopoglou and Condon show that simple policy iteration steps through 2n�2 policiesbefore arriving at the optimal policy.Although this example was constructed to hold for an undiscounted all-policies-proper criterion, it also holds under the discounted criterion regardless of discountrate. This is because the introduction of discount factor � > 0 causes the valuesof states si and s0i to be reduced by precisely a factor of �n�i�1, regardless of thepolicy, because every path from si or s0i that includes the non-zero reward has preciselythe same length. Thus, when the algorithm needs to decide whether the action fordecision state si should be changed, the introduction of � scales down the values of thesucceeding states equally, but does not change the relative order of the two choices.Parallel Improvement Policy IterationWhen the policy is improved at all states in parallel, as in standard policy iteration, thealgorithm no longer has a direct simplex analogue. It is an open question whether thiscan lead to exponential run time in the worst case or whether the resulting algorithmis guaranteed to converge in polynomial time. However, this version is strictly more



43e�cient than the simple policy iteration algorithm mentioned above.Let �t be the policy found after t iterations of policy iteration. Let V �t be thevalue function associated with �t. Let Vt be the value function found by value iteration(Table 2.2) starting with V �0 as an initial value function. Puterman [126] (Theorem6.4.6, discussed in Section B.1) showed that V �t(s) � Vt(s), for all s 2 S and there-fore that policy iteration converges no more slowly than value iteration for discountedin�nite-horizon mdps. When combined with a result by Tseng [162], presented here asLemma 2.1, that bounds the time needed for value iteration to �nd an optimal policy,this shows that policy iteration takes polynomial time, for a �xed discount factor. Fur-thermore, if the discount factor is included as part of the input as a rational numberwith the denominator written in unary, policy iteration takes polynomial time. Thismakes policy iteration a pseudopolynomial-time algorithm.Thus, whereas policy iteration runs in polynomial time for a �xed discount factor,simple policy iteration can take exponential time, regardless of discount factor. Thisobservation [96] stands in contrast to a comment by Denardo [44]. Denardo arguesthat block pivoting in simplex achieves the same goal as parallel policy improvement inpolicy iteration, and therefore that one should prefer commercial implementations ofsimplex to casual implementations of policy iteration. This argument is based on themisconception that one step of policy improvement on n states is equivalent in power ton iterations of simple policy iteration. In fact, one policy improvement step on n statescan correspond to as many as 2n iterations of simple policy iteration. Thus, policyiteration has not yet been ruled out as the preferred solution method for mdps|moreempirical study is needed.2.4.4 SummaryThe results of this section can be summarized by the following theorem.Theorem 2.2 To solve families of mdps with a �xed discount factor, value iteration,policy iteration, and linear programming take polynomial time, while simple policy it-eration can take exponential time. When the discount factor is included as part of theinput, value iteration takes pseudopolynomial time, policy iteration takes no more thanpseudopolynomial time, and linear programming takes polynomial time. No stronglypolynomial-time algorithm is known.Proof: The theorem follows from the preceding discussion. �



442.5 Complexity ResultsAt this time, there is no algorithm that solves general mdps in a number of arithmeticoperations polynomial in jSj and jAj (i.e., no known algorithm is strongly polynomial).Using linear programming, however, the problem can be solved in a number of opera-tions polynomial in jSj, jAj, and B, where B measures the number of bits needed towrite down the transitions, rewards, and discount factor.Papadimitriou and Tsitsiklis [116] analyzed the computational complexity of mdps.They showed that, under discounted, average-reward, and polynomial-horizon criteria,the problem is P-complete. This means that, although it is solvable in polynomial time,if an e�cient parallel algorithm were available, then all problems in P would be solvablee�ciently in parallel|an outcome considered unlikely by researchers in the �eld. Sincethe linear-programming problem is also P-complete, this result implies that in termsof parallelizability, mdps and linear programs are equivalent: a fast parallel algorithmfor one would yield a fast parallel algorithm for the other. It is not known whether thetwo problems are equivalent with respect to strong polynomiality: although it is clearthat a strongly polynomial algorithm for solving linear programs would yield one formdps, the converse is still open.Papadimitriou and Tsitsiklis also show that for deterministic mdps, optimal valuefunctions can be found e�ciently in parallel using a parallel implementation of the al-gorithm in Table 2.6 (i.e., the problem is in NC). This algorithm is strongly polynomial,suggesting that the presence of stochastic transitions makes mdps harder to solve, ingeneral.2.6 Reinforcement Learning in mdpsIn the previous sections, I explained how to �nd the optimal policy for an mdp givena complete description of its states, actions, rewards, and transitions. Now I describetwo reinforcement-learning algorithms for �nding optimal policies from experience. Al-though many other reinforcement-learning algorithms have been invented, I presentthese two algorithms because they are easily extended to work for decision-makingmodels in later chapters.



452.6.1 Q-learningQ-learning [173] can be viewed as a sampled, asynchronous method for estimatingthe optimal state-action values, or Q function, for an unknown mdp. The most basicversion of Q-learning keeps a table of values, Q[s; a], with an entry for each state/actionpair. The entry Q[s; a] is an estimate for the corresponding component of the optimalQ function, de�ned byQ�(s; a) = R(s; a) + �Xs0 T (s; a; s0)V �(s0);where V � is the optimal value function. The agent uses the experience it receives toimprove its estimate, blending new information into its prior experience according toa learning rate 0 < � < 1.The Q function is an ideal data structure for reinforcement learning. Recall thatthere are three fundamental functions in the value-iteration algorithm: the value func-tion V , the Q function Q, and the policy �. Given a model in the form of transition andreward matrices, any of these functions can be computed from any one of the others.Without access to T and R, however, only the Q function can be used to reconstructthe other two: V (s) = maxaQ(s; a) and �(s) = argmaxaQ(s; a). In addition, the Qfunction is not di�cult to estimate from experience.The experience available to a reinforcement-learning agent in a Markov decisionprocess environment can be summarized by a sequence of experience tuples hs; a; r; s0i.An experience tuple is a snapshot of a single transition: the agent starts in state s,takes action a, receives reward r and ends up in state s0.Given an experience tuple hs; a; r; s0i, the Q-learning rule isQ[s; a] := (1� �)Q[s; a] + ��r + �maxa0 Q[s0; a0]� :This creates a new estimate of Q�(s; a) by adding the immediate reward to the currentdiscounted estimate of V (s0). Because of the way r and s0 are chosen, the averagevalue of this new estimate is exactly R(s; a)+ �Ps0 T (s; a; s0)V (s0). In value iteration,we would assign this value directly to Q[s; a]. However, to get an accurate estimate,we need to average together many independent samples. The learning rate � blendsour present estimate with our previous estimates to produce a best guess at Q(s; a); itneeds to be decreased slowly for the Q values to converge to Q� [174, 163, 69].In Section 3.6.3, I prove that a generalization of Q-learning converges to the optimalQ function, under certain idealized assumptions.



462.6.2 Model-based Reinforcement LearningUsing Q-learning, it is possible to learn an optimal policy without knowing T or Rbeforehand, and without even learning these functions en route. Although it guaranteedto �nd optimal policies eventually and uses very little computation time per experience,Q-learning makes extremely ine�cient use of the data it gathers; it often requires agreat deal of experience to achieve good performance. In model-based reinforcementlearning, a model of the environment is unknown in advance, but is learned fromexperience. The learned model can then be used to �nd a good policy. This approachis especially important in applications in which computation is cheap and real-worldexperience costly.For mdps in which the state and action spaces are small enough, the learned modelcan be represented by three arrays, a count C[s; a] of the number of times action a hasbeen chosen in state s, a count Tc[s; a; s0] of the number of times this has resulted ina transition to state s0, and a sum Rs[s; a] of the resulting reward. Given experiencetuple hs; a; r; s0i, the arrays are updated byTc[s; a; s0] := Tc[s; a; s0] + 1Rs[s; a] := Rs[s; a] + rC[s; a] := C[s; a] + 1:Given these statistics, we estimate~T (s; a; s0) = Tc[s; a; s0]C[s; a] and ~R(s; a) = Rs[s; a]C[s; a] :The estimated model can be used in any of several ways to �nd a good policy.In the certainty-equivalence approach [86], an optimal policy for the estimated modelis found at each step. This makes maximal use of the available data at the costof high computational overhead. In the DYNA [155], prioritized-sweeping [111] andQueue-dyna [119] approaches, an estimated value function is maintained and updatedaccording to V [s] := maxa  ~R(s; a) + �Xs0 ~T(s; a; s0)V [s0]! :Because the agent has access to a model of the environment, updates can be performedat any state at any time.



47The convergence of model-based reinforcement learning for mdps was shown byGullapalli and Barto [59]. In Section 3.6.4, I present a related theorem for a broaderclass of models.Reinforcement learning is an exciting area and new algorithms and studies areappearing every day; this section barely scratches the surface of some of the more basicconcepts. For more information, see the survey by Kaelbling, Littman, and Moore [74].2.7 Open ProblemsMarkov decision processes have been studied intensely for almost 40 years. Even so,there are several important questions that remain unanswered.� Is there a \clean" polynomial-time algorithm for solving mdps, that is, one thatis not dependent on general linear programming? This question was raised byPapadimitriou and Tsitsiklis [116] several years ago, and is still open.� What is the worst-case time complexity of policy iteration? We have shown thatit runs in polynomial time for a �xed discount factor, but is there a polynomialupper bound on its run time for general mdps? Is there an exponential lowerbound? What is its complexity for deterministic mdps?� Which of the standard algorithms is most e�cient for solving the mdps encoun-tered in practice? Authorities appear to disagree as to whether policy itera-tion [126] or value iteration [44] is most e�ective. Recent empirical compar-isons [133] appear to favor modi�ed policy iteration. In the likely event that thebest choice of algorithm depends on the structure of the mdp being solved, arethere useful guidelines for choosing the best solution method given the problem?� Is there a computable optimal or near-optimal strategy for exploring an unknownmdp? There is an elegant theory of optimal exploration via allocation indices forsingle-state mdps [56]; is there some way of extending this theory to general mdps?Or is it possible to show that the problem is somehow inherently intractable?� There are representations for rewards and transitions that make it possible tospecify compact models for mdps with exponential-size state spaces [87, 21, 24,113]. What are the complexity issues? It is probably computationally intractable



48to �nd �-optimal policies using compact representations, but are there usefulsubclasses of mdps that can be solved e�ciently? This question is explored byBoutilier, Dean, and Hanks [23].� The dual linear-programming formulation of mdps has a ow-like interpretation.Algorithms for �nding min-cost ows have been studied intensively over the lastfew years. Are there any ow-like algorithms that can be tailored to solve mdpse�ciently?These questions are interesting in their own right, but take on even more importancein the context of the more advanced models addressed in later chapters. Resolutionof some of these open questions would shed light on questions that arise in the morecomplex frameworks as well.2.8 Related WorkIn this chapter, I gave an overview of the �elds of Markov decision processes andreinforcement learning. The mdp literature is quite substantial, having been gatheringmaterial for nearly 40 years. The early work of Bellman [13] and Howard [68] putthe �eld on a �rm footing. Later work by Bertsekas [15], Denardo [44], Derman [46],Puterman [126], and others, synthesized the existing material and added new results.Puterman's and Bertsekas' books [126, 16] give in-depth summaries of related work inthis �eld.Fundamental work in reinforcement learning and its relation to Markov decisionprocesses and dynamic programming includes Sutton's thesis [153], which introducedtemporal di�erence (TD) methods, of which Q-learning is a special case; Watkins'thesis [173], which developed Q-learning; and important surveys and syntheses byBarto [10], Singh [145], and others. A survey by Kaelbling, Littman, and Moore [74]gives a sense of the scope of the �eld.Results on the convergence of reinforcement-learning methods in mdps, most par-ticularly Q-learning, are primarily due to Watkins and Dayan [174], Tsitsiklis [163],and Jaakkola, Jordan, and Singh [69]. The latter two papers brought out the connec-tion between Q-learning and work in the �eld of stochastic approximation. John [71]gave a critique of the use of the asymptotic optimal policy as a target for learning.



49The convergence of model-based reinforcement-learning methods was studied by Gul-lapalli and Barto [59]. Hern�andez-Lerma and Marcus [64] examined the closely relatedproblem of �nding an optimal policy for an mdp with a model speci�ed by unknownparameters; they showed how to build an asymptotically optimal non-stationary policyfor such models.The linear programming formulation of mdps was identi�ed by D'Epenoux [45]and others (see Ho�man and Karp's paper [67] for a list). Kushner and Kleinman [88]explored reasons for preferring the dual formulation for some applications. Denardo [44]explicitly linked policy iteration to linear programming. Schrijver [140] provides anexcellent description of the theory and complexity of linear programming.The section on the complexity of algorithms for solving mdps is based on the workof Condon [37], Melekopoglou and Condon [107], and Tseng [162]. Condon's interestwas in a variation of the alternating Markov game model described in Chapter 4, butshe recognized that many of the bounds applied to analogous mdp algorithms as well.Papadimitriou and Tsitsiklis [116] initiated exploration into the computational com-plexity of solving mdps. Their work identi�ed deterministic models as being easier tosolve, from a worst-case complexity point of view, than their stochastic counterparts.2.9 ContributionsIn this chapter I presented many of the important results concerning mdps. I pro-vided a new analysis of policy iteration based on earlier work by Puterman [126] andTseng [162] which resulted in a new upper-bound analysis and new insight into the con-nection between policy improvement and value iteration. I extended Melekopoglou andCondon's [107] exponential lower bound for simple policy iteration to discounted mdps,and used this result in a summary of complexity results. I derived a fast sequentialalgorithm for deterministic mdps using the closed-semiring framework.Overall, there has been extensive work on Markov decision processes by researchersin operations research, dynamic programming, complexity theory, and algorithm anal-ysis. Existing theory and algorithms have been applied quite successfully to real-worldproblems in a wide array of domains (see Chapter 1 of Puterman's book [126] for asummary). In the next chapter, I will show that many of the basic results concerningmdps hold for a much broader class of models. It is an open question whether thereal-world success of mdps will be replicated for any of the other models in this class.



Chapter 3Generalized Markov DecisionProcessesPortions of this chapter have appeared in earlier papers: \A general-ized reinforcement-learning model: Convergence and applications" [97]with Szepesv�ari, and \Generalized Markov decision processes: Dynamic-programming and reinforcement-learning algorithms" [158] with Szepesv�ari.The Markov decision process model, discussed in the previous chapter, has a number ofimportant properties that make it easy to work with computationally. In this chapter,I introduce a new class of models that includes mdps as a special case, and show thatmany of the properties of mdps are shared by this more general class. The results arepresented in an abstract framework that make them easy to generalize to other models.3.1 IntroductionThis chapter builds on the ideas from the previous chapter, generalizing them whereverpossible. The model I develop here, the generalized Markov decision process includes allthe models discussed in the thesis: mdps, alternating Markov games, Markov games,and information-state mdps, as well as several less-studied models. The generalizedmdp model applies to several di�erent optimality objectives: �nite-horizon, all-policies-proper, expected discounted reward, and risk-sensitive discounted reward, to name afew. 50



51The main result is that all these models have a notion of an optimal value func-tion and an optimal policy, and that a general form of the value-iteration algorithmconverges to the optimal value function. I de�ne a notion of a greedy policy withrespect to a value function for generalized mdps and show how the Bellman error mag-nitude of the value function can be used to bound the suboptimality of this policy. For�nite-state-space models with deterministic greedy policies, I show that value iterationidenti�es an optimal policy in a pseudopolynomial number of iterations.I de�ne a version of policy iteration for generalized mdps, and show that the al-gorithm converges to an optimal policy; however, it is only useful for a subclass ofgeneralized mdps that obey additional properties. For a di�erent subclass of gener-alized mdps, I show that a form of Q-learning converges to the optimal Q function,under the appropriate conditions. I also show that a simple model-based reinforcement-learning algorithm converges to an optimal value function for all �nite-state generalizedmdps.3.2 Generalized Markov Decision ProcessesA generalized Markov decision process is a tuple hX ;U ; T; R;N;N;L; �i, where thefundamental quantities are a set of states X (perhaps in�nite), a �nite set of actionsU , a reward function R : X � U ! R, a transition function T : X � U ! �(X ), anext-state function N mapping X � U to �nite subsets of X , a discount factor �, asummary operator L that de�nes the value of transitions based on the value of thesuccessor states, and a summary operatorN that de�nes the value of a state based onthe values of all state-action pairs.The de�ning set of quantities for a generalized mdp is analogous to the de�ning setof quantities for an mdp, with a few noteworthy exceptions. First, the state space Xcan be in�nite. To prevent this from making the transition function unwieldy, everystate-action pair (x; u) can only lead to a �nite set of next statesN(x; u). The transitionprobabilities for taking action u in state x are zero for all states except those in the setN(x; u).The most dramatic di�erence between generalized mdps and mdps is the appearanceof the summary operators, N and L. I will de�ne them precisely; however, they canbe motivated by de�ning the appropriate operators for the mdp model.



52The equations de�ning the optimal value function in a mdp are, for each state s,V �(s) = maxa  R(s; a) + �Xs0 T (s; a; s0)V �(s0)! :This corresponds to the fact that an optimal policy in an mdp maximizes the expectedreward. In generalized mdps, the operator N takes the place of the max over actionsand the operator L takes the place of the expectation over next states. If we de�neMs0 (s;a)g(s0) =Xs0 T (s; a; s0)g(s0);and we de�ne Oa (s)f(s; a) = maxa f(s; a);then we can rewrite the equations for the optimal value function in an mdp asV �(s) =Oa (s) R(s; a) + �Ms0 (s;a)V �(s0)! : (3.1)The essence of the generalized Markov decision process framework is that wheneverthe operators L and N satisfy certain non-expansion properties, then Equation 3.1 isa characterization of the unique optimal value function. Both L and N are summaryoperators : L summarizes the value of a �nite set of next states for each state-actionpair, andN summarizes the value of a �nite set of actions for each state. Not all possiblede�nitions of L and N can be used to de�ne a generalized mdps; they must both benon-expansions for all states and state-action pairs, respectively. In the generalizedmodel, the value of a state is de�ned by the sum of rewards along a trajectory; however,we allow other types of summaries to take the place of maximization and expectationin the mdp model.For a summary operatorJ to be a non-expansion, it must satisfy two constraints.Given functions h and h0 over a �nite set I ,mini2I h(i) �Ki2I h(i) � maxi2I h(i) (3.2)and �����Ki2I h(i)�Ki2I h0(i)����� � maxi2I jh(i)� h0(i)j (3.3)The �rst condition states that the summary of a function must lie between the largestand smallest value of the function. The second condition states that the di�erence



53model/example reference Nu(x)f(x; u) Lx0(x;u)g(x0)disc. exp. mdp [174] maxu f(x; u) Px0 T (x; u; x0)g(x0)cost-based mdp [29] minu f(x; u) Px0 T (x; u; x0)g(x0)evaluating policy � [154] Pu �(x; u)f(x; u) Pu0 T (x; u; x0)g(x0)alt. Markov game [26] maxu or minu f(x; u) Px0 T (x; u; x0)g(x0)risk-sensitive mdp [62] maxu f(x; u) minx02N(x;u) g(x0)evaluating risk-sensitive � Pu �(x; u)f(x; u) minx02N(x;u) g(x0)exploration-sens. mdp [71] max�2P0 Pu �(x; u)f(�) Px0 T (x; u; x0)g(x0)Markov games [90] see text see textinformation-state mdp [117] maxu f(x; u) Px02N(x;u) T (x; u; x0)g(x0)Table 3.1: Examples of generalized Markov decision processes and their summary op-erators.between the summaries of two di�erent functions must be no larger than the largestdi�erence between the functions.Section C.1 explores di�erent summary operators and proves that a broad class ofoperators are non-expansions. For this chapter, the most important summary operatorsare expectation, max, min, and the minimax operator used in Markov games. Otherinteresting examples include operators for computing the median, midpoint, and meanof a set of values.It follows from the de�nitions above that �nite-state mdps, the continuous state-space mdps resulting from pomdps, and Markov games all satisfy the conditions ofbeing a generalized mdp. Whatever we prove about generalized mdps will apply toall of these models. In addition, several other models are in this class, some of whichare not typically thought of as being related to mdps. Table 3.1 lists some samplegeneralized mdps and their summary operators. In contrast to the previous chapter,some generalized mdps have optimal policies that are stochastic. Throughout thischapter, the notation �(x; u) is used to signify the probability that stochastic policy �chooses action u from state x.3.2.1 Acting OptimallyIn this section I develop a notion of optimal value functions, Q functions, and policies forgeneralized mdps. I casually use terms like \value function", \contraction mapping,"and \�xed-point theorem" without formally developing these concepts. Discussion ofthe theory behind contraction mappings and the space of value functions is given inPuterman's book [126] (Appendix C and Section 6.2.2). This background is probably



54not necessary for an understanding of the results presented here; however, it is criticalfor a formal treatment of this topic.To begin, de�ne the dynamic-programming operator H for a generalized mdp, afunction that takes a value function and creates a new value function, as[HV ](x) =Ou (x) R(x; u) + �Mx0 (x;u)V (x0)! : (3.4)The idea here is thatLx0 (x;u)V (x0) is the value of the state resulting from taking actionu from state x, R(x; u)+ �Lx0(x;u)V (x0) is the value obtained by taking action u fromstate x, and [HV ](x) is the value of state x as obtained by one-step lookahead. Formdps, H is the mathematical instantiation of a single step of value iteration. We canalso de�ne a dynamic-programming operator K that acts on Q functions,[KQ](x; u) = R(x; u) + �Mx0 (x;u)Ou0 (x0)Q(x0; u0):To simplify the presentation of some of the later results, we sometimes treatN andL as mapping operators. To be precise, for Q function Q and value function V ,[OQ](x) = Ou2U(x)Q(x; u);and [MV ](x; u) = Mx02N(x;u)(x;u)V (x0):Using this notation, and the obvious extension of the de�nitions of addition and scalarmultiplication, we can express [HV ] =N(R+ �LV ) and [KQ] = R+ �(LNQ):In what follows, it is helpful to establish a notion of distance between two valuefunctions. For value functions V1 and V2, we de�nekV1 � V2k = supx jV1(x)� V2(x)j;where k � k is a distance function known as the L1 norm or max norm. Intuitively,to �nd the distance between two value functions, we �nd the state where they di�erthe most and call the di�erence between values at that state the distance between thevalue functions. We can extend the notion of distance to cover Q functions as well. IfQ1 and Q2 are Q functions,kQ1 �Q2k = supx maxu jQ1(x; u)�Q2(x; u)j:



55The non-expansion properties of N and L lead to a convenient property of theseoperators with regard to distances.Lemma 3.1 Let Q1 and Q2 be Q functions and V1 and V2 be value functions. ThenkNQ1 �NQ2k � kQ1 � Q2k and kLV1 �LV2k � kV1 � V2k:Proof: Using the fact that N and L are non-expansions, and Condition 3.3 for non-expansions, we havekOQ1 �OQ2k = supx j[OQ1](x)� [OQ2](x)j� supx maxu jQ1(x; u)� Q2(x; u)j = kQ1 � Q2k;and kMV1 �MV2k = supx maxu j[MV1](x; u)� [MV2](x; u)j� supx maxu maxx02N(x;u) jV1(x0)� V2(x0)j� supx0 jV1(x0)� V2(x0)j = kV1 � V2k: �It is this distance-based bound that will be most convenient for proving resultsabout the dynamic-programming operators H and K. Here is the �rst.Lemma 3.2 The H and K operators are contraction mappings if � < 1. In particular,if V1 and V2 are value functions and Q1 and Q2 are Q functions, kHV1 � HV2k ��kV1 � V2k, and kKQ1 �KQ2k � �kQ1 � Q2k.Proof: We address the H operator �rst. By Lemma 3.1 and the de�nition of H , wehave kHV1�HV2k = kO(R+ �MV1)�O(R+ �MV2)k� k(R+ �MV1)� (R+ �MV2)k� �kMV1 �MV2k� �kV1 � V2k:Lemma 3.1 and the de�nition of K give uskKQ1 �KQ2k = �kO[MQ1]�O[MQ2]k� �kMQ1 �MQ2k� �kQ1 �Q2k:



56�Because the operator H is guaranteed to bring two value functions closer together,and the operator K is guaranteed to bring two Q functions closer together, they arecalled contraction mappings .A weighted max norm is de�ned by kV1�V2kw = supx jV1(x)�V2(x)j=w(x) for valuefunctions and kQ1�Q2kw = supxmaxu jQ1(x; u)�Q2(x; u)j=w(x) for Q functions. Theintroduction of the weighting function w makes it possible for states to contribute dif-ferently to the max norm; states with larger weights count less than states with smallerweights. Operator H is a contraction mapping with respect to some weighted maxnorm w if and only if kHV1�HV2kw � �wkV1�V2kw for some �w < 1. In mdps, evenif the discount factor is 1, if all policies are guaranteed to reach a zero-cost absorbingstate (the all-policies-proper case), then the dynamic-programming operator H is acontraction mapping with respect to some weighted max norm [18, 162]. Section C.2provides a new proof of this fact in the context of �nite-state generalized mdps.Lemma 3.3 For any generalized mdp in whichMx0 (x;u)g(x0) =Xx0 T (x; u; x0)g(x0);if � = 1 but all policies are guaranteed to reach a zero-reward absorbing state (theall-policies-proper case), then the H and K operators are contraction mappings withrespect to some weighted max norm.Proof: The theorem follows from the preceding discussion. �Because all the results in this chapter are stated in terms of norms, they apply toany update rule as long as the dynamic-programming operator under consideration isa contraction mapping; in particular, they cover generalized mdps with either � < 1or the all-policies-proper condition. In the latter case, I abuse notation and use � tosignify the constant of contraction in the appropriate weighted max norm (i.e., �w).The fact that the optimal value functions are well de�ned does not imply that they aremeaningful; that is, it may be the case that the optimal value function is not the sameas the value function for some appropriately de�ned optimal policy. The results in thissection apply to value functions de�ned by Bellman equations; to relate the Bellmanequations to a notion of optimality, it is necessary to put forth arguments such as aregiven in Puterman's book [126].



57Theorem 3.1 For any generalized Markov decision process, if � < 1 then there is aunique V �, called the optimal value function, such that V � = HV �; a unique Q�, calledthe optimal Q function, such that Q� = KQ�; and an optimal (possibly stochastic)policy, ��, such that V �(x) = Pu ��(x; u)Q�(x; u). This is also true if � = 1, theall-policies-proper condition holds, and an expected value criterion is used.Proof: Combining Lemmas 3.2 and 3.3, the H and K operators for the generalizedmdp are contraction mappings with respect to some weighted max norm. The existenceand uniqueness of V � and Q� follow directly from the Banach �xed-point theorem.We can de�ne the optimal value function and the optimal Q function in terms ofeach other: V � =OQ�; (3.5)and Q� = R+ �LV �. These equations can be shown to be valid from the de�nitionsof K and H and the uniqueness of Q� and V �.By Condition 3.2 of N and Equation 3.5,minu Q�(x; u) � V �(x) � maxu Q�(x; u):Therefore, it is possible to de�ne a stochastic policy �� such thatV �(x) =Xu ��(x; u)Q�(x; u): �The use of the word optimal is somewhat strange since V � need not be the largestor smallest value function in any sense; it is simply the �xed point of the dynamic-programming operator H . This terminology comes from the Markov decision processmodel, where V � is the largest value function of all policies and is retained for consis-tency.3.2.2 Exploration-sensitive mdpsOne interesting use of generalized mdps is as a way to formalize John's [71] exploration-sensitive learning algorithm. John considered the implications of insisting that agentssimultaneously act to maximize their reward and explore their environment; he foundthat better performance can be achieved if a policy incorporates the condition of per-sistent exploration. In John's formulation, the agent is forced to adopt a policy from



58a restricted set; in one example, the agent must choose a stochastic stationary policythat selects actions at random 5% of the time. The random actions ensure that theagent will experience all actions in all states in�nitely often; therefore, the agent will beable to detect if its model of the environment is wrong, or if the environment changes,or the e�ects of any non-Markovian dependencies that may exist.John's approach requires that the de�nition of optimality be changed to reect therestriction on policies. The optimal value function is given by V �(x) = sup�2P V �(x),where P is the set of permitted stationary policies, and the associated Bellman equa-tions are V �(x) = sup�2PXu �(x; u) R(x; u) + �Xx0 T (x; u; x0)V �(x0)! ;which corresponds to a generalized mdpmodel withLx0(x;u)g(x0) =Px0 P (x; u; x0)g(x0)and Nu(x)f(x; u) = sup�2PPu �(x; u)f(x; u). Because �(x; �) is a probability distri-bution for any given state x, N is a non-expansion and, thus, the model can properlybe considered a generalized mdp.13.3 Algorithms for Solving Generalized mdpsThe results of the previous section show that any generalized mdp has an optimal valuefunction, Q function, and policy, and that these quantities can be de�ned in terms ofeach other. In this section, I discuss methods for �nding these quantities.3.3.1 Value IterationThe method of value iteration, or successive approximations [13, 143], is a way ofiteratively computing arbitrarily good approximations to the optimal value functionV �.A single step of the process starts with an estimate, Vt�1, of the optimal valuefunction, and produces a better estimate Vt = HVt�1. I will show that applying Hrepeatedly causes the value function to become as close as desired to optimal.Lemma 3.4 Let Vt be the value function produced in the tth iteration of value iteration.After t steps of value iteration on a generalized mdp, kVt � V �k � �tkV0 � V �k.1One additional condition is that the set P be compositional; if a separate policy is selected for eachaction, the combined policy must still be in P.



59Proof: We proceed by induction. The base case, kV0 � V �k � �0kV0 � V �k, is selfevident. By the inductive hypothesis we seekVt � V �k = kHVt�1 �HV �k � �kVt�1 � V �k � ��t�1kV0 � V �k = �tkV0 � V �k:�In some circumstances, it is helpful to state this result without reference to thedetails of the initial value function V0. LetM = supxmaxu jR(x; u)j= kRk. If the agentreceived a reward of M on every step, its total expected reward would be P1i=0 �iM =M=(1��). The same result holds for the all-policies-proper case, although the reasoningis a bit di�erent [162]. Thus, the zero value function, V0 = 0 cannot di�er from theoptimal value function by more than M=(1 � �) at any state. This also implies thatthe value function for any policy cannot di�er from the optimal value function by morethan 2M=(1 � �) at any state. This allows us to restate Lemma 3.4 in a form thatbounds the number of iterations needed to �nd a �-optimal value function.Theorem 3.2 Let V0 be any value function such that jV0(x)j � M=(1 � �) for allx 2 X , and let t� = & log(M) + log(1� ) + log( 11�� )log( 1� ) ' :Running value iteration for t� or more steps results in a value function V such thatkV � V �k � �.Proof: This follows from simple algebraic manipulation of the bounds given in thissection. �3.3.2 Computing Near-optimal PoliciesIn this section, we relate arbitrary generalized mdps to the speci�c generalized mdpresulting from using the summary operator N�;u (x)f(x; u) = Pu �(x; u)f(x; u), where� is some stationary probabilistic policy.Condition 3.2 can be interpreted as saying that every time theN operator is applied,it must be equivalent to applying N� for some probabilistic policy �. Let V be somevalue function. We de�ne the myopic policy with respect to V to be any � : X ! �(U)such that [HV ](x) =Xu �(x; u) �R(x; u) + �[MV ](x; u)� :



60The existence of such a � follows from the de�nition of H given in Equation 3.4 andCondition 3.2; it need not be unique. Myopic policies are simply greedy policies,generalized to models in which reward is not maximized.For a policy �, de�ne H� to be the dynamic-programming operator resulting fromthe generalized mdp that shares its state space, action space, transition function, rewardfunction, next state function,L operator, and discount factor with the generalized mdpin question, but uses N� in place of N.Because N� is a non-expansion, the new model is itself a generalized mdp. There-fore, we can de�ne V � to be the unique value function satisfying V � = H�V � , whichwe call the value function for policy �.For mdps, the distance between the value function for any myopic policy withrespect to V and the optimal value function can be bounded as a function of theBellman error magnitude, de�ned as kV �HV k; the result can be shown to apply togeneralized mdps, after a few basic results are established.Lemma 3.5 Let V be a value function, V � be the value function for the myopic policywith respect to V , and V � be the optimal value function. Let � be the Bellman errormagnitude for V , � = kV �HV k. Then, kV �V �k � �=(1��) and kV �V �k � �=(1��).Proof: This result follows easily from the contraction property of H and the triangleinequality , which states that the distance from a to c can not be larger than the distancefrom a to b to c (for any b).First, note that kV � V �k � kV � HV k + kHV � V �k = kV � HV k + kH�V �H�V �k � � + �kV � V �k. Grouping like terms gives kV � V �k � �=(1� �).Similarly, kV � V �k � kV � HV k+ kHV � V �k = kV �HV k + kHV �HV �k �� + �kV � V �k. Grouping like terms gives kV � V �k � �=(1� �). �By the de�nitions of H and �, HV = N(R + �LV ) = N�(R + �LV ) andH�V � = N�(R + �LV �). We can use these equations to help bound the distancebetween V � and the V � in terms of �, the Bellman error magnitude.Theorem 3.3 Let V be a value function, V � be the value function for the myopicpolicy with respect to V , and V � be the optimal value function. Let � be the Bellmanerror magnitude for V , � = kV �HV k. Then, kHV �V �k � ��=(1��), kHV �V �k ���=(1� �), and kV � � V �k � 2��=(1� �).



61Proof: The third statement follows from an application of the triangle inequality tothe �rst two statements, which we prove now. First,kHV � V �k = kH�V �H�V �k � �kV � V �k � ��=(1� �):Similarly, kHV � V �k = kHV �HV �k � �kV � V �k � ��=(1� �);completing the proof. �This result is concerned with values and not immediate rewards, so the total rewardearned by a myopic policy is not too far from optimal. The signi�cance of the result isthat a value-iteration algorithm that stops when the Bellman error magnitude is lessthan or equal to � � 0 will produce a good policy with respect to �.3.3.3 Policy IterationIn this section, I de�ne a generalized version of policy iteration. Applied to mdps, it isequivalent to Howard's policy-iteration algorithm [68] and applied to Markov games,it is equivalent to Ho�man and Karp's policy-iteration algorithm [67].Unlike value iteration, the convergence of policy iteration seems to require thatvalue is maximized with respect to some set of possible actions. To capture this, wewill restrict our attention to generalized mdps in which N can be written[OQ](x) = max�2R [O�Q](x) (3.6)where R is a compact set and N� is a non-expansion operator for all � 2 R. The ideais that R is some set of parameters or choices from which the best choice is selected.Note that any operator can be written this way by de�ning N� = N; the choice ofparameterization ultimately determines the e�ciency of the resulting policy-iterationalgorithm. A generalized mdp satisfying Equation 3.6 and the monotonicity propertydiscussed in Section 3.4.2 is called a maximizing generalized mdp.The term �-myopic policy refers to a mapping ! : X ! R such that[O!(x)Q](x) = max�2R [O�Q](x);for all x 2 X . The value function for a �-myopic policy !, V !, is de�ned as the optimalvalue function for the generalized mdp where N!(x) is used as the summary operatorin state x.



62We characterize policy iteration as follows. Start with a value function V andcompute its �-myopic policy ! and !'s value function V !. If kV � V !k � �, terminatewith V as an approximation of the optimal value function. Otherwise, start over, afterassigning V := V ! .We can apply this algorithm to mdps by taking R to be the set of actions and N�to select the Q value for the action corresponding to �:[OQ](x) = max�2R [O�Q](x) = maxu2U Q(x; u):Because computing V ! is equivalent to evaluating a �xed policy and can be solved byGaussian elimination, the resulting policy-iteration algorithm (which is just standardpolicy iteration) is useful. In Markov games, we take R to be the set of probabilitydistributions over agent actions and N� to be a minimum over opponent actions of the�-weighted expected Q value. As we will see in Chapter 5, computing V ! is equivalentto solving an mdp, which is easier than �nding V � directly.In Section 3.4.2, I argue that generalized policy iteration converges to an optimalpolicy under particular restrictions on N�.3.4 Algorithmic AnalysisThis section provides additional details on how value iteration performs on speci�cclasses of generalized mdps, and on the convergence of policy iteration.3.4.1 Value IterationAlthough value iteration converges to the optimal value function (Lemma 3.4), andthe suboptimality of the myopic policies generated along the way can be bounded(Theorem 3.3), it is not guaranteed to identify the optimal policy in a �nite number ofiterations.Let Vt be the value function produced on the tth iteration of value iteration. Thissection shows that, for a certain class of �nite-state-space generalized mdps, the greedypolicy with respect to Vt� is optimal, for a �nite t�.Let X be �nite, and let B be a problem-speci�c parameter, for example, a boundon the number of bits needed to represent components of T and R. We say thata quantity is polynomially bounded if there is some polynomial in jX j, jUj, B, andlog(1=(1� �)) that grows asymptotically faster than that quantity. We say a quantity



63is pseudopolynomially bounded if it is polynomially bounded with respect to jX j, jUj,B, and 1=(1� �)We know that N and L have the property that for all Q and V , [NQ](x) =Pu �(x; u)Q(x; u) and [LV ](x; u) = Px02N(x;u) �(x; u; x0)V (x0) for some probabilitydistributions � and � . If, for all Q and V , � and � can be expressed using only rationalnumbers with a polynomially bounded number of bits, then we say that N and L arepolynomially expressible.There are a few important polynomially expressible operators: maximum, mini-mum, selection according to a deterministic policy, and expectation according to a setof polynomially bounded probabilities. The operators in the risk-sensitive mdp modeldescribed by Heger [62] are polynomially expressible. The next theorem tells us thatvalue iteration can be used to �nd optimal policies in pseudopolynomial time for modelsusing these operators.Theorem 3.4 If X is �nite, the number of bits needed to express R(x; u) for all xand u is polynomially bounded, and N and L are polynomially expressible, then anymyopic policy with respect to Vt� is optimal, for some pseudopolynomially bounded t�.Proof: SinceN andL are polynomially expressible, there must be some optimal policy�� and a function �� such that [NQ�](x) = Pu ��(x; u)Q�(x; u) and [LV �](x; u) =Px02N(x;u) ��(x; u; x0)V �(x0), where the number of bits needed to express �� and �� arepolynomially bounded.By an argument similar to that in the proof of Theorem 2.1, this implies that thereis some polynomially bounded number B� such that the number of bits needed toexpress each component of V � and Q� is bounded by B�.The rest of the argument parallels that in Lemma 2.1, using the contraction-mapping property of H and Theorem 3.3. The basic idea is that, eventually, Vt isso close to V �, that the amount of reward lost by following a myopic policy with re-spect to V t is smaller than the precision needed to specify V �. At that point, anymyopic policy must be optimal. �3.4.2 Policy IterationIn this section, I argue that the policy-iteration algorithm de�ned in Section 3.3.3converges to the optimal value function. To do this, we will need to place an additional



64monotonicity condition on the associated summary operators.Consider a maximizing generalized mdp in which the optimal value function isde�ned by V �(x) =Ou (x) R(x; u) + �Mx0 (x;u)V �(x0)!and Ou (x)f(x; u) = max�2ROu �;(x)f(x; u)for some compact set R. Assume L and N� are non-expansions for all � 2 R. Theo-rem 3.1 gives conditions under which V � is well de�ned. Further assume that L andN� obey an additional monotonicity condition: if g(x0) � g0(x0), thenMx0 (x;u)g(x0) �Mx0 (x;u)g0(x0)and similarly for N�.Not all non-expansion operators satisfy the monotonicity condition. However, allthe summary operators discussed in Section C.1, and therefore all the operators ofimmediate interest, do satisfy this additional condition. The monotonicity of theseoperators is proven in Section C.3.The policy-iteration algorithm can be stated as follows. Let !0 be an arbitraryfunction mapping X to R. At iteration t, let !t�1 be the �-myopic policy with respectto V !t . Terminate when kV !t � V !t�1k is small enough.To show that policy iteration converges, I appeal to two important results. The�rst is that V �(x) = max!:X!RV !(x);meaning that the optimal value function dominates or equals the value functions forall possible values of !. The second is a generalization of a result of Puterman [126]that shows that the iterates of policy iteration are bounded below by the iterates ofvalue iteration. From these two facts, we can conclude that policy iteration convergesto the optimal value function, and furthermore, that its convergence is at least as fastas the convergence of value iteration.Theorem 3.5 LetV �(x) = max�2ROu �;(x) R(x; u) + �Mx0 (x;u)V �(x0)!



65and, for all ! : X ! R,V !(x) =Ou !(x);(x;u) R(x; u) + �Mx0 (x;u)V !(x0)!where N� and L are non-expansions and monotonic. Then, for all x 2 X ,V �(x) = max!:X!RV !(x):Proof: This result is proven in Section C.4. �Lemma 3.6 Let Ut be the iterates of value iteration and Vt be the iterates of policyiteration, starting from the same initial value function. For all t and x 2 X , Ut(x) �Vt(x) � V �(x).Proof: The proof is Section C.4. �Theorem 3.6 If X is �nite, the number of bits needed to express R(x; u) for all xand u is polynomially bounded, and N and L are polynomially expressible, then policyiteration converges in a pseudopolynomial number of steps.Proof: The theorem follows from Lemma 3.6, which shows that policy iteration con-verges no more slowly than value iteration, combined with Theorem 3.4, which showsthat value iteration converges in a pseudopolynomial number of iterations under theconditions of the theorem. �Stronger results are available on the convergence rate of policy iteration [125, 126]that would lead to better complexity bounds than those of Theorem 3.6; however, thesetheorems do not appear to yield useful bounds for mdps with �nite state and actionspaces. This is discussed in Section B.2.It is worth noting that the implementation of policy evaluation in �nite-state-spacegeneralized mdps depends on the de�nition ofL. When the expected-reward objectiveis used, as it is in mdps, policy evaluation can be implemented using a linear-equationsolver. When L is maximization or minimization, as it is in some games or under arisk-sensitive criterion, policy evaluation is equivalent to solving an mdp and can beaccomplished using linear programming (or policy iteration!).



663.5 Complexity ResultsThe di�culty of solving particular generalized mdps depends critically on the de�nitionsof N and L and whether X is �nite. I present complexity results for speci�c modelsin other chapters.3.6 Reinforcement Learning in Generalized mdpsIn this section, I assume that the summary operators N and L are de�ned in termsof the transition function T and the reward function R. If both T and R are knownin advance, the techniques I described earlier in this chapter can be used to computeoptimal or near-optimal policies. In this section, I describe how reinforcement-learningalgorithms can use experience to converge to optimal policies when T and R are notknown in advance.Section 2.6 described two di�erent families of reinforcement-learning algorithms:model-free (Q-learning), and model-based. My plan in this section is to introducea mathematical framework that captures algorithms from both of these classes, todescribe a new stochastic-approximation theorem that provides conditions under whichthese algorithms converge, then to show how the general theorem can be applied toprove the convergence of model-free and model-based reinforcement-learning algorithmsfor generalized mdps.A mathematically more general presentation of these results is available [97, 158];the goal in this section is to present the results as intuitively as possible, yet in su�cientgenerality and rigor to be useful in proving theorems presented in later chapters.3.6.1 A Generalized Reinforcement-Learning MethodA wide variety of learning algorithms can be viewed in the following way. The algorithmbegins with an initial approximation V0 of the optimal value function V �. With eachnew experience, an update rule is applied to the current approximation Vt to producea new approximation Vt+1. The update rule can change as a function of time or as afunction of the experience gathered.The simplest update rule to analyze is the dynamic-programming operatorH , whichI discussed earlier in this chapter. To use H to compute V �, we de�ne Vt+1 = HVt; theresulting algorithm is value iteration, and its convergence properties were discussed in



67Section 3.3.1.As an important step towards analyzing Q-learning-like update rules, we will con-sider a learning rule that, in the limit, converges to HV for a �xed value function V .We consider the family of �nite-state generalized mdps with no choice of action andLx0(x;u)g(x0) = Px0 T (x; u; x0)g(x0), that is, models with an expected value criterion.For this model, [HV ](x) = R(x; u)+�Px0 T (x; u; x0)V (x0), where u is the only possibleaction. Q-learning, applied to this model, begins with an initial value function U0 and,given experience tuple hxt; ut; x0t; rti at time t, de�nesUt+1(xt) = (1� �t(xt))Ut(xt) + �t(xt) �rt + �V (x0t)� ;and Ut+1(x) = Ut(x) for all x 6= xt. The idea behind the learning rule is that Ut(x)contains an estimate of the value R(x; u) + �Px0 T (x; u; x0)V (x0). If the learning rate� is decayed properly, Ut converges to HV .We can capture the learning rule in the form of an operatorHt(U; V )(x) = 8<: (1� �t(xt))U(x) + �t(xt)(rt + �V (x0t)); if x = xtU(x); otherwise.and de�ne Ut+1 = Ht(Ut; V ): (3.7)Conditions for the convergence of Ut to HV are provided by classic stochastic-approx-imation theory [130].A more advanced reinforcement-learning problem is computing V � = HV �, the�xed point of H , instead of the value of HV for a �xed value function. Consider thenatural learning algorithm that begins with a value function V0 and de�nesVt+1 = Ht(Vt; Vt); (3.8)where Ht is as de�ned above. In a sense, this algorithm is computing HV , where V isa moving target. It combines the simple learning algorithm in Equation 3.7 with valueiteration, and, as we will see shortly, converges to V �.In what follows, we will use Ht(U; V ) to stand for a generic learning rule; it is notdi�cult to express model-based reinforcement-learning algorithms and Q-learning-likealgorithms in this form. We will also see that there are very reasonable conditionsunder which the learning rule captured by Equation 3.8 is guaranteed to converge toV �.



683.6.2 A Stochastic-Approximation TheoremThe fundamental property that we will require of a sequence of operators Ht(U; V ) isthat it can be used to approximate the value of HV by holding V �xed and iteratingon U ; this was illustrated in Equation 3.7. We say that Ht approximates H at V ifiteration on U converges to HV with probability 1 uniformly over X .The following theorem shows that, under the proper conditions, we can use anoperator Ht to estimate the optimal value function V �; it is due to Szepesv�ari andLittman [158].Theorem 3.7 Let H be a contraction mapping with respect to a weighted max normwith �xed point V �, and let Ht approximate H at V �. Let V0 be an arbitrary valuefunction, and de�ne Vt+1 = Ht(Vt; Vt). If there exist functions 0 � Ft(x) � 1 and0 � Gt(x) � 1 satisfying the conditions below with probability one, then Vt convergesuniformly to V � with probability 1:1. for all value functions U1 and U2 and all x 2 X ,j(Ht(U1; V �))(x)� (Ht(U2; V �))(x)j � Gt(x)kU1 � U2k;2. for all value functions U and V , and all x 2 X ,j(Ht(U; V �))(x)� (Ht(U; V ))(x)j � Ft(x)kV � � V k;3. for all k > 0, �nt=kGt(x) converges to zero uniformly in x as n increases; and,4. there exists 0 � � < 1 such that for all x 2 X and large enough t,Ft(x) � �(1� Gt(x)):Proof: The theorem is proven in Section C.5. �Next, I describe some of the intuition behind the statement of the theorem and itsconditions.



69The iterative approximation of V � is performed by computing Vt+1 = Ht(Vt; Vt).Because of Conditions 1 and 2, Gt(x) is the extent to which the estimated value functiondepends on its present value and Ft(x) � 1�Gt(x) is the extent to which the estimatedvalue function is based on \new" information.In some applications, such as Q-learning, the contribution of new information needsto decay over time to ensure that the process converges. In this case, Gt(x) needs toconverge to one. Condition 3 allows Gt(x) to converge to 1 as long as the convergenceis slow enough to incorporate su�cient information for the process to converge to theright value.Condition 4 links the values of Gt(x) and Ft(x) through some quantity � < 1.If it were somehow possible to update the values synchronously over the entire statespace, the process would converge to V � even when � = 1. In the more interestingasynchronous case, when � = 1, the long-term behavior of Vt is not immediately clear;it may even be that Vt converges to something other than V �. The requirement that� < 1 ensures that the use of outdated information in the asynchronous updates doesnot cause a problem in convergence.One of the most noteworthy aspects of this theorem is that it shows how to reducethe problem of approximating V � to the problem of approximating H at V �; in manycases, the latter is much easier to achieve and also to prove. For example, the theoremmakes the convergence of Q-learning a consequence of the simpler Robbins-Monrotheorem [130].3.6.3 Generalized Q-learning for Expected Value ModelsA Q-learning algorithm can be de�ned for the family of �nite-state generalized mdpswith Lx0(x;u)g(x0) = Px0 T (x; u; x0)g(x0), that is, models with an expected value cri-terion. Given experience tuple hxt; ut; x0t; rti at time t and an estimate Qt(x; u) of theoptimal Q function, letQt+1(xt; ut) := (1� �t(xt; ut))Qt(xt; ut) + �t(xt; ut) rt + �Ou (x0t)Qt(x0t; u)! :WhenNu(x)f(x; u) = maxu f(x; u), this is precisely the Q-learning algorithm describedin Section 2.6.1; however, a di�erent de�nition of N captures the minimax-Q learningalgorithm described in Section 5.6.1.



70In this section, I derive the assumptions necessary for this learning algorithm tosatisfy the conditions of Theorem 3.7 and therefore converge to the optimal Q values.The dynamic-programming operator de�ning the optimal Q function is[KQ](x; u) = R(x; u) + �Xx0 T (x; u; x0)Ou0 (x0)Qt(x0; u0)):The Q-learning rule is equivalent to the approximate dynamic-programming operatorHt(U; V )(x; u)= 8<: (1� �t(xt; ut))U(x; u) + �t(xt; ut)(rt + �Nu(x0t)V (x0t; u)); if x = xt, u = utU(x; u); otherwise.If� N is a non-expansion and does not depend on T or R,� x0 is selected according to the probability distribution de�ned by T (x; u; x0),� the expected value of r given x and u is R(x; u),� r has �nite variance,� every state-action pair is updated in�nitely often, and� the learning rates are decayed so thatXt:xt=x;ut=u �t(x; u) =1 and Xt:xt=x;ut=u �t(x; u)2 <1uniformly over X � U with probability 1,then a standard result from the theory of stochastic approximation [130] can be used toshow that Ht approximates H . That is, this method of using a decayed, exponentiallyweighted average correctly computes the average one-step reward.Let Gt(x; u) = 8<: 1� �t(x; u); if x = xt and u = ut;0; otherwise,and Ft(x; u) = 8<: ��t(x; u); if x = xt and u = ut;0; otherwise.



71These functions satisfy the conditions of Theorem 3.7 (Condition 3 is implied by therestrictions placed on the sequence of learning rates �t).Theorem 3.7 therefore implies that the generalized Q-learning algorithm convergesto the optimal Q function with probability 1. The convergence of Q-learning for dis-counted mdps and alternating Markov games follows easily from this result. In addition,this result also applies to models satisfying the all-policies-proper condition by using aweighted max norm.It is also worth noting that a Q-learning-type algorithm can be de�ned for general-ized mdps under a worst-case-reward criterion [62]. Theorem 3.7 can be used to provethe convergence of this algorithm [158].3.6.4 Model-based MethodsThe fundamental assumption of reinforcement learning is that the reward and tran-sition functions are not known in advance. Although Q-learning shows that optimalvalue functions can sometimes be estimated without ever explicitly learning R andT , learning R and T makes more e�cient use of experience at the expense of addi-tional storage and computation. The parameters of R and T can be learned fromexperience by keeping statistics on the expected reward for each state-action pair andthe proportion of transitions to each next state for each state-action pair. In model-based reinforcement learning, R and T are estimated on-line, and the value functionis updated according to the approximate dynamic-programming operator derived fromthese estimates. Theorem 3.7 can be used to prove the convergence of a wide array ofmodel-based reinforcement-learning methods.In this section, we assume that L may depend on T and/or R, but N may not.Although this is the more common case, it is possible to extend the argument belowto allow N to depend on T and R as well.In model-based reinforcement learning, R and T are estimated by the quantitiesRt and Tt, and Lt is an estimate of the L operator de�ned using Rt and Tt. Aslong as every state-action pair is visited in�nitely often, there are a number of sim-ple methods for computing Rt and Tt that converge to R and T . A bit more care isneeded to ensure that Lt converges to L, however. For example, in expected-rewardmodels, Lx0(x;u)g(x0) = Px0 T (x; u; x0)g(x0) and the convergence of Tt to T guaran-tees the convergence of Lt to L. On the other hand, in worst-case-reward models,



72Lx0(x;u)g(x0) = minx0:T (x;u;x0)>0 g(x0) and it is necessary to approximate T in a waythat ensures that the set of x0 such that Tt(x; u; x0) > 0 converges to the set of x0such that T (x; u; x0) > 0. This can be accomplished easily, for example, by settingTt(x; u; x0) = 0 if no transition from x to x0 under u has been observed.Assuming T and R can be estimated in a way that results in the convergence ofLtto L, the approximate dynamic-programming operator Ht de�ned byHt(U; V )(x) = 8><>: Nu(x)�Rt(x; u) + �Lt;x0(x;u)V (x0)� ; if x 2 �tU(x); otherwise,converges to H with probability 1 uniformly. Here, the set �t � X represents the setof states whose values are updated on step t; one popular choice is to set �t = fxtg.Other algorithms use a larger �t set to speed up learning: DYNA [156] supplements �twith a randomly generated set of states while prioritized sweeping [111] and Queue-DYNA [119] use heuristics to select elements for �t that will result in the fastest possibleconvergence of the value function.The functions Gt(x) = 8<: 0; if x 2 �t;1; otherwise,and Ft(x) = 8<: �; if x 2 �t;0; otherwise,satisfy the conditions of Theorem 3.7 as long as each x is in in�nitely many �t sets(Condition 3) and the discount factor � is less than 1 (Condition 4).As a consequence of this argument and Theorem 3.7, model-based methods canbe used to �nd optimal policies in mdps, alternating Markov games, Markov games,risk-sensitive mdps, and exploration-sensitive mdps.3.7 Open ProblemsThe exploration of this class of models has just begun. Although generalized mdps weredeveloped to generalize the speci�c models used in this thesis, they may be worthy ofindependent study.



73� Although many relevant summary operators have been shown to have the requirednon-expansion properties, is there a better, more succinct, or more intuitive char-acterization of the summary operators used in generalized mdps?� Can generalized mdps be extended to in�nite action spaces?� Some natural summary operators, like Boltzmann weighting (Section C.1), donot have the non-expansion property. Is there a way to characterize these oper-ators and the e�ect of using them in value iteration? In the case of Boltzmannweighting, there are examples where the H operator has multiple �xed points.� Model-free reinforcement-learning updates appear to require the use of the ex-pected reward summary operator. Is there a general theory of how to take a givende�nition of theL operator and create an appropriate model-free reinforcement-learning algorithm?� The class of generalized mdps was developed primarily with regard to a discountedreward criterion. Is it possible to extend the results to the average reward crite-rion? Would that be interesting?� Is it possible to extend Sutton's TD(�) algorithm [154] to the generalized mdpmodel?3.8 Related WorkThis chapter's main function is to prove some basic properties of mdps and variantsof mdps. Puterman [126] develops the results for mdps with �nite state and actionspaces, but also more general spaces. His work focuses exclusively on maximizingexpected reward. Van Der Wal [166] addresses a generalized set of objective criteriafor mdps and Markov games.The inspiration for trying to �nd a uniform framework for these proofs grew out ofthe independent work of Shapley [143] on games and of Howard [68] and Bellman [13]on mdps. Both of these e�orts developed the value-iteration algorithm and proved itsconvergence. This chapter attempted to capture the essence of both approaches in auni�ed way.There are many, many models that satisfy the conditions of being a generalized mdp;very few of these are interesting. In the remaining chapters of this thesis, I examine a



74few models of interest, but there are others that are worth mentioning. John [71] looksat mdps that maximize expected reward given that actions are chosen with respect to aperpetually exploring policy. His learning rule for the uniform-exploration case can beshown to be a generalized mdp and, hence, inherits the results proven in this chapter.Heger [62, 63] has developed a collection of results, including a proof of Theorem 3.3,for risk-sensitive mdps: generalized mdps that maximize worst-case reward. The resultsin this chapter extend some of Heger's results. I prove �nite convergence of valueiteration and policy iteration for his minimax criterion, and make it possible to extendrisk-sensitive objective criteria to in�nite state spaces and games.The results on pseudopolynomial convergence of some generalized mdps comes di-rectly from the work of Tseng [162] for mdps and Condon [36] for alternating Markovgames. The idea of bounding the greedy policy according to an approximate valuefunction is common knowledge in the dynamic-programming community, and was in-troduced to the reinforcement-learning community by Williams and Baird [180] andSingh and Yee [147].The work presented in Section 3.6 is closely related to several previous researche�orts. Szepesv�ari [157] described a generalized reinforcement-learning model, andused it to de�ne a set of conditions under which there is an optimal policy that isstationary, and when it can be found as the myopic policy with respect to the optimalvalue function. The speci�c generalized mdpmodel presented here is both more and lessgeneral than Szepesv�ari's model; however, Theorem 3.7 is useful in both frameworks.Jaakkola, Jordan, and Singh [69] and Tsitsiklis [163] developed the connection be-tween stochastic-approximation theory and reinforcement learning, focusing on themdpmodel. The mathematics and insight used in Theorem 3.7 are not substantially di�erentfrom that used in the earlier papers; however, the form of Theorem 3.7 makes it par-ticularly convenient for proving the convergence of reinforcement-learning algorithms.Concretely, Theorem 3.7 shows that, given a contraction mapping H and an idea ofhow to approximate HV �, it is often fairly easy to design algorithms that approximateV � itself.Waldmann [172] developed a highly general model of dynamic-programming prob-lems, with a focus on deriving approximation bounds. Vendu and Poor [167] introduceda class of abstract dynamic-programming models that is far more comprehensive thanthe model discussed here. In addition to permitting non-additive operators and valuefunctions with values from any set (not just the real numbers), they showed how, in



75the context of �nite-horizon models, a weaker \commutativity" condition can replacethe monotonicity condition exploited in this chapter.3.9 ContributionsIn this chapter, I presented a new model, which I called generalized Markov decisionprocesses, for the purpose of making it easier to present background results that arecommon to all the models covered in this thesis. The model, which de�nes optimalvalues by a simple generalization of the Bellman equation, might be useful to researchersstudying other types of sequential decision making. I proved a series of concrete resultsconcerning the model, including the contraction of the dynamic-programming operator,the convergence of value iteration and policy iteration, the convergence of a model-free reinforcement-learning algorithm, the convergence of a model-based reinforcement-learning algorithm. I also gave a simple new proof that all-policies-proper mdps result incontraction with respect to some weighted max norm, and described a new stochastic-approximation theorem, developed in collaboration with Szepesv�ari [158].The generalized mdp framework highlights common elements among several di�er-ent sequential decision-making models, and extends existing models in an interestingway. In the following chapters, I examine several simple applications of the results fromthis chapter, but there are a number of interesting directions yet to be explored.



Chapter 4Alternating Markov GamesPortions of this chapter and the next have appeared in earlier papers:\Markov games as a framework for multiagent reinforcement learning" [90],and \An introduction to reinforcement learning" [74] with Kaelbling andMoore.Game playing has dominated the arti�cial-intelligence world as a problem domain eversince the �eld was born. Two-player games do not �t into the established mdp frame-work because the optimality criterion for games is typically not one of maximizingreward in the face of a �xed environment, but one of maximizing reward against anoptimal adversary. Nonetheless, there are profound similarities between the problem of�nding an optimal policy for an mdp and that of �nding an optimal policy for a game.4.1 IntroductionIn this chapter, I review some of the important similarities and di�erences betweenmdps and two-player games in which players alternate moves (alternating Markovgames). In the next chapter, I consider a more general class of games in which bothplayers choose their moves simultaneously (Markov games). Both chapters address onlyzero-sum games, that is, games in which reward for one player comes directly \out ofthe pocket" of the other.Interest in �nding optimal policies for games is spread over several di�erent �elds:complexity theorists have linked the (open) question of the existence of polynomial-time76



77algorithms for �nding optimal policies for alternating games to the equivalence of par-ticular Turing-machine models [36]; reinforcement-learning researchers have adaptedmdp-based learning algorithms to a very general class of games [90] and many re-searchers have used reinforcement learning in these environments; economists and gametheorists [168, 166, 143] have studied Markov games as a model for understanding thebehavior of individuals in multiagent systems.4.2 Alternating Markov GamesIn this chapter, I describe alternating Markov games, in which stochastic control ofthe state transitions alternates between an agent and its opponent. This includes moststandard board games like backgammon, chess, and tic-tac-toe, but also captures morecomplex situations in which rewards are issued throughout the interaction. The identityof the player in control of the transition is part of the state description, and controldoes not necessarily change hands after every action.4.2.1 Basic FrameworkIn its general form, a Markov game, sometimes called a stochastic game [114], is de�nedby a set of states, S, and a collection of action sets, A1;A2; : : : ;Ak, one for each agentin the environment. State transitions are a stochastic function of the current state andone action from each agent: T (s; a1; a2; : : : ; ak; s0) is the probability of a transition froms to s0 when agent 1 chooses a1 2 A1, agent 2 chooses a2 2 A2, etc. Agent i also has anassociated reward function, Ri(a1; a2; : : : ; ak), and attempts to maximize its expectedsum of discounted rewards, EfP1j=0 �jrit+jg, where rit+j is the reward received j stepsinto the future by agent i.In this chapter and the next, I consider a well-studied specialization of Markovgames in which there are only two agents and they have diametrically opposed goals.This makes it possible to represent the agents' instantaneous rewards with a singlereward function that one agent seeks to maximize and the other, called the opponent ,seeks to minimize. The set A1 denotes the agent's action set, and A2 denotes theopponent's action set. In this chapter, only one agent has an action choice in eachstate; S1 signi�es the states in S in which the agent has a choice of action, and S2signi�es the other states. It is not necessary to assume that control strictly alternatesbetween the two players; Section D.1 shows that, from a complexity standpoint, such



78an assumption does not change the class of models considered. The function R(a; s)denotes the immediate reward to the agent for taking action a 2 A1 in state s 2 S1or the immediate reward to the agent for its opponent taking action a 2 A2 in states 2 S2.Restricting the model to two-player zero-sum games simpli�es the mathematics butmakes it impossible to consider important phenomena such as cooperation. Nonethe-less, the present model subsumes mdps, which are just alternating Markov games inwhich jA2j = 1 or jS2j = 0. In the next chapter, I consider a generalization of alternat-ing Markov games in which the players select their moves synchronously.4.2.2 Acting OptimallyAs in Chapter 2, an optimal policy is one that maximizes the expected sum of dis-counted reward. There are subtleties in applying this objective to Markov games,however. First, consider the parallel scenario in mdps.In an mdp, an optimal policy is one that maximizes the expected sum of discountedreward; it is undominated , meaning that there is no state from which any other policycan achieve a better expected sum of discounted reward. Every mdp has at least oneoptimal policy, and of the optimal policies for a given mdp, at least one is stationaryand deterministic. This means that, for any mdp, there is a policy � : S ! A that isoptimal. The policy � is called stationary because it does not change as a function oftime, and it is called deterministic because the same action is always chosen wheneverthe agent is in state s, for all s 2 S.For many games, there is no policy that is undominated because performance de-pends critically on the choice of opponent. How, then, can we de�ne an optimal policy?In the game-theory literature, this di�culty is resolved by evaluating each policy withrespect to the opponent that makes it look the worst. This performance measure prefersconservative strategies that can force any opponent to a stalemate over more daringones that accrue a great deal of reward against some opponents and lose a great dealto others. This is the essence of minimax: Behave so as to maximize your reward inthe worst case.Given this de�nition of optimality, alternating Markov games share several impor-tant properties with mdps: every alternating Markov game has a non-empty set ofoptimal policies, at least one of which is stationary and deterministic [36].



79As in mdps, the discount factor, �, can be thought of as the probability that thegame will be allowed to continue after the current move, i.e., 1 � � is the probabilitythat a zero-value forced draw will be proclaimed on any given move.Another connection between alternating Markov games and mdps is that, if we holdthe opponent's policy �xed, the agent faces a stationary environment and any of themdp algorithms of Chapter 2 can be used to �nd an optimal counter strategy. This factwill be helpful in deriving an e�cient policy-iteration algorithm for alternating Markovgames.4.2.3 Simple Stochastic GamesCondon [36] reduced alternating Markov games to their simplest possible form, whichshe called \simple stochastic games." In this model, there are four kinds of states:states in which the agent deterministically controls the transitions, states in whichthe opponent deterministically controls the transitions, states in which neither playercontrols the transition but instead a transition is made to one of two states with equalprobability, and absorbing \win" states (one for each player) that end the game whenthey are reached. The model includes a single transition with a non-zero reward, nodiscount factor, two actions per state, and only deterministic transitions and probability1/2 transitions. Nonetheless, it is possible to show that any alternating Markov gamewith rational immediate rewards and transition probabilities can be transformed toan equivalent simple stochastic game with at most a polynomial increase in problemsize [36, 183].Although the simple stochastic game model is elegant, its connection to the tradi-tional mdp is somewhat indirect; I will focus on the alternating Markov game model,although the results I present apply to simple stochastic games as well.4.3 Algorithms for Solving Alternating Markov GamesIn this section, I review methods for �nding optimal policies for alternating Markovgames. The algorithms here are all variations of algorithms for solving Markov decisionprocesses.



804.3.1 Value IterationIn an mdp, given Q�(s; a), an agent can maximize its reward using the \greedy" strategyof always choosing the action with the highest Q value. This strategy is greedy in thesense that it treats Q�(s; a) as a surrogate for immediate reward and then acts tomaximize its immediate gain. It is optimal because the Q function is an accuratesummary of future rewards.A similar observation can be exploited in alternating Markov games. First, we re-de�ne V �(s) to be the expected reward to the agent for following the optimal minimaxpolicy against an optimal opponent starting from state s, and Q�(s; a) to be the ex-pected reward for the agent taking action a (if s 2 S1) or the opponent taking actiona (otherwise) and both players continuing optimally thereafter. Then the value of astate s 2 S in an alternating Markov game isV �(s) = 8<: maxa12A1 Q�(s; a1) if s 2 S1mina22A2 Q�(s; a2) otherwise,and the value of a state-action pair (s; a) isQ�(s; a) = R(s; a) + �Xs0 T (s; a; s0)V �(s0):The resulting recursive equations look much like the equations for Q and V in mdps,and indeed the analogous value-iteration algorithm converges to the correct values [36].4.3.2 Policy IterationPolicy iteration in Markov decision processes proceeds by alternating between comput-ing the value of the current policy and �nding the greedy policy for the current valuefunction. In alternating Markov games, there are essentially two active policies at anygiven time, and as a result, there are several choices for generalizing policy iteration toalternating Markov games.Table 4.1 gives a generic policy-iteration algorithm for alternating Markov games.It follows the mdp algorithm quite closely, alternating between policy evaluation andpolicy improvement, and makes use of two important subroutines: evalGame andimprovePoliciesGame. The evalGame subroutine, given in Table 4.2, simply computesthe value function that results from the agent following policy �1 and the opponent



81PolicyIterationGame(M = hS1;S2;A1;A2; T; R; �i) := fforeach s 2 S1 �1(s) := a, for some a 2 A1foreach s 2 S2 �2(s) := a, for some a 2 A2V0 := evalGame(�1; �2;M)t := 0loopt := t+ 1(�1; �2) := improvePoliciesGame(�1; �2; Vt�1;M)Vt := evalGame(�1; �2;M)until Vt�1(s) = Vt(s) for all sreturn (�1; �2)g Table 4.1: The policy-iteration algorithm for alternating Markov games.
evalGame(�1; �2; hS1;S2;A1;A2; T; R; �i) := fSolve the following system of linear equations:�nd: v[s]s.t.: v[s] = R(s; �1(s)) + �Ps02S T (s; �1(s); s0)v[s0], for all s 2 S1and: v[s] = R(s; �2(s)) + �Ps02S T (s; �2(s); s0)v[s0], for all s 2 S2return vg Table 4.2: Computing the value function for a given pair of policies.



82following policy �2; as in mdps, the value function is computed by solving a system oflinear equations.At this high level, the policy-iteration algorithm is identical to the one describedin Chapter 2. The di�erence is in the implementation of improvePoliciesGame. Howshould we choose new policies for the players that are closer to the optimal policies?Let Vt�1 be a value function and �1 and �2 be policies for the agent and theopponent. There are at least four sensible choices for constructing policies �01 and �02that are improvements relative to Vt�1:1. let �01 and �02 both be greedy with respect to Vt�1;2. let �01 be greedy with respect to Vt�1, and �02 be the optimal policy for theopponent given that the agent is following �01;3. let �02 be greedy with respect to Vt�1, and �01 be the optimal policy for theopponent given that the agent is following �02;4. let �01 be the optimal policy for the agent given that the opponent is following �2,and let �02 be the optimal policy for the opponent given that the agent is following�1.These choices are not all equivalent; in fact, only choices 2 and 3, which are duals,lead to algorithms that converge in general [37]. We therefore base the implementationof our improvePoliciesGame subroutine in Table 4.3 on choice 2. Since we need �2 tobe the optimal counter-strategy to the greedy �1, Table 4.4 shows how to compute theoptimal counter-strategy for a �xed policy. The basic idea is that, once one player'sactions are �xed, only one player is left with any choice of action; the resulting modelis an mdp. The algorithms in Table 4.4 make use of mdp policy iteration to solve theresulting one-player game, though any of the mdp algorithms from Chapter 2 wouldsu�ce. In the routine for computing an optimal policy for the opponent given a �xedpolicy for the agent, the rewards are negated; this is because the opponent's job is tominimize reward and the mdp algorithms from the previous chapter maximize reward.The value function computed in the process of �nding the optimal �2 given �1 isthe same value function that is found when evaluating the resulting policies. A moree�cient implementation would save this value function instead of throwing it away andrecomputing it.



83improvePoliciesGame(�1; �2; V;M= hS1;S2;A1;A2; T; R; �i) := fforeach s 2 S1�1(s) := argmaxa2A1(R(s; a) + �Ps02S T (s; a; s0)V (s0))�2 := counterStratGame2(�1;M)return (�1, �2)g Table 4.3: Computing improved policies for both players.
counterStratGame2(�1; hS1;S2;A1;A2; T; R; �i) := fforeach s 2 S and s0 2 S and a 2 A2 fif (s 2 S2) T 0(s; a; s0) := T (s; a; s0)else T 0(s; a; s0) := T (s; �1(s); s0)foreach s 2 S and a 2 A2 R0(s; a) := �R(s; a)return(PolicyIterationMDP(hS1 [ S2;A2; T 0; R0; �i))gcounterStratGame1(�2; hS1;S2;A1;A2; T; R; �i) := fforeach s 2 S and s0 2 S and a 2 A1 fif (s 2 S1) T 0(s; a; s0) := T (s; a; s0)else T 0(s; a; s0) := T (s; �2(s); s0)return(PolicyIterationMDP(hS1 [ S2;A1; T 0; R; �i))gTable 4.4: Computing the optimal counter-strategy for player 2 given a policy for player1, and vice versa.



844.3.3 Polynomial-time Algorithms for Simple GamesThere is no algorithm that is known to solve general alternating Markov games inpolynomial time, although it is easy to believe that such an algorithm exists [37]. Thissection examines algorithms that provably solve simpli�ed classes of alternating Markovgames in polynomial time.Cycle-free GamesWe say that an alternating Markov game is cycle free if, aside from designated zero-reward absorbing states, there is absolutely no way that any state can be revisited.Games with a non-renewable resource, such as spaces on the board in tic-tac-toe orConnect-Four, are cycle free. Cycle-free games are easy to solve, because no more thanjS1j + jS2j steps can elapse before the absorbing state is reached. These games canbe solved in polynomial time using value iteration, or by a procedure referred to asDAG-SP [28], which I will describe now.In a cycle-free game, all states can be categorized by the largest possible number oftransitions that can elapse between an agent occupying the state and the agent reachingan absorbing state. Let d(s) be the maximum number of transitions (distance) from sto an absorbing state. We can de�ne d byd(s) = 8<: 0 if s is absorbing,1 + maxs0 ;a IfT (s; a; s0) > 0gd(s0) otherwise.Here Ifeg is the indicator function for boolean expression e; Ifeg = 1 if e is true, and0 otherwise. We are guaranteed that d(s) � jS1j + jS2j for all s in non-cycle games.In addition, if s0 is reachable from s in a single transition, d(s0) < d(s). As a result,an algorithm can solve the Bellman equations by assigning values to states in order ofincreasing d(s).Of course, it is not necessary to compute and sort these distances explicitly; atopological sort [40] of the transition graph accomplishes the same purpose much moreeasily.Deterministic Goal-reward GamesIn many games, like checkers, it is possible to return to the same board con�gurationover and over again. The DAG-SP algorithm from the previous section can not be



85applied to these games. However, checkers can be characterized as a deterministicgoal-reward game and can be solved e�ciently (relative to the astronomical size of itsstate space!) by an algorithm closely related to Dijkstra's shortest-path algorithm [40].Like cycle-free games, reward-goal games have a set of absorbing states. Unlikecycle-free games, the only non-zero rewards in a reward-goal game are issued imme-diately upon entering an absorbing state. This means that the optimal values in de-terministic reward-goal games can be conveniently characterized; there is at most onenon-zero reward reached in any game. The optimal value for any state in a determinis-tic reward-goal game is either zero or can be written �kr, where r is one of the non-zerorewards, and k is the number of steps before the non-zero reward is reached.We can solve deterministic goal-reward games e�ciently by carefully working back-wards from the absorbing states. At an intuitive level, this is accomplished by takingthe largest reward and propagating it backwards to states in S1 (the maximizing states).Similarly, the most negative reward can be propagated backwards through the statesin S2 (the minimizing states). Once this process gets stuck, the remaining states allhave value zero.More precisely, the algorithm begins by de�ning V (s) = 0 for all absorbing statesand leaving it unde�ned otherwise. De�ne a lower bound l and upper bound u on thevalue of each state as follows. If s 2 S1, l(s) is the value ofmaxa2A1(R(s; a) + �V (N(s; a)));where the maximization is over actions such that V (N(s; a)) is de�ned; recall that N isthe next-state function. If V (N(s; a)) is unde�ned for all a, l(s) is unde�ned. Becausethe value l(s) is attainable for some action, the true value of V (s) is at least this large.For s 2 S2, u(s) is de�ned analogously.If s 2 S1, we can compute an upper bound on V (s) as follows. We de�ne anoptimistic Q value to be Q(s; a) = R(s; a) + �V (N(s; a))if V (N(s; a)) is de�ned. If V (N(s; a)) is not de�ned, Q(s; a) = maxs0 maxd �dV (s0)where the maximization of s0 is over all s0 such that V (s0) is de�ned, and the maxi-mization over d is over path lengths from s to s0 when a is taken as the �rst action. IfV (s0) < 0, this quantity is maximized when d = 1. The value u(s) = maxaQ(s; a) is



86an upper bound on the value of V (s) because the Q values are computed optimistically.For s 2 S2, l(s) is de�ned analogously.If, for any s, V (s) is unde�ned and l(s) = u(s), then we can de�ne V (s) = l(s). Thiswill happen if V (N(s; a)) is de�ned for all a, or one of the actions for which V (N(s; a))is de�ned dominates the optimistic estimate for all the other actions. This can happen,for example, when s 2 S1 and s is one step away from the largest de�ned V (s0).Each time a new V (s) is de�ned, the upper and lower bounds need to be recomputed.If, at any time, there is no s for which V (s) is unde�ned and l(s) = u(s), we can set allthe unde�ned V (s) values to zero. This can be justi�ed by induction on the value of din the de�nition of the optimistic bounds above, but intuitively, each of the states forwhich V (s) is unde�ned would prefer to be in a zero-reward cycle to any other outcomethey could ensure.A straightforward implementation of this algorithm in which the upper and lowerbounds are recomputed from scratch at each iteration runs in polynomial time. How-ever, a more e�cient implementation can be created by storing the optimistic Q valuesin priority queues. This novel algorithm was inspired by Condon's [36] algorithm fordeterministic simple stochastic games and Boyan and Moore's [28] application of Di-jsktra's algorithm to deterministic mdps. Condon's algorithm is a great deal simpler,but is only de�ned for undiscounted games with a unique goal state.Deterministic Constant-reward-cycle GamesThe algorithm of the previous section can be extended using ideas from the cycle-free-game algorithm to solve a wider class of games in polynomial time.In a constant-reward-cycle game, for every possible cycle of states there exists avalue r such that every immediate reward on that cycle is exactly r. In the goal-rewardgames of the previous section, r is zero. In other games, several di�erent values of r arepossible depending on the cycle. These games can be solved by clustering the statesaccording to whether they can participate in any cycles, and, if so, the value of r forthose cycles. Note that all the actions a from state s that can result in a cycle musthave the same immediate reward.The transition graph for a deterministic alternating Markov game is the graphconsisting of one node for each state, and one directed edge for each state-action pair.There is an edge in the transition graph from node s to node s0 if there is some action



87a for which N(s; a) = s0. We can partition the states of the game by their stronglyconnected components [40] in the transition graph. Each component consists of eithera single state or a set of states in which every pair of states in the set is involved in acycle. Thus, by assumption, each component c has a single immediate-reward value,which we write as rc.We will label each of the nodes of the graph with its value. Begin by making V (s)unde�ned for all states s. As in the cycle-free-game algorithm, consider each componentc in reverse topological order, i.e., starting with the components that can reach no othercomponents. For all states within a given component, all rewards are equal, except forthose that result in a transition out of the component. Values can be assigned to all thestates in the component using a variation of the deterministic goal-reward algorithmof the previous section.It is not obvious that this algorithm has any practical application over that ofthe goal-reward algorithm. However, it is interesting in that it is the most generalpolynomial-time algorithm known for solving alternating Markov games.4.3.4 Other AlgorithmsCondon [37] surveyed algorithms for the simple stochastic game model. The resultsof Zwick and Paterson [183] and Condon [36] show that the discounted alternatingMarkov game model is polynomially reducible to the simple stochastic game model;this means that any of the simple stochastic game algorithms can also be used to solvealternating Markov games, indirectly. However, most of the algorithms in Condon'spaper can be applied to alternating Markov games with little or no change.In addition to algorithms designed for alternating games, any algorithm that cansolve general Markov games can solve alternating Markov games as well. Chapter 5discusses these more general algorithms.4.4 Algorithmic AnalysisThe correctness of and run time bounds for the algorithms in Section 4.3 follow fromthe analogous algorithms for generalized Markov decision processes (Chapter 3).Lemma 4.1 Alternating Markov games are a type of generalized Markov decision pro-cess.



88Proof: To show that alternating Markov games are a form of generalized mdp, weneed to de�ne the state space, action space, reward and transition functions, andoptimality equations. Let X = S1[S2, U = A1�A2, R(x; (a1; a2)) = R(x; a1) if s 2 S1and R(x; a2) otherwise, and T (x; (a1; a2); x0) = T (x; a1; x0) if s 2 S1 and T (x; a2; x0)otherwise. The optimality equations areV �(s) = 8<: maxa12A1 Q�(s; a1); if s 2 S1mina22A2 Q�(s; a2); otherwise, (4.1)and Q�(s; a) = R(s; a) + �Xs0 T (s; a; s0)V �(s0):The relevant summary operators are shown to be non-expansions in Section C.1. �4.4.1 Value IterationLemma 4.1 and Theorem 3.4 together imply that the value-iteration algorithm foralternating Markov games converges to the optimal value function.In addition, Condon [36] shows that the complexity (in terms of bits) of the optimalvalue function is bounded by a polynomial in the size of the description of the game.As discussed in Theorem 3.4, this fact can be used to show that value iteration canbe used to �nd optimal policies in pseudopolynomial time, or polynomial time for�xed discount factor, for discounted alternating Markov games and all-policies-properalternating Markov games.4.4.2 Policy IterationTo apply the policy-iteration algorithm for generalized mdps to alternating Markovgames, the optimality equations (Equation 4.1) must be rewritten so that the outermostoperator is a maximization. This can be accomplished as follows:V �(s) = maxa12A18<: Q�(s; a1); if s 2 S1mina22A2 Q�(s; a2); otherwise,and Q�(s; a) = R(s; a) + �Xs0 T (s; a; s0)V �(s0):The resulting policy-iteration algorithm is exactly the algorithm of Section 4.3.2,in which policy evaluation is accomplished by solving a minimum-reward mdp. A dual



89algorithm can be obtained by placing the minimization on the outside and performingpolicy evaluation using a maximum-reward mdp.By Lemma 3.6, the policy-iteration algorithm for games converges no more slowlythan value iteration, �nding an optimal policy and value function in a pseudopolynomialnumber of iterations.4.4.3 Linear ProgrammingNo one has yet been able to reduce the problem of solving an alternating Markovgame to that of solving a polynomial-size linear program. This is somewhat surprisingbecause, as with mdps, the optimal value function for an alternating Markov game isthe solution to a polynomial-size set of linear equations. In addition, there is a verynatural linear program that would seem to solve this problem perfectly.In this section, I describe the linear program that seems to solve alternating Markovgames, and give a simple example that shows why it does not. This issue is also treatedin a paper by Condon [37].The optimal value function V for an alternating Markov game satis�es the Bellmanequations in Equation 4.1. Section 2.3.3 described a linear program that solved a similarset of equations. In that formulation, the maximization operator is implemented as theleast upper bound; that is, there is a constraint demanding that V (s) is greater thanor equal to the one-step value for each action, and the objective function minimizesV (s). An analogous technique can be used to implement the minimum operator.This leads to the natural assumption that these two techniques could be combinedto create a linear program whose solution is exactly the value of an alternating Markovgame. Table 4.5 provides the \algorithm" suggested by this idea.Unfortunately, the objective function cannot be used to jointly ensure that themaximization and minimizations are implemented properly. Figure 4.1 depicts a 4-statedeterministic alternating Markov game for which the linear-programming algorithm inTable 4.5 does not work.In this example, states s1 and s01 are nominally controlled by the agent and states2 is nominally controlled by the opponent. However, the single actions available fromstates s1 and s01 lead to state s2, and the single action available from state s2 leads toan absorbing state. In the corresponding linear program, V (s1) � 3=4 V (s2), V (s01) �3=4 V (s2), V (s2) � 1, and V (s1) + V (s01)� V (s2) needs to be minimized. Although it



90
gameLP(hS1;S2;A1;A2; T; R; �i) := fSolve the following linear program:minimize: Ps2S1 v[s]�Ps2S2 v[s]s.t.: v[s] � R(s; a) + �Ps02S T (s; a; s0)v[s0], for all s 2 S1 and a 2 A1and: v[s] � R(s; a) + �Ps02S T (s; a; s0)v[s0], for all s 2 S2 and a 2 A2variables: v[s] for all s 2 Sreturn vgTable 4.5: Trying to solve an alternating Markov game via linear programming. Thisalgorithm is incorrect.
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minFigure 4.1: A small deterministic alternating Markov game for which the natural linear-programming formulation does not specify the optimal value function (� = 3=4).



91is true that the optimal value function (V (s1) = 3=4, V (s01) = 3=4, V (s2) = 1) satis�esthe constraints and has an objective value of 1/2, the incorrect value function V (s) = 0for all s also satis�es the constraints and has a smaller objective value.This shows that the naive application of linear programming to the problem ofsolving alternating Markov games (even deterministic ones) is incorrect. Althoughthere are simple modi�cations that can be applied to repair this example, no generalsolution is known; it is possible that the problem can be formulated and solved as alinear program, but no one has yet found a way to do this.4.5 Complexity ResultsCondon [36] showed that, like mdps, simple stochastic games can be solved by �ndingan optimal value function and that the optimal value function can be written as thesolution to a polynomial-size set of linear equations. This is roughly because the solu-tion to a simple stochastic game can be expressed as a pair of deterministic stationarypolicies (one for each player) that are in equilibrium, meaning that neither player hasany incentive to change its policy if the other player's policy stays �xed.From these observations, it is relatively straightforward to see that the problem of�nding a minimax optimal policy is in the complexity class NP\co-NP [36]. This isbecause we can guess a policy for either player and verify its optimality in polynomialtime using a polynomial-time algorithm for solving the resulting mdp.There are very few problems that are in NP\co-NP and yet are not known to besolvable in polynomial time. Unfortunately, this is one of them. Although there aredozens of natural algorithms for solving the problem, Condon [37] showed that almostall of them are either wrong or run in exponential time in the worst case.Condon shows that the deterministic-transition version of the simple stochasticgame problem can be solved in polynomial time. Zwick and Paterson [183] tried to ex-tend this result by considering deterministic alternating Markov games, that is, gameswith general rewards and discounting but only deterministic transitions. They ex-pressed con�dence that this problem is in P, but were unable to prove it. They didshow that the discounted version is solvable in pseudopolynomial time using an argu-ment closely related to the proof that value iteration is pseudopolynomial for mdps.Section 4.3.3 gave a polynomial time algorithm for a subclass of deterministic alter-nating Markov games in which every cycle (a sequence of transitions from a state back



92to itself) consists of identical immediate rewards. Although this broadens the class ofgames known to be solvable in polynomial time, there is still a great deal of room forimprovement.The polynomial-horizon version of general alternating Markov games is P-complete.P-hardness follows easily from the analogous result for mdps, proven by Papadimitriouand Tsitsiklis [116] and value iteration can be used to solve polynomial-horizon gamesin polynomial time. However, unlike mdps, the problem remains P-hard even whenall transitions are deterministic. This can be shown by an easy reduction from themonotone circuit-value problem [57]|essentially, the opponent takes the place of thestochastic transitions in Papadimitriou and Tsitsiklis' mdp proof [116].4.6 Reinforcement Learning in Alternating GamesAs mentioned in the introduction, game playing is one of the best studied domains forreinforcement learning. One application, well ahead of its time, was Samuel's checkersplaying system [134]; it employed a training scheme similar to the updates used invalue iteration and Q-learning. Tesauro [160] used the TD(�) algorithm [154] to �ndan excellent policy for backgammon.Tesauro's work is interesting for many reasons. I include a brief description herefor its motivational appeal. Backgammon has approximately 1020 states, makingtable-based reinforcement learning virtually impossible. Instead, Tesauro used a back-propagation-based three-layer neural network as a function approximator for the valuefunction, mapping board position to an estimate of the probability of victory for thecurrent player. Basic TD-Gammon used very little pre-de�ned knowledge of the game,and the representation of a board position was a direct encoding, su�ciently power-ful only to permit the neural network to distinguish between conceptually di�erentpositions. The more advanced TD-Gammon was provided with the same raw stateinformation supplemented by a number of hand-crafted features of backgammon boardpositions. The results have been exceptional.Although experiments with other games have in some cases produced interestinglearning behavior, no success close to that of TD-Gammon has been repeated. Othergames that have been studied include Go [139] and Chess [161]. It is an open questionas to how the success of TD-Gammon might be repeated in other domains.The main challenges these projects face, however, are in designing algorithms that



93can deal with the huge state spaces that results from formalizing traditional boardgames as alternating Markov games. The alternating-Markov-game approach is mostappropriate for problems with undecomposable state spaces and general reward func-tions.How does one go about using reinforcement learning to solve an alternating Markovgame? Because of the many similarities between alternating Markov games and mdps,researchers have simply used variations of existing reinforcement-learning algorithmsto solve games. In the next sections, I show that this is perfectly acceptable, as longas updates are performed correctly.4.6.1 Simple Minimax-Q LearningThe Q-learning update rule for mdps can also be applied to alternating Markov games:Q[s; a] := (1� �)Q[s; a] + �(r+ �V (s0)) for experience tuple hs; a; r; s0i. This learningrule converges to the optimal Q function assuming that every action is experienced inevery state in�nitely often and that new estimates are blended with previous ones usinga slow enough exponentially weighted average (see Section 3.6.3). The major di�erenceis that V (s0) = 8<: maxa012A1 Q(s0; a01) if s0 2 S1mina022A2 Q(s0; a02) otherwise,whereas in mdps, it is a simple maximization.The algorithm is a generalization of Q-learning, and existing convergence resultsdo not directly apply. It is also a special case of the minimax-Q learning algorithm,described in the next chapter. The convergence theorem for generalized Q-learning,stated in Section 3.6.3, applies to simple minimax-Q learning as a consequence ofLemma 4.1.Theorem 4.1 Simple minimax-Q learning converges to the optimal Q values withprobability 1 under the appropriate conditions.Proof: The theorem follows from the results in Section 3.6.3. �



944.6.2 Self-play ApproachThere are many other ways of adapting mdp-oriented reinforcement-learning algorithmsto Markov games [26]. Some take advantage of the fact that, often, a complete tran-sition model for the game is known in advance, making sampled updates unnecessary;others exploit the agent-opponent symmetry that is present in many games by storingQ[s; a] values for s 2 S1 only and noting that Q�(s1; a1) = �Q�(s2; a2) when (s1; a1)and (s2; a2) are symmetric state-action pairs (described below). Many of these ap-proaches are special cases or simpli�cations of simple minimax-Q learning and theirconvergence to optimal minimax policies follows from Theorem 4.1.The self-play algorithm can be applied to the class of symmetric, alternating Markovgames. In these games the action space for the two agents is the same, A1 = A2, andthe state space can be split into a set S1 of states stochastically controlled by the agent,and a set S2 of states stochastically controlled by the opponent. The sizes of S1 andS2 are the same and all transitions from states in S1 (S2) have zero probability ofremaining in S1 (S2). Furthermore, we can de�ne a \board ipping function" f thatmaps each s1 2 S1 to some s2 2 S2 and vice versa. The ipping function has theproperty that R(s; a) = �R(f(s); a), and T (s; a; s0) = T (f(s); a; f(s0)). This is just acomplicated way to say that any move for the agent can be turned into into an identicalmove for the opponent and vice versa.Because of the symmetry in this class of games, the optimal value function V � andQ function Q� satisfy V �(s) = �V �(f(s)) and Q�(s; a) = �Q�(f(s); a), for any state sand action a. An easy way to see this is to notice that the zero value function satis�esthese properties and that they are preserved by a step of value iteration. This suggeststhat the self-play algorithm need only maintain Q values for the states in S1. Usingthe symmetry properties, we can write the updates as:Q[s1; a] := (1� �)Q[s1; a] + ��r � mina0 Q[f(s2); a0]�for a transition from s1 to s2 andQ[f(s2); a] := (1� �)Q[f(s2); a] + ��r � mina0 Q[s1; a0]�for a transition from s2 to s1.It is easy to see that each update is precisely a simple minimax-Q learning updatewith the values of S1 being updated in di�erent ways. The fact that some states are



95updated \out of order" just means that they are being updated more often but still inthe proper way; this can only improve convergence. In applications in which the modelis known in advance [160], it is not even necessary to represent the Q values explicitly;instead, the value function can be modi�ed directly, as in value iteration.Theorem 4.2 Self-play algorithms converge to the optimal Q values with probability 1under the appropriate conditions.Proof: This follows fairly easily from the results of Section 3.6.3. �4.6.3 Non-converging Update RulesThere are approaches to learning games that do not converge in general. In this section,I examine an approach that treats the opponent as part of the stochastic environment.Consider a game in which all transitions, except to an absorbing goal state, resultin zero reward. Imagine that the agent is in state s1. After taking an action a1, theresulting state is s2 and control belongs to the opponent. The opponent now takes anaction, bringing the state to s01 and returns control back to the agent. Under the simpleminimax-Q learning rule, two updates are performed,Q[s1; a1] := (1� �)Q[s1; a1] + � �mina02 Q[s2; a02]! ;and Q[s2; a2] := (1� �)Q[s2; a2] + � �maxa01 Q[s01; a01]! :However, from the agent's point of view, there was only one transition|from state s1to state s01 via action a1. This implies a single update,Q[s1; a1] := (1� �)Q[s1; a1] + � �maxa01 Q[s01; a01]! :If the opponent chooses its actions according to a �xed policy, this update rule willconverge to the value of the optimal counter-policy, and not the minimax optimal policy.If the opponent adopts a non-stationary policy, the update rule will not necessarilyconverge to anything meaningful.One of the main results of this section, then, is that it is possible to learn opti-mal minimax strategies for games using reinforcement learning. The popular self-play



96method, in which a system learns about a game by playing it against itself for a longtime, can be shown to converge to an optimal strategy as long as the simple minimax-Q learning update rule is used, and the system visits all possible game con�gurationsoften enough.4.7 Open ProblemsThe most glaring open problems with respect to alternating Markov games involve theexistence of polynomial-time algorithms.� Can alternating Markov games be solved in polynomial time?� What if we restrict ourselves to deterministic alternating Markov games? Weknow that by making the problem any simpler, for example, by restricting rewardsto be zero except upon entering an absorbing state, polynomial-time algorithmsexist, so the deterministic problem is in a perfect position to be solved.� Like alternating Markov games, the problem of deciding whether a given numberis prime is in the class NP\co-NP. Primes can be recognized by a randomizedalgorithm in polynomial time with a bounded probability of error. Perhaps arandomized algorithm for alternating Markov games would be easier to �nd.There is a randomized subexponential-time algorithm [101]; is there one thatruns in polynomial time?� A connection can be made between deterministic mdps and min-cost ow prob-lems (see Chapter 2). Can these connections be exploited to �nd an e�cientalgorithm for alternating Markov games?4.8 Related WorkThe study of games has been divided among several di�erent disciplines: game theory,reinforcement learning, and computational complexity. Although there has been somecross fertilization between these �elds, many of the fundamental results have beendiscovered separately by individual researchers in the di�erent areas.The study of the computational properties of games in the game-theory litera-ture dates back at least to the work of von Neumann and Morgenstern [168], which



97addressed solutions to the single-state simultaneous-action games known as matrixgames. Shapley [143] extended these concepts to multi-stage Markov games. Sur-veys of Markov games from a game-theory perspective have been written by Van DerWal [166] and Vrieze [170]. A shorter survey is also available in a game-theory overviewedited by Peters and Vrieze [120]. Filar [54] speci�cally examined the di�erence betweensimultaneous- and alternating-action games.It is interesting to note that many of the great minds of computer science workedon creating game-playing programs. Russell and Norvig's arti�cial intelligence text-book [132] lists contributions by Babbage, Zermelo, Von Neumann, Wiener, Shannon,Turing, and Knuth.Alternating Markov games have been the source of a great deal of attention inthe reinforcement-learning world. One of the earliest systems for game playing wasSamuel's checker-playing program [134], which improved with experience and was in-spired by many of the same insights that underlie simple minimax-Q learning. More re-cent examples of learning in alternating Markov games include Tesauro's backgammonplayer [160]; Boyan's backgammon and tic-tac-toe players [26]; Schraudolph, Dayanand Sejnowski's Go player [139]; and Thrun's chess player [161].In the complexity and algorithms literature, Condon [36] initiated the study ofsimple stochastic games, \the simplest possible restriction of Shapley's model, whichretains just enough complexity so that no polynomial time algorithm is known." Themodel is essentially an undiscounted alternating Markov game with restricted transitionprobabilities and action sets and rewards only of plus and minus one upon transition toa zero-reward absorbing state. Condon showed that solving a \stopping" (all-policies-proper) simple stochastic game is actually equivalent to solving an alternating Markovgame. She describes connections from this problem to Markov games, as well as toimportant open problems in complexity theory. Later work [37] examined algorithmicapproaches to the problem, with the hope of �nding a polynomial-time algorithm tosolve it. Although this problem is still open, Ludwig [101] was able to show thatthe problem of �nding the optimal value function for a simple stochastic game canbe solved in subexponential time. Zwick and Paterson [183] examined deterministicaverage-reward and deterministic discounted games and showed that these problems areno harder than solving simple stochastic games, that pseudopolynomial-time algorithmsexist, and that no polynomial-time algorithms are known.



984.9 ContributionsIn this chapter, I described a generalization of Markov decision processes to a type ofmultiagent environment called an alternating Markov game. I proved a new theoremshowing that strictly alternating Markov games are just as hard to solve as alternat-ing Markov games. I described the extension of value iteration and policy iterationto games, and explained that no polynomial-time algorithm is known for solving thisclass of models. I derived a new algorithm for solving constant reward-cycle alternat-ing Markov games in polynomial time, by combining the core algorithmic ideas of twoprevious polynomial-time algorithms. I showed, for the �rst time, that reinforcement-learning algorithms developed for alternating Markov games converge to optimal min-imax policies.It seems inevitable that a polynomial-time algorithm for alternating Markov gameswill be found. There are important algorithmic ideas that have been recently discoveredin the context of solving min-cost ow problems and hard combinatorial optimizationproblems, and some of these ideas are likely to be useful in �nding provably e�cientalgorithms for alternating Markov games. This would settle one of the more intriguingopen problems in the area of sequential decision making, and perhaps spark interest indeveloping useful applications.



Chapter 5Markov GamesMarkov games, also called stochastic games, are a model of sequential decision makingthat both predates and generalizes Markov decision processes. The topic was originallystudied by Shapley [143]. This chapter generalizes the previous chapter by consideringtwo-player Markov games in which rewards and transitions are determined by thesimultaneous actions of both players.5.1 IntroductionMost board games (chess, checkers, tic-tac-toe, etc.) are played by people taking turnschanging the state of the game. This form of game is very convenient for humans toplay because it requires no hidden information or implied trust; all players have accessto all information at all times.There are familiar conict situations that have a more simultaneous quality tothem. In football, for example, the o�ensive and defensive coaches call plays withoutknowing what the other coach will do. In hockey, a player taking a penalty shot decideswhether to shoot high or low, while the goalie commits to blocking one or the othertype of shot. In business, MCI decides to start an ad campaign defending itself againstwhatever negative claims AT&T might be making. All these examples have the prop-erty that the two decision makers choose a course of action that becomes immediatelyapparent to the other decision maker; decisions are made in the face of informationthat is complete except for the current decision of the other player. This is a di�erentkind of information structure from alternating games, in which nothing is hidden, andincomplete-information games like poker in which information remains hidden through99



100a sequence of decisions. It is these simultaneous-action complete-information gamesthat are the subject of this chapter.5.2 Markov GamesThe set of Markov games subsumes both Markov decision processes and alternatingMarkov games, described in previous chapters, as special cases.5.2.1 Basic FrameworkAs before, A1 and A2 represent the action choices available to the agent and its oppo-nent. Instead of partitioning the state space according to which player has control oftransitions, here the players control the transitions together. The functions R(s; a1; a2)and T (s; a1; a2; s0) represent the immediate rewards to the agent and transition proba-bilities resulting from the agent taking action a1 2 A1 and the opponent taking actiona2 2 A2 from state s.An important special case is when jSj = 1. The resulting game is called a matrixgame; it is the earliest form of game studied in the game-theory literature [168]. Thename \matrix game" comes from the fact that the relevant parameters can be sum-marized by a jA1j � jA2j matrix consisting of the immediate reward values. Solving amatrix game is known to be polynomially equivalent to solving a linear program [47].5.2.2 Acting OptimallyAs with alternating Markov games, I mainly consider the problem of �nding minimax-optimal policies. Once again, I consider only the discounted expected value criterion.It is possible to de�ne a notion of undiscounted rewards for Markov games, but not allMarkov games have optimal strategies in the undiscounted case [114]. This is because,in some games, it is best to postpone risky actions inde�nitely but not to avoid themforever.Like mdps and alternating Markov games, every Markov game has a stationaryoptimal policy. Unlike the other models, however, there are Markov games with nodeterministic optimal policy. A classic example is \Rock, Paper, Scissors," in whichany deterministic policy can be consistently defeated, whereas the optimal stochasticpolicy always breaks even. The need for stochastic action choice stems from the agent's



101Agentrock paper scissorsrock 0 1 �1Opponent paper �1 0 1scissors 1 �1 0Table 5.1: The matrix game for \Rock, Paper, Scissors."uncertainty of its opponent's current action and its requirement to avoid being \secondguessed."Like alternating Markov games, when one player's policy is held �xed, the otherplayer's optimal counter strategy can be found as the solution to an mdp.5.3 Algorithms for Solving Markov GamesIn this section, I briey review methods for �nding optimal policies for Markov gamesusing extensions of the value-iteration and policy-iteration algorithms. Both methodsrely on a subroutine for �nding the optimal stochastic policy to a matrix game.5.3.1 Matrix GamesIn this section, I describe the problem of �nding an optimal policy for a single-stateMarkov game. Although this type of game is a very special case, the linear programused to solve it forms the basis for multi-state algorithms.A matrix game is de�ned by the matrix R of immediate rewards. ComponentR(a1; a2) is the reward to the agent for choosing action a1 when the opponent choosesaction a2. The agent's goal is to choose actions to maximize its expected reward whilethe opponent's goal is to minimize it. Table 5.1 gives the matrix game correspondingto the well-known game of \Rock, Paper, Scissors."The agent's policy � is a probability distribution over the actions in A1. For \Rock,Paper, Scissors," � is made up of 3 components: �[rock], �[paper], and �[scissors].Under a minimax criterion, the optimal agent's minimum expected reward should beas large as possible. How can we �nd a policy that achieves this? Imagine that wewould be satis�ed with a policy that is guaranteed an expected score of v no matterwhich action the opponent chooses. The inequalities in Table 5.2, with � � 0, constrainthe components of � to represent exactly those policies|any solution to the inequalities



102�[paper] � �[scissors] � v (vs. rock)� �[rock] + �[scissors] � v (vs. paper)�[rock] � �[paper] � v (vs. scissors)�[rock] + �[paper] + �[scissors] = 1Table 5.2: Linear constraints on the solution to a matrix game.matrixLP(A1;A2; R) := fSolve the following linear program:maximize: vs.t.: v �Pa12A1 �[a1]R(a1; a2), for all a2 2 A2and: �[a2] � 0, for all a2 2 A2and: Pa22A2 �[a2] = 1variables: v, �[a2] for all a2 2 A2return �g Table 5.3: Solving a matrix game via linear programming.would su�ce.For � to be optimal, we must identify the largest v for which there is some value of �that makes the constraints hold. Linear programming can be used solve this problem;in this example, it �nds a value of 0 for v and (1/3, 1/3, 1/3) for �. We can abbreviatethe general linear program asv = max�2�(A1) mina22A2 Xa12A1R(a1; a2)�[a1];where �(A1) represents the set of probability distributions over A1, andXa1 R(s; a1; a2)�[a1]expresses the expected reward to the agent for adopting stochastic policy � against theopponent's action a2. Table 5.3 gives a subroutine for computing an optimal policy forthe agent in a matrix game.The value found by the subroutine in Table 5.3 is the largest reward that the agentcan guarantee itself; this is sometimes called the maximin value. An alternate de�nitionis for the value to be the smallest amount of reward the opponent can force the agentto get; this is sometimes called the minimax value. An important result about matrix



103games, as well as the more general Markov games, is that the maximin and minimaxvalues are equal [168, 143]. Using the maximin de�nition, the agent is the only onethat needs to choose actions stochastically, because once the agent's policy is �xed,the opponent faces a simple minimization problem (or mdp, in the Markov-game case)that can be optimized by a deterministic policy.5.3.2 Value IterationIn mdps and alternating Markov games, the problem of �nding an optimal policy canbe reduced to that of �nding the optimal Q values. The same is true for general Markovgames, although the process of extracting the optimal policy from the optimal Q valuesis somewhat more complex.De�ne V �(s) to be the expected reward to the agent when both players followminimax optimal policies starting from state s. De�ne Q�(s; a1; a2) to be the expectedreward to the agent taking action a1 when the opponent chooses a2 from state s andboth players continue optimally thereafter. The optimal choice of action from states, then, is one that maximizes Q�(s; a1; a2) with respect to the minimizing choice ofa2. This problem is identical to the problem of solving a matrix game, discussed inSection 5.3.1.The value of a state s 2 S in a Markov game isV �(s) = max�2�(A1) mina22A2 Xa12A1Q�(s; a1; a2)�[a1];and the Q value of action a1 against action a2 in state s isQ�(s; a1; a2) = R(s; a1; a2) + �Xs0 T (s; a1; a2; s0)V �(s0):The optimal policy for the agent in state s is to choose actions according to the prob-ability distribution �(s; �) that maximizesmina22A2 Xa12A1Q�(s; a1; a2)�(s; a1):The resulting recursive equations look much like the Bellman equations for Q� andV � in mdps, and indeed the analogous value-iteration algorithm converges to the correctvalues [114]. Unlike mdps however, the greedy policy is not necessarily optimal afterany �nite number of steps.



104PolicyIterationMarkovGame(M = hS;A1;A2; T; R; �i; �) := fforeach s 2 S V0(s) := 0t := 0loopt := t+ 1(�1; �2; Vt) := improvePoliciesMarkovGame(Vt�1;M)until maxs jVt�1(s)� Vt(s)j < �return �1g Table 5.4: The policy-iteration algorithm for Markov games.improvePoliciesMarkovGame(V;M= hS;A1;A2; T; R; �i) := fforeach s 2 S fforeach a1 2 A1 and a2 2 A2Q(a1; a2) := R(s; a1; a2) + �Ps02S T (s; a1; a2; s0)V (s0)�1(s; �) := matrixLP(A1;A2; Q)g(�2; V 0) := counterStratMarkovGame2(�1;M)return (�1, �2, V 0)g Table 5.5: Computing improved policies for both players.5.3.3 Policy IterationThe policy-iteration algorithm for alternating Markov games described in Chapter 4extends to Markov games. As in alternating Markov games, not all possible de�nitionsof policy improvement lead to a convergent algorithm. An important di�erence betweenalternating Markov games and Markov games is that there is no �nite-size set of policiesthat is known to include an optimal policy. As a result, policy iteration produces asequence of better and better policies, but will not necessarily converge in �nite time.Tables 5.4, 5.5, and 5.6 give subroutines for �nding a near-optimal policy for aMarkov game via policy iteration. The underlying ideas follow those developed inSection 4.3.2.



105counterStratMarkovGame2(�1; hS;A1;A2; T; R; �i) := fforeach s 2 S and s0 2 S and a2 2 A2T 0(s; a2; s0) :=Pa1 �1(s; a1)T (s; a1; a2; s0)foreach s 2 S and a2 2 A2 R0(s; a2) := �Pa1 �1(s; a1)R(s; a1; a2)return (PolicyIterationMDP(hS;A2; T 0; R0; �i))g Table 5.6: Computing the optimal counter-strategy for a �xed policy.5.4 Algorithmic AnalysisThe most important analytic tool for Markov games is expressed in the following lemma.Lemma 5.1 Markov games are a type of generalized mdp.Proof: The Bellman equations given in Section 5.3.2 look a bit di�erent from the earlierexamples of generalized mdps. Nonetheless, as shown in Section C.1, the Markov gamesummary operator,O(a1;a2) f(a1; a2) = max�2�(A1) mina22A2 Xa12A1 �[a1]f(a1; a2)is a non-expansion. �An important result concerning the analysis of algorithms for Markov games is thatthe optimal value function (and policy) need not consist of rational numbers, even ifthe components of the transition matrix, reward matrix, and the discount factor areall rational. This result is discussed in more detail in Section 5.5, but it is importantto note this now because the following analyses makes use of it.5.4.1 Matrix GamesAs I mentioned earlier, solving matrix games is equivalent to linear programming [47].This means that they can be solved exactly in polynomial time. Although an optimalpolicy for a matrix game can be stochastic, the probabilities and values are guaranteedto be rational if the transitions, rewards, and discount factor are rational.



1065.4.2 Iterative AlgorithmsFrom Lemma 5.1 and Theorem 3.2, the value-iteration algorithm can be used to �nd�-optimal value functions for Markov gamesThe convergence of policy iteration follows from the convergence of the policy-iteration algorithm for generalized mdps. Although policy iteration will not necessarily�nd the optimal value function in �nite time, each iteration is guaranteed to improvethe current approximate value function by a factor of �. As a result, �-optimal approx-imations to the optimal policy for a game can be found in time polynomial in the sizeof the game, 1=(1� �) and log �.5.4.3 Linear ProgrammingMarkov decision processes are Markov games in which the opponent has only one choiceof action, and matrix games are Markov games with only one state. Both of thesemodels can be solved exactly in polynomial time using linear programming. Given thisfact, it is perhaps surprising that no �nite-size linear program can express the optimalvalue function of an arbitrary Markov game [76]. This follows from the fact that linearprograms have rational solutions given rational coe�cients, while Markov games canhave irrational solutions.5.5 Complexity ResultsMarkov games can be solved to any desired degree of accuracy using value iteration.However, it is not known if any algorithm can solve Markov games exactly. This isbecause the optimal value function of a Markov game can consist of irrational numbers,as was shown by Vrieze [169] using a two-state example. A similar example, which usesonly deterministic transitions is described in Section E.1; thus, it is the simultaneous-move quality of Markov games that makes this problem very di�cult.On the other hand, polynomial-horizon problems can be solved in polynomial timeusing value iteration (see Section 5.3). The value functions for �nite-horizon problemsare guaranteed to consist of rational numbers as long as the immediate rewards, transi-tions, and discount factor are rational. Both the deterministic and stochastic versionsof the problem are P-complete as they include polynomial-horizon alternating Markovgames and matrix games as special cases, both of which are P-hard. See Papadimitriou



107and Tsitsiklis' [116] work on mdps for related results.5.6 Reinforcement Learning in Markov GamesIn the reinforcement-learning community, Markov games with simultaneous actionshave not been examined as closely as alternating Markov games. This is probably, inpart, due to the fact that most popular games are designed for humans to play, andsimultaneous actions are cumbersome for humans to carry out.There are a few examples of learning in simultaneous-action games, including myearlier work on a simple soccer-like game [90], and Harmon, Baird, and Klopf's ex-plorations of a di�erential pursuit/evasion game [61]. In Harmon et al.'s work, it isassumed that a deterministic optimal policy exists for the simultaneous-action game,whereas, in my work, a stochastic optimal policy is sought.5.6.1 Minimax-Q LearningSection 4.6.1 described a Q-learning-like rule for alternating Markov games. It isstraightforward to apply the same technique to solving Markov games. An experi-ence tuple is now hs; a1; a2; r; s0i, thus both players must have access to the other'saction choice after it is issued. The update is exactly the same as for Q-learning, withthe obvious di�erence that Q values are indexed by the action choices for both players:Q[s; a1; a2] := (1� �)Q[s; a1; a2] + �(r + V (s0));where V (s0) = max�2�(A1) mina22A2 Xa12A1Q[s0; a1; a2]�[a1]:Because the computation of V (s0) from the current Q values involves solving a matrixgame, each learning step requires solving a linear program.The algorithm is called minimax-Q because it is essentially identical to the standardQ-learning algorithm with a minimax replacing the maximization. It is described in anearlier paper [90], which includes empirical results on a simple Markov game.The convergence of this approach follows from the convergence of the generalizedQ-learning algorithm in Section 3.6.3. It is interesting to note that, from a convergence-of-learning standpoint, Markov games and mdps are equally di�cult to solve, whereas,from a complexity standpoint, Markov games are signi�cantly harder. This highlights



108fictitiousMatrix(A1;A2; R; k) := fforeach a1 2 A1 Y [a1] := 0foreach a2 2 A2 X [a2] := 0foreach t 2 1 : : :k fa�1 := argmaxa12A1 Y [a1]a�2 := argmina22A2 X [a2]foreach a1 2 A1 Y [a1] := Y [a1] +R(a1; a�2)foreach a2 2 A2 X [a2] := X [a2] + R(a�1; a2)greturn (maxa12A1 Y [a1])=kg Table 5.7: Approximating the value of a matrix game by �ctitious play.one of the di�erences between the criteria used to evaluate learning algorithms andplanning algorithms.5.6.2 Solving Matrix Games by Fictitious PlaySolving a known Markov game using the method of �ctitious play is reminiscent ofreinforcement learning. The basic idea is that we can identify an optimal value functionby playing two players against one another. On each step, each player chooses theaction that is the best response to the stochastic policy that the other player appearsto be using. The long-run proportion of action choices for each player converges to anoptimal stochastic policy for the matrix game.The material in this section is summarized from an article by Vrieze and Tijs [171],which is itself a summary of some 45 years of work in this area. The algorithm inTable 5.7 uses the method of �ctitious play to approximate the value of a matrix game.In this subroutine, k represents the number of rounds of play to use when approx-imating the game (the method does not necessarily converge in �nite time, thus somestopping rule must be used). At step t, vector Y has the property that the value Y [a1]represents the rewards that the agent would expect to receive in t steps for action a1if the actions chosen thus far by the opponent are representative of how it will chooseactions in the future. The agent's best (deterministic) response to such an opponentis to choose action a�1 = argmaxa12A1 Y [a1], the action with the maximum expectedreward.



109At the same time, the opponent keeps a vector X with one component for eachaction in A2. Vector X represents the expected rewards the opponent would receivein t steps when playing against an agent with a �xed stochastic policy in which actiona1 is selected precisely in the proportion in which the agent has chosen it thus far;therefore, a�2 = argmina22A2 X [a2] is the opponent's optimal choice of action.After actions a�1 and a�2 are chosen, the X and Y vectors can be updated to includeone more round of rewards. The agent's Y vector is incremented with the rewards theagent receives when the opponent takes action a�2 (which it just did); similarly for X .Lemma 5.2 In the �ctitious-play algorithm, the quantities (maxa12A1 Y [a1])=k and(mina22A2 X [a1])=k converge to the value of the matrix game, as k increases.Proof: This is proven in Vrieze and Tijs' article [171]. �In addition to the proof, Vrieze and Tijs include information on the rate of con-vergence of this process, and show that the reward matrix R need not be known withcertainty for the process to converge. All that is necessary is for an estimate of R tobe available, and for that estimate to converge to R over time.5.6.3 Solving Markov Games by Fictitious PlayThe �ctitious-play method for matrix games is interesting from an algorithmic or learn-ing standpoint, but its practical use is extremely limited; solving a game using linearprogramming is not di�cult either conceptually or computationally.The same is not true of Markov games, which are not known to be exactly solvableby any algorithm. In addition, each phase of the standard iterative methods involvesolving a linear program|two, in the case of policy iteration. Therefore, there is muchto be said for applying a method like �ctitious play to the Markov-game case.Vrieze and Tijs [171] explored this problem, and found a �ctious-play algorithmfor Markov games with convergence rates comparable to the matrix game case. Theiralgorithm is given in Table 5.8.Although the algorithm is a fairly straightforward extension of the algorithm fromthe previous section, there are a few subtleties worth explaining. If we knew that Vrepresented the optimal value function for the given Markov game, then the algorithmwould essentially be �nding the value of the matrix game with payo�sR(s; a1; a2) + �Xs0 T (s; a1; a2; s0)V (s0)
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fictitiousMarkovGame(S;A1;A2; T; R; �; k) := fM := maxs2S;a121;a22A2 jR(s; a1; a2)jforeach s 2 S fforeach a1 2 A1 Y [s; a1] :=M=(1� �)foreach a2 2 A2 X [s; a2] :=M=(1� �)V [s] := maxa12A1 Y [s; a1]gforeach t 2 1 : : :k fforeach s 2 S fa�1 := argmaxa12A1 Y [s; a1]a�2 := argmina22A2 X [s; a2]V [s] := min(V [s]; 1=t Y [s; a�1])foreach a1 2 A1Y [s; a1] := Y [s; a1] + R(s; a1; a�2) + �Ps0 T (s; a1; a�2; s0)V [s0]foreach a2 2 A2X [s; a2] := X [s; a2] +R(s; a�1; a2) + �Ps0 T (s; a�1; a2; s0)V [s0]ggreturn(V )g Table 5.8: Approximating the value of a Markov game by �ctitious play.



111for each s 2 S. However, the value of this game is V (s), so if we knew V , there wouldbe no point in solving this game.Of course, we do not know the optimal V in advance, but the algorithm in Table 5.8can be shown to approximate the true optimal value function from above. The algo-rithm initializes the Y [s; a1] values with an optimistic estimate of the value of actiona1 in state s. Each time the maximum value of Y [s; a1] (over all actions) decreases, wecan decrease the estimate of the value of state s accordingly.The �ctitious-play algorithm has much in common with a reinforcement-learningapproach to this problem; at each step, the players choose actions, and the choice ofactions a�ects the estimates and future decisions. However, it is a very strange learningalgorithm. First, for each player to learn to behave optimally, it is necessary for theother player to choose its moves in a particular fashion; the two competing players mustcollaborate on their choices. Second, updates and action choices are made in all statessimultaneously. These two di�culties make the �ctious-play approach unsuitable foruse in reinforcement-learning problems.It is likely that the second of these di�culties can be eliminated; the same algorithmought to converge if Q values are estimated, as in the minimax-Q learning algorithm.On the other hand, it is di�cult to imagine eliminating the �rst di�culty; it seemsnecessary for the players to choose their actions in this highly scripted way for the�ctitious-play approach to converge to optimal behavior.5.7 Open ProblemsIn this chapter, I described the problem of solving Markov games, drawing from the�elds of algorithmic analysis, reinforcement learning, and game theory. There are anumber of extensions that might prove fruitful and interesting.� Game theorists consider two-player zero-sum games to be the simplest, and inmany ways, the least interesting, type of game. Variations that include possiblecooperation or multiple players have been considered extensively. Such modelsare of interest to researchers in planning and reinforcement learning since theycould be used to capture interactions between a collection of agents solving taskstogether. Are there optimality criteria that would be appropriate for planningand/or learning? Are there e�cient algorithms for manipulating these models?



112� The use of linear programming in the innermost loop of minimax-Q learning isproblematic, because the computational complexity of each step is large and typ-ically many steps will be needed before the system converges su�ciently. Wouldapproximate solutions to the linear programs su�ce? The results on �ctitiousplay for Markov games indicate that this ought to be possible. Iterative methodsare also quite promising since the relevant linear programs change slowly overtime. Are there iterative linear-programming algorithms that would be appropri-ate for this problem?� The strength of the minimax criterion is that it allows the agent to converge to a�xed strategy that is guaranteed to be \safe," in that it does as well as possibleagainst the worst possible opponent. It can be argued that this is unnecessary ifthe agent is allowed to adapt continually to its opponent. To what extent is thistrue? In theory, any deviation from the minimax-optimal policy would leave theagent vulnerable to a devious form of trickery in which the opponent leads theagent to learn a poor policy and then exploits the resulting situation. Can suchan opponent be identi�ed for, say, a regular Q-learning agent?� The fact that rational-valued Markov games can have irrational value functionsmakes it hard to discuss the complexity of the optimization problem|how shouldthe algorithm represent and return the irrational values? Decision problems like\Is the optimal value function for state s at least r?" are well-de�ned (theanswer is just one bit), but the exact complexity is unknown. Can it be shownto be uncomputable, perhaps by relating it to the problem of �nding the roots ofpolynomial equations and Galois theory [6]?� There are criteria other than minimax that capture the competitive aspect ofgames, while satisfying the conditions for being a generalized mdp. Among theseare rules in which agents choose randomly among actions that maximize theirworst-case reward and those that maximize their expected reward against a par-ticular adversary. This criterion can be shown to result in well-de�ned valuefunctions and convergent learning, but are the optimal policies interesting? Dothey blend aggressive behavior against a known opponent with conservative ac-tions? Are there other update rules that are more appropriate? Are they non-expansions?



113� Markov games can be viewed as incomplete-information games with a particular\information structure" [128] in which the state is made known to both playersevery other move. It is possible that games with more elaborate informationstructures can be solved just as e�ciently, as long as the structure is not toocomplex. For example, as long as the true state is revealed often enough, itought to be possible to combine a successive-approximation algorithm with ane�cient algorithm for solving game trees [84]. Would such a hybrid algorithm beof interest? Are there any applications with this structure?5.8 Related WorkSection 4.8 listed work related to alternating Markov games as well as the more generalMarkov games discussed in this chapter.Dobkin and Reiss [47] showed that the complexity of solving matrix games is closelyrelated to a set of problems in linear programming and computational geometry; it isinteresting to note that their paper was written before linear programming was knownto be solvable in polynomial time.Work on game learning in the reinforcement-learning literature focuses almost exclu-sively on alternating-move games. Noteworthy exceptions include work by Littman [90]on a discrete soccer-like game, and work by Harmon, Baird, and Klopf [61] on a con-tinuous pursuit-evasion game.Kallenberg [76] examined a set of game-related problems that can be solved inpolynomial time by linear programming. These include one-player games (mdps), ma-trix games, and Markov games in which transitions are inuenced by only one player.Vrieze [170] surveyed all the algorithms listed in this chapter, as well as others.General Markov games di�er from alternating Markov games in that the playerschoose actions simultaneously. Games with simultaneous actions can be viewed as arestricted type of incomplete-information game in which the players' actions are issuedsequentially but are not revealed until after both players have made their decisions.Koller, Megiddo, and von Stengel [82, 84, 83] looked closely at games of partial infor-mation. They developed algorithms that run in polynomial time with respect to thesize of the game tree, which roughly means that their results apply to Markov gamesin which there are no cycles in the transition graph. Their algorithms �nd optimalstochastic policies for a wide range of incomplete-information games including those



114with simultaneous actions and games that do not obey the zero-sum property.5.9 ContributionsIn this chapter, I described Markov games, a model of sequential decision making inwhich two agents choose actions in parallel. I discussed several of the classic algorithmsfor �nding approximately optimal solutions to this type of game, and explained thatthe existence of simple games with irrational solutions makes it di�cult to analyzethe exact computational complexity of this model. I showed for the �rst time thatthis di�culty persists even in deterministic games. In spite of these computationalchallenges, I presented a novel result that reinforcement-learning algorithms convergeto optimal solutions for Markov games.Because of their computational intractability, Markov games will probably continueto be of mainly theoretical interest to researchers in the �elds of reinforcement learn-ing and operations research. However, they could potentially help provide worst-casebounds for even more di�cult problems that arise in models with uncertainty in stateestimation [123] or imprecise value functions [112]. Even if Markov games themselvesare of only marginal interest, the optimal randomness that results from solving themis an important and powerful concept that deserves further attention.



Chapter 6Partially Observable MarkovDecision ProcessesPortions of this chapter and its associated appendix have appeared in ear-lier papers: \Planning and acting in partially observable stochastic do-mains" [73] with Kaelbling and Cassandra, \Acting optimally in partiallyobservable stochastic domains" [32] with Cassandra and Kaelbling, and \Anintroduction to reinforcement learning" [74] with Kaelbling and Moore.Chapter 2 began with an example of a robot deciding how to navigate in a large o�cebuilding. This hypothetical robot was plagued by an environment that it could notcompletely control. In spite of these di�culties, I explained how such a robot coulduse a map of its environment and knowledge of its own dynamics to generate optimalpolicies for navigating. A more realistic robot not only has unreliable actions, butunreliable observations as well: sometimes a corridor looks like a corner; sometimes aT-junction looks like an L-junction. The mdp algorithms discussed in Chapter 2 areno longer appropriate for an agent that does not have perfect state information.A robot with imperfect state information cannot use a policy that only maps truelocation to a best choice of action. In general, the robot will have to remember some-thing about its history of actions and observations, and use this information, togetherwith its knowledge of the underlying dynamics of the world, to maintain an estimateof its location. Many engineering applications follow this approach, using methods likethe Kalman �lter [77] to maintain a running estimate of the robot's spatial uncertainty,expressed as a Gaussian probability distribution in Cartesian space. This approach will115



116not do for our robot, though. Its uncertainty may be discrete: it might be almost cer-tain that it is in the north-east corner of either the fourth or the seventh oors, thoughit might admit some chance that it is on the �fth oor, as well.The robot must decide what actions to take given an uncertain estimate of itslocation. In some cases, it might be su�cient for the robot to ignore its uncertaintyand take actions that would be appropriate for the most likely location. In other cases,it might be better for the robot to take actions for the purpose of gathering information,such as searching for a landmark or reading signs on the wall. In general, it will takeactions that ful�ll both purposes simultaneously.6.1 IntroductionIn this chapter, I address the problem of choosing optimal actions in partially observablestochastic domains. Problems like the one described above can be modeled as partiallyobservable Markov decision processes (pomdps). In addition to their applicability toproblems of robot navigation, pomdps are useful for solving problems of factory processcontrol, resource allocation under uncertainty, cost-sensitive testing, and a variety ofother complex real-world challenges [109].One important facet of the pomdp approach is that there is no distinction drawnbetween actions taken to change the state of the world and actions taken to gaininformation. This is important because, in general, every action has both types ofe�ect. Stopping to ask questions may delay the agent's arrival at the goal or spendextra energy; moving forward may give the agent information that it is in a dead-endbecause of the resulting crash.6.2 Partially Observable Markov Decision ProcessesSolving a pomdp involves taking a map or model of the environment which includesstate transition information, observation probabilities, and the reward structure, andgenerating a plan for acting to maximize reward.6.2.1 Basic FrameworkA pomdp M = hS;A; T; R;Z ;Oi is de�ned in part by an mdp model: a �nite set Sof states, and a �nite set A of actions, a transition function T : S �A ! �(S), and a
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RIGHTFigure 6.1: An example partially observable environment.reward function, R : S � A ! R. In addition, it includes a �nite set of observations,Z , and an observation function O : S � A ! �(Z). The quantity O(s0; a; z) is theprobability of observing z 2 Z in state s0 after taking action a.6.2.2 Acting OptimallyThe average-reward criterion is not always well-de�ned for pomdps.1 This is roughlybecause, in some problems, the agent can guarantee itself a huge reward tomorrow bydoing nothing today, so it ends up doing nothing forever. This is sometimes called theproblem of the in�nitely delayed splurge [121]. However, the optimal value function iswell-de�ned in the discounted case, which I will continue to focus on exclusively here.Even though the optimal discounted in�nite-horizon value function is well-de�ned,representing a policy that can achieve the optimal value function can be quite chal-lenging. This section reviews some approaches for representing policies.Memoryless Policies The most naive strategy for dealing with partial observabilityis to ignore it; that is, to treat observations as if they were the states of the environmentand to try to �nd good behavior. Figure 6.1 shows a simple domain in which the agentis attempting to get \home" from the store. After leaving the store, there is a goodchance that the agent will end up in one of two places that look like \woods", but thatrequire di�erent actions for getting home. If we consider these states to be the same,then the agent cannot possibly behave optimally. But how well can it do?1This is also true for mdps with in�nite state or action spaces.
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observation actionFigure 6.2: Generic structure of memory-based solutions to pomdps.Problems relating to �nding observation-to-state mappings in pomdps, sometimescalled memoryless policies , have been studied in many di�erent contexts [182, 91, 146,70]. Finding the optimal memoryless policy is NP-hard [91], and it often has very poorperformance. In the case of the environment of Figure 6.1, for example, no memorylesspolicy takes less than an in�nite number of steps to goal, on average.Some improvement can be gained by considering stochastic memoryless policies;these are mappings from observations to probability distributions over actions. If thereis randomness in the agent's actions, it will not get stuck in the woods forever. Althoughalgorithms exist for �nding locally optimal stochastic policies, �nding a globally optimalpolicy is still NP-hard|this follows indirectly from a result by Papadimitriou andTsitsiklis [116]. In our woods example, the unique optimal stochastic policy is for theagent, when in the woods, to go right with probability 2 � p2 � 0:6 and left withprobability p2�1 � 0:4. This can be found by solving a simple (in this case) quadraticprogram. The fact that the optimal policy requires irrational numbers, even for such asimple example, gives some indication that it is a di�cult problem to solve exactly.Memory-based Policies The only way to behave e�ectively in a wide-range ofenvironments is to use memory of previous actions and observations to create a betterestimate of the current state. There are a variety of approaches to learning policieswith memory.Figure 6.2 illustrates the basic structure. The component on the left is the memory-state-update module, which computes the agent's new memory state as a function ofthe agent's present memory state, the most recent action, and the current observation.Solution methods di�er in their choice of memory state.History-window Policies One type of memory-based policy is obtained by de�ningthe agent's memory state to be a list of the k most recent actions and observations.



119White and Scherer [178] explored algorithms for �nding near-optimal policies of thisform. Platzman [121] used a more sophisticated approach that involved variable-widthwindows: the amount of history stored at any given time depended on the saliency ofthe most recent actions and observations.The variable-width-window approach can make much more e�cient use of a �nitememory because the number of distinct memory states needed for a �xed window ofwidth k is (jAjjZj)k, whereas a variable-width-window approach can involve as few oras many memory states as needed.Finite-memory Policies In the �nite-memory approach, the memory state can beany one of a �nite number of internal states. Finite-memory policies can remembera �nite amount of information about the past; unlike history-window approaches, in-formation can be stored for an arbitrarily long time. Both memoryless policies andhistory-window policies are special cases of �nite-memory policies.Because they are more expressive, general �nite-memory policies can be de�nedthat perform better than any history-window policy. However, this additional expres-siveness makes optimal �nite-memory policies di�cult to �nd. A heuristic algorithm for�nding stochastic �nite-memory policies has been explored [123]. The value-iterationapproach described in Chapter 7 can produce optimal �nite-memory policies for someproblems [32].Information States There are pomdps for which no �nite memory is su�cient tode�ne optimal behavior. In contrast, using the memory state to encode every action andobservation the agent ever encountered would be su�cient to allow optimal decisionsto be made. In many cases, an equivalent yet more convenient representation of thepast is the information state.An information state is a probability distribution over states of the environmentindicating the likelihood, given the agent's past experience, that the environment isactually in each of those states. A memory-state-update module for information statescan be constructed straightforwardly using the environment model and basic probabil-ity theory (see Section 7.2.1).The problem of �nding a policy mapping information states into actions can beformulated as an mdp, but the mdp cannot be solved using the techniques of Chapter 2because the state space is in�nite. Chapter 7 addresses techniques for solving this



120information-state mdp.6.3 Algorithms for Solving pomdpsThere are no practical algorithms for solving pomdps. In Chapter 7, I present thewitness algorithm, which is the most e�cient algorithm to date for solving pomdpsexactly over a �nite horizon; it solves some pomdps very quickly and others quiteslowly. Here, I describe several algorithms that are of theoretical interest because theyhelp indicate the computational complexity of di�erent types of pomdps.The fundamental decision problem is the following: given a pomdp M = hS;A; T;R;Z ; O; �i, a distribution over starting states x0, and a reward bound r, is there apolicy such that the expected discounted reward starting from x0 is at least r? I willassume that all the numbers involved are speci�ed as rational numbers written withno more than B bits. I use \pomdp" to refer to the model M, and \pomdp problem"to refer to M combined with x0 and the reward bound r.The complexity of the general in�nite-horizon version of this problem is not known.It may be the case that the problem is undecidable, although attempts to prove thishave not been successful. On the other hand, the more important problem of �ndingan �-optimal policy for a given pomdp problem can be solved. I address this problemin more detail in Chapter 7.6.3.1 Complexity SummaryIn this chapter, I present results pertaining to the computational complexity of solving24 separate variations of the pomdp problem. In this section, I describe upper bounds,in Section 6.5 lower bounds. Here, I will briey summarize the results.The basic pomdp problem is, given a pomdp model, an initial distribution x0, anda reward bound r, is there a policy with value at least r starting from x0? There are 4dimensions along which the basic problem might be varied. For each dimension, I willlist the values it can take, abbreviations for the values to simplify later discussion, andthe relationship between the various values.� Transitions (T ): In general, taking action a from state s results in a stochastictransition. A simpler case is when all transitions and observations are determin-istic. Any algorithm for solving stochastic (S) problems can be used to solve



121deterministic (D) problems by setting the probabilities to zeros and ones; anyhardness result for a deterministic problem applies to the stochastic version aswell.� Horizon (t): I am most interested in problems with an in�nite (1) planning hori-zon. Sometimes, however, computing answers for long enough �nite horizons (F)is su�cient. For analytic purposes, it is useful to consider problems in which thehorizon length is bounded by a polynomial in the size of the pomdp. Polynomialhorizons (P) are a special case of �nite horizons. We can create an equivalentin�nite-horizon problem for a given polynomial-horizon one by replicating thestates once for each time step in the horizon, then adding a zero-reward absorb-ing state at the end.� Rewards (R): I will consider general rewards (G), and a special case in whichall rewards are non-positive and the target bound is zero. In problems of thelatter type, as soon as a single negative reward is encountered with non-zeroprobability, the value of the policy is less than zero and the reward bound is notmet. For this reason, these problems can be formalized using boolean rewardvalues (true for zero rewards, false for negative rewards), so are called boolean-reward problems (B). Discount factors are not needed in the speci�cation ofboolean-reward problems.� Observations (O): When a pomdp has only one possible observation, it is unob-servable (U). If there are one or more possible observations, I call it the generalcase (G).Table 6.1 summarizes the complexity results presented in this chapter. The paren-thesized numbers are section references and \*" represents a \don't care" symbol.6.3.2 Deterministic pomdpsA deterministic pomdp M = hS;A; N;R;Z ;Obs; �i, is like a general pomdp withthe exception that the transition function N : S � A ! S and observation functionObs : S�A ! Z are deterministic. In this section, I show how to exploit the structureof deterministic pomdp problems to solve them.The following lemma provides a powerful way to reason about deterministic pomdpproblems.



122T t R OS 1 G * EXPTIME-hard (6.5.1), not known to be decidable* F * * decidable (6.3.3)D 1 G * in EXPTIME (6.3.2), PSPACE-hard (6.5.3)S 1 B G EXPTIME-comp.: EXPTIME-hard (6.5.1), in EXPTIME (6.3.3)S 1 B U PSPACE-complete: PSPACE-hard (6.5.3), in PSPACE (6.3.3)S P * G PSPACE-complete: PSPACE-hard (6.5.2), in PSPACE (6.3.3)D 1 B * PSPACE-complete: PSPACE-hard (6.5.3), in PSPACE (6.3.2)S P * U NP-complete: NP-hard (6.5.4), in NP (6.3.3)D P * * NP-complete: NP-hard (6.5.4), in NP (6.3.2)Table 6.1: Summary of pomdp complexity results in this chapter.Lemma 6.1 For every in�nite-horizon deterministic pomdp problem hS;A; N;R;Z;Obs; �; x0; ri, there is a �nite-state mdp with an equivalent optimal value. The numberof states in the mdp is no more than (1 + jSj)jSj.Proof: We will construct a �nite-state Markov decision process hD;A; T 0; R0; �i thatis equivalent to the given deterministic pomdp problem.In the initial distribution, the probability that the agent is in state s is x0[s]. Ifthe agent is actually in state s, then after taking action a and observing z, the agentis in state N(s; a), assuming that Obs(N(s; a)) = z. If Obs(N(s; a)) 6= z, then we canconclude that it was not possible for the agent to have been in state s initially.This argument can be generalized to a sequence of actions and observations. Foreach t � 1, let at be the tth action and zt be the resulting observation. For each t � 0,let Dt : S ! (S[fgoneg). I will refer to Dt as a table, and de�ne the value Dt(s) to bethe location of the agent at time t, assuming it started in state s. IfDt(s) = gone, it wasnot possible for the agent to have started in state s, given the actions and observationsup to time t. Table Dt is de�ned recursively by: D0(s) = s for all s 2 S andDt(s) = 8>>><>>>: gone; if Dt�1(s) = goneor Obs(N(Dt�1(s); at); at) 6= zt;N(Dt�1(s); at); otherwise.We can use elementary probability theory to express the probability that the agentis in state s after t steps in terms of Dt,Pr(st = s) = xt[s] = Ps0 x0[s0]IfDt(s0) = sg(Ps0 x0[s0]IfDt(s0) 6= goneg) ; (6.1)



123where Ifeg has value 1 if the boolean expression e is true and zero otherwise. Equa-tion 6.1 simply sums up, over the initial states s0 for which the agent would now bein state s, the probability that the agent started in state s0, and then normalizes theresult. The vector xt of probabilities is an information state, which is an adequatesummary of the past to allow optimal decisions to be made [5].Since xt can be written entirely in terms of x0, which does not change from step tostep, and Dt which does, we can use the table Dt to represent the state of the systemat time t. As there are (1 + jSj)jSj possible tables, the state space for a deterministicpomdp with a known initial distribution is �nite (in fact, exponential). In the following,D represents the set of all tables.The transitions and rewards over the state space of tables are de�ned as follows.Let N 0 be a next-table function given a table, action, and observation, N 0(D; a; z) = D0where D0(s) = 8>>><>>>: gone; if D(s) = goneor Obs(N(D(s); a); a) 6= zN(D(s); a); otherwise.The probability of observing z after taking action a from table D can be found byprobability theory to bePr(zjD; a) = Ps x0[s]IfObs(N(D(s); a); a) = zgPz0(Ps x0[s]IfObs(N(D(s); a); a) = z0g) :Intuitively, this expression considers each state s and includes its initial probabilityx0[s] in the total if the state that it maps to under table D followed by action s resultsin observation z. It then normalizes this quantity so that it sums to one when allpossible observations are considered.The probability of a transition from D to D0 under action a is the sum over obser-vations z of the probability of observing z, given that D goes to D0 under observationz: T 0(D; a;D0) = Pz Pr(zja;D)IfD0 = N 0(D; a; z)g. The expected reward for actiona from table D is the sum over states of the reward from state D(s) weighted by theprobability that s was the initial state, R0(D; a) =Ps IfD(s) 6= gonegx0[s]R(D(s); a).The Markov decision process hD;A; T 0; R0; �i is equivalent to the given deterministicpomdp problem because at each step, the set of tables and x0 constitute a su�cientsummary of past history. �Lemma 6.1 shows that the state space of a deterministic pomdp problem possesses



124a great deal of structure. I will next show that the transitions between states are alsoconstrained in a useful way.Recall from the proof of Lemma 6.1 that we can represent the state of a deterministicpomdp problem at any moment in time by a table D : S ! (S [ fgoneg). De�neng(D) = Ps IfD(s) 6= goneg, where I once again is a zero-one indicator function onthe given predicate. The quantity ng(D) represents the number of \non-gone" elementsin the D table. The set of possible next tables for D given action a is a singleton (i.e.,the transition is deterministic) if and only if ng(D0) = ng(D), where D0 is the resultingtable. If there are multiple possible next tables, then the value of ng for each of thenext tables is strictly smaller than ng(D). This follows from the lemma below.Lemma 6.2 Given a table D, and an action a, ng(D) =Pz ng(N 0(D; a; z)).Proof: Using the de�nitions of ng and N 0, and letting D0 be the result of applying N 0to D,Xz ng(N 0(D; a; z)) = Xz Xs IfD0(s) 6= goneg= Xs Xz IfD(s) 6= gone and Obs(N(D(s); a); a) = zg= Xs IfD(s) 6= goneg= ng(D): �Lemma 6.2 will help prove two important results concerning deterministic pomdpproblems later in this chapter.In�nite HorizonLemma 6.1 leads directly to an algorithm for solving deterministic pomdp problems:create the �nite-state mdp described in Lemma 6.1, compute the optimal value functionV � using the linear-programming algorithm of Chapter 2, and then check if V �(D0) � r(where D0(s) = s for all s 2 S). The run time is exponential in jSj; it is in EXPTIME.The algorithm and analysis can be improved for special cases. In the boolean-rewardcase, I will show how to reduce the space requirements to be polynomial, and in the thepolynomial-horizon case, I will show how to solve the problem non-deterministically inpolynomial time. These results are presented next.



125Polynomial HorizonThe optimal t-horizon policy for a pomdp problem can be represented by a t-steppolicy tree (policy trees are discussed in detail in Chapter 7, see Figure 7.3 for a usefulillustration). A t-step policy tree is a depth t tree that gives the action choice forthe initial state at the root and a (t � 1)-step policy tree for each observation that ispossible given the initial action. A t-step policy tree tells the agent which action totake �rst and how to behave depending on the observation that results.In general, a t-step policy tree will have as many as jZjt nodes. In a deterministicpomdp problem, this upper bound can be lowered considerably.Lemma 6.3 The optimal t-step policy tree for a deterministic pomdp problem has nomore than tjSj nodes.Proof: The lemma follows from several useful facts. First, each node in a policy treecan be associated with a table. In particular, the root node is associated with theinitial table D0, and the observation z child of a node with action choice a and tableD is associated with table N 0(D; a; z).Second, the optimal policy tree need not include any node whose associated tableD would have ng(D) = 0. Such a node could never be reached (all observations wouldbe impossible) and so is irrelevant to the representation of the optimal policy.Third, the sum of the ng values over all the tables at any given level of the policytree is exactly jSj. This follows from the fact that ng(D0) = jSj, and Lemma 6.2, whichsays that the sum of ng values is preserved between a node and its children.Putting these three facts together, there can be no more than jSj nodes at any ofthe t levels of the optimal t-step policy tree, from which the lemma follows. �Lemma 6.3 shows that, for a polynomial horizon, the number of nodes in the optimalpolicy tree is polynomially bounded. A polynomial-size policy tree can be evaluatedin polynomial time quite easily. For a leaf, let D be the associated table and a be theaction chosen; the value of the leaf is R(D; a). For an internal node of the tree, let Dbe the associated table and a be the action chosen at that node. The value of the nodeis R(D; a) + �Xz value of the z child :We can now specify a polynomial-time non-deterministic (NP) algorithm for solvingpolynomial-horizon deterministic pomdp problems.
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D D’

D’’

ng(D)

ng(D’’) ...Figure 6.3: Optimal in�nite-horizon policy for a deterministic pomdp.1. Guess the optimal policy tree. By Lemma 6.3, the tree need not have more thana polynomial number of nodes.2. Evaluate the guessed tree in polynomial time.3. Return \true" if the value of the root node is at least r.Boolean RewardsIn the previous section, I showed how to exploit the special structure of the table transi-tion function to show that the optimal polynomial-horizon policy could be representedsuccinctly. A similar observation can be made for in�nite-horizon policies, which makesit possible to solve boolean-reward problems using polynomial space. Recall that in aboolean-reward pomdp problem, all rewards are non-positive and the reward bound iszero.As a consequence of Lemma 6.2, any sequence of tables followed starting from D0can have no more than jSj stochastic transitions in it. Let D be some table that isreachable from D0 by following a particular optimal policy. What tables can be visitedafter D? The agent will take some number of deterministic transitions (no more thanjDj), and reach a table D0 such that ng(D0) = ng(D)|all the tables encountered alongthis path will have ng values equal to ng(D) also. Then, either a loop will be entered(a path of length no more than jDj from D0 to itself), or a stochastic transition willoccur to table D00 such that ng(D00) < ng(D). Figure 6.3 depicts the structure of anin�nite-horizon policy starting from table D.In the boolean-reward version of the deterministic in�nite-horizon pomdp problem,we want to know whether there is a policy with expected reward equal to zero startingfrom x0 (table D0) given that all immediate rewards are either zero or negative. Let



127V 0?(D) be a boolean variable indicating whether or not a zero-reward policy exists foran agent starting at table D. The Bellman equation for V 0? can be writtenV 0?(D) = 9a : (R0(D; a) = 0^ 8z : V 0?(N 0(D; a; z))):This is not a generalized mdp because boolean arithmetic is being used in place ofoperations on real numbers.Using the insight illustrated in Figure 6.3, we can rewrite the Bellman equation in acomputationally more convenient form. Let zpath(D;D0; t) be a predicate that is true ifthere is some zero-reward deterministic path from D to D0 of length t, and stoch(D; a)be a predicate that is true if there is more than one possible next table resulting fromtaking action a from table D. The Bellman equation can now be writtenV 0?(D) = 9D0 : 90 � t � jDj : ( ng(D0) = ng(D)^ zpath(D;D0; t) ^((90 � t0 � jDj : zpath(D0; D0; t0))_(9a : stoch(D0; a) ^ 8z : V 0?(N 0(D0; a; z)))) ) :Although this formulation is complicated, it has several important properties. First,V 0?(D) is not de�ned in terms of itself. Although the de�nition of V 0? is recursive,V 0?(D) is only de�ned in terms of V 0?(D00) such that ng(D00) < ng(D). Second, closeexamination of the formula reveals that it can be evaluated using a polynomial amountof space, as long as zpath can be evaluated in a polynomial amount of space.To see that zpath can be evaluated in a polynomial amount of space, notice that itcan be expressed aszpath(D;D0; t) = 8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>: false; if t = 0 and D 6= D0;false; if ng(D) 6= ng(D0);false; if t = 1 and there is no a such thatT 0(D; a;D0) = 1 and R0(D; a) = 0;false; if t > 1 and there is no D00 such thatzpath(D;D00; dt=2e) andzpath(D00; D0; bt=2c);true; otherwise:It is not hard to see that the above expression for zpath is correct; that it can beevaluated in polynomial space follows from Savitch's Theorem [115].



128Since V 0?(D0) is true if and only if the deterministic in�nite-horizon pomdp has azero-reward policy, and V 0?(D0) can be evaluated in polynomial space, the problem ofsolving boolean-reward pomdps is in PSPACE.6.3.3 Stochastic TransitionsWhen a pomdp has stochastic transitions, the set of information states reachable froma given starting distribution can be countably in�nite; this is true even when actionsare chosen according to an optimal stationary policy. As a result, although the optimalvalue function can be approximated to any degree of accuracy in �nite time (see Chap-ter 7), determining whether an in�nite-horizon policy can achieve an expected rewardof at least r is quite di�cult, and perhaps even impossible.There are special cases of the problem that are decidable. I will next show thatwhen reward is restricted to be non-positive, the existence of a zero-reward optimalpolicy can be determined using an exponential amount of time. I will also show thatwhen the horizon is restricted to be �nite, the problem is decidable, and if the horizonis polynomially bounded, the problem can be decided in a polynomial amount of space.Polynomial HorizonAn information state is a probability distribution over the states in S. In the nextchapter, I will explain how an information state can be updated to summarize newinformation, in the form of actions and observations. For the purposes of this section,all we need to know is that information states are su�cient summaries of past historyfor predicting future transitions and rewards, and that the set of information statesreachable in a �nite number of steps is �nite.The t-step value of information state x can be writtenVt(x) = maxa  Xs x[s]R(s; a) + �Xz Pr(zjx; a)Vt�1(x0)! ;where V0(x) = 0 and x0 is the information state resulting from taking action a andobserving z from information state x. It is straightforward to evaluate this expressionin �nite time for t < 1 and in polynomial space if t is polynomially bounded [116].The resulting optimal value can be compared to the reward bound r to answer thedecision problem for a �nite-horizon pomdp problem.



129In the case of an unobservable pomdp over a polynomial horizon, the optimal policyis a polynomial-length sequence of actions; such a policy can be guessed and evaluatedin polynomial time, therefore the associated pomdp problem is in NP.Boolean RewardsTo compute whether a given policy achieves zero total reward, given that immediaterewards are all non-positive, it is not necessary to keep accurate statistics about theagent's information state. For information state x, if x[s] > 0 and taking action afrom state s results in a negative reward, then taking action a from information statex results in negative reward.It is su�cient, therefore, to group information states by the set of states to whichthey assign positive probability. Using this insight, the total number of distinct groupsof information states is 2jSj�1, the size of the power set of S minus the null set. For theboolean-reward case, it is possible to de�ne a boolean-reward mdp with these groups asthe states. This mdp has a zero-reward optimal policy if and only if the boolean-rewardpomdp has one, and can be solved in exponential time using the linear-programmingalgorithm of Chapter 2, or by a simple graph search algorithm.In the case of an unobservable pomdp, the �nite-state boolean-reward mdp de-scribed above is deterministic and can be solved using polynomial space using a varia-tion of the zpath predicate from Section 6.3.2.6.4 Algorithmic AnalysisThe presentation of the algorithms in Section 6.3 included analyses of their upperbounds|it is worth noting that these algorithms can all be implemented to run inexponential time because all NP, PSPACE, and EXPTIME algorithms can. Therefore,the worst-case run times (and most of the best-case run times) for the algorithms inthe previous section are exponential.6.5 Complexity ResultsIn this section, I collect what is known of the complexity of solving pomdps. I showthat



130� the in�nite-horizon problem is EXPTIME-hard and EXPTIME-complete in thecase of boolean rewards;� the polynomial-horizon problem is PSPACE-complete [116], even in the boolean-reward case;� the in�nite-horizon, deterministic case (observable or not) is PSPACE-hard, andPSPACE-complete in the boolean-reward case; and� the polynomial-horizon, deterministic problem is NP-complete, even in the bool-ean reward, unobservable case.Each result is a lower bound, stated in its most speci�c form. It is important tokeep in mind that hardness results for boolean-reward models also apply to general-reward models, and hardness results for unobservable models also apply to partiallyobservable models. I will summarize the implications of these results in Section 6.5.5.6.5.1 In�nite HorizonThe in�nite-horizon, boolean-reward pomdp problem is: Given a pomdpM = hS;A; T;R;Z ; Oi in which all rewards are non-positive, and a set of non-zero probability initialstates S0, is there a policy that achieves zero reward over the in�nite horizon startingfrom every state in S0?This problem is provably intractable. In Section F.2, I show that the problem ishard for EXPTIME, which implies that any algorithm for solving it must take expo-nential time for in�nitely many instances. See Papadimitriou's complexity book [115]for background information on the class EXPTIME.6.5.2 Polynomial HorizonThe polynomial-horizon, boolean-reward pomdp problem is: Given a pomdp M =hS;A; T; R;Z; Oi in which all rewards are non-positive, a polynomially bounded horizonlength t, and a set of non-zero probability initial states S0, is there a policy that achieveszero reward over t steps starting from every state in S0?A polynomial-time algorithm for solving this problem could be used to solve quant-i�ed-boolean-formula problems in polynomial time. Since the quanti�ed-boolean-for-mula problem is PSPACE-hard [55], this shows that the polynomial-horizon, boolean-reward pomdp problem is also PSPACE-hard. The proof is due to Papadimitriou and



131Tsitsiklis [116].6.5.3 In�nite Horizon, DeterministicThe unobservable, deterministic, in�nite-horizon, boolean-reward pomdp problem is:Given a deterministic, unobservable pomdp M = hS;A; N;Ri in which all rewards arenon-positive, and a set of non-zero probability initial states S0, is there a policy thatachieves zero reward over the in�nite horizon starting from every state in S0?A polynomial-time algorithm for solving this problem could be used to solve �nite-state-automata-intersection problems in polynomial time. Since the �nite-state-auto-mata-intersection problem is PSPACE-hard [55], this shows that the unobservable,deterministic, in�nite-horizon, boolean-reward pomdp problem is also PSPACE-hard.The proof is given in Section F.1.6.5.4 Polynomial Horizon, DeterministicThe unobservable, deterministic, polynomial-horizon, boolean-reward pomdp problemis: Given a deterministic, unobservable pomdp M = hS;A; N;Ri in which all rewardsare non-positive, a polynomially bounded horizon-length t, and a set of non-zero prob-ability initial states S0, is there a policy that achieves zero reward over t steps startingfrom every state in S0?A polynomial-time algorithm for solving this problem could be used to solve 3-CNF-SAT problems in polynomial time. Since the 3-CNF-SAT problem is NP-hard [55],this shows that the unobservable, deterministic, polynomial-horizon, boolean-rewardpomdp problem is also NP-hard. The proof is a corollary of the result from Sec-tion 6.5.2, due to Papadimitriou and Tsitsiklis [116].6.5.5 Complexity SummaryTable 6.1 summarized the complexity results (lower bounds) presented in this section,as well as the upper bounds derived from the algorithms in Section 6.3. Figure 6.4gives a more abstract summary. In the �gure, the most general problem is at the topand the most constrained is at the bottom, the pre�x \D-" means deterministic, thesu�x \-poly" means polynomial horizon, and \UMDP" means unobservable mdp. Theexact \complete" complexity class for the boolean-reward problem is given, and when
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Figure 6.4: An abstract summary of complexity results for pomdps.the general-reward problem is not known to be in the same class, it is marked with anasterisk.There are a few observations worth making about the information in the �gure.Although, historically, stochastic models have been viewed as more di�cult than theirdeterministic counterparts, this is not consistently the case. In particular, in unobserv-able models, restricting the problem to deterministic transitions does not change thecomplexity class.A more important simpli�cation is shifting from in�nite-horizon problems to poly-nomial-horizon problems. This consistently improves the complexity (EXPTIME toPSPACE, PSPACE to NP), and makes it possible to solve general-reward problems aseasily as boolean-reward problems. This provides additional support to the idea thatapproximating an in�nite-horizon solution by a �nite-horizon solution is an e�cientapproach.



1336.6 Reinforcement Learning in pomdpsReinforcement learning in partially observable domains is a much more di�cult problemthan reinforcement learning in completely observable domains, such as mdps or Markovgames. In general, an experience tuple in a pomdp is hat; zt; rti: the most recent action,observation, and reward. Whereas, in completely observable models, it is possible forthe reinforcement learner to �nd the optimal value function when experience tuples arepresented in an arbitrary order, in pomdps, the proper ordering is crucial to learning;previous experience tuples are part of the agent's past history, and therefore its state.Because of these di�culties, no reinforcement-learning method for general pomdpsis known to converge to an optimal policy. Nonetheless, there are some heuristic meth-ods that are known to do well on simple problems. It is an open problem whether anyof these methods can be used to solve realistic problems.As before, I classify reinforcement-learning methods according to whether or notthey learn a model of the environment, or simply try to learn a policy directly. Isubclassify model-free approaches by whether any form of short-term memory is used.6.6.1 Model-free Methods, MemorylessIn the memoryless approach to reinforcement learning in pomdps, the learner treatsobservations as if they were states. Two consecutive experience tuples can be combinedto create an observation tuple of the form hzt�1; at; zt; rti. This tuple is similar to theexperience tuple in mdps, with observations replacing states.In pomdps for which the immediate observation completely distinguishes the cur-rent state, this observation tuple is su�cient for learning optimal behavior (see Sec-tion 2.6.1). In other pomdps, it is not su�cient for learning; even if immediate obser-vations are enough to make optimal action choices, learning which choices to make canrequire additional information about past history [103].Q-learning Many researchers have used Q-learning and other mdp-based reinforce-ment-learning algorithms to learn policies for partially observable domains. One in-teresting example is Wilson's work on a 900-state pomdp [182]. A classi�er-basedapproach, and later Q-learning, were both able to �nd acceptable memoryless policiesfor this large domain. It has been shown [91] that neither approach �nds the optimalmemoryless policy. In addition, there are examples that show that Q-learning can fail



134to converge or �nd pessimal policies in partially observable domains; see Section F.3.Stochastic policies Even if Q-learning were able to �nd the optimal observation-to-action policy, it would be of little use in general; in many problems, no observation-to-action policy achieves acceptable levels of reward. By broadening the class of memo-ryless policies to stochastic memoryless policies , it is possible to improve the situationsomewhat (recall the example in Figure 6.1).Jaakkola, Singh and Jordan [70] developed a reinforcement-learning algorithm thatlearns policies that choose actions probabilistically on the basis of the current obser-vation. Their algorithm converges to locally optimal policies, meaning that no localchange to the probabilities results in improved performance, although it might be pos-sible to adopt an entirely di�erent policy that does substantially better. There hasbeen extremely little computational experience with this algorithm; it is di�cult tojudge its usefulness at this time.The algorithm itself is interesting in its use of TD(1)-type updates. This meansthat, during learning, there is a great deal of record keeping and statistics gathering.Nonetheless, the method is considered \memoryless" in that the policy that is learneddoes not require the agent to maintain any memory of the past in deciding which actionto choose.Consistent Representations Whitehead and Lin [179] demonstrate that, for someenvironments, it is possible to coax a learning algorithm to adopt a good memorylesspolicy, if one exists. A consistent representation, in their framework, is one in which thestates visited in the course of executing a policy can be adequately distinguished on thebasis of their observations. Whitehead and Lin present an algorithm that is appropriatefor pomdps in which the agent has some degree of control over its observations.6.6.2 Model-free Methods, Memory-basedUnlike the memoryless methods, memory-based methods construct policies that requirethe agent to maintain some form of short-term memory during the execution of the pol-icy. Such policies can be signi�cantly better than memoryless policies when the crucialstates of the environment cannot be distinguished on the basis of their observations.There are environments for which no �nite amount of memory su�ces for constructing



135an optimal policy; it is not yet clear whether important or practical environments havethis property.Su�x tree The su�x-tree approach is closely related to Platzman's variable-width-history-window approach [122], mentioned earlier. McCallum [105] showed how a goodpolicy can be learned in the absence of a model by iteratively widening the historywindow at points that appear to bene�t from additional history information. A closelyrelated technique was explored by Ring [129] from a \neural" perspective.A recent extension of the su�x-tree approach [103], adapted to deal with large,structured observation spaces, has been applied to a simulated highway-driving taskwith over 21,000 states, 6,000 observations, and �ve actions. The learned policy usedabout 150 internal states, and was able to handle many tricky situations; however, itwas, by no means, optimal.Recurrent Q-learning One intuitively simple approach is to use a recurrent neuralnetwork to learn Q values. The network can be trained using backpropagation throughtime or some other suitable technique, and learns to retain \history features" to predictvalue. This approach has been studied by a number of researchers [106, 89, 137]. Itseems to work e�ectively on simple problems, but can su�er from convergence to localoptima on more complex problems.Register memory Another short-term memory structure that has been studied inthe reinforcement-learning framework is storage registers [72, 91, 181, 35]. The idea hereis that the agent has explicit actions for saving information in non-volatile memory, andfor retrieving this information at a later time.2 The method has been used successfullywhen the number of storage registers is small (one or two), but the combinatoricsappear to make this approach impractical when the number of registers is larger.6.6.3 Model-based MethodsAs in the completely-observable case, we can learn to solve a pomdp by breaking theprocess into two parts: �rst, learn the pomdp model from experience, then (or con-currently) �nd an optimal policy for the model. Given a model, a policy can be found2This type of memory can be viewed as a form of stigmergy [12]. The idea behind stigmergy is thatthe actions of an agent change the environment in a way that a�ects later behavior resulting in a formof \external memory."



136using techniques from Chapter 7; both algorithmic methods and learning methods areappropriate. This section describes several attempts at learning the model itself.Chrisman [34] showed how the Baum-Welsh algorithm [11] for learning hiddenMarkov models (HMMs) could be adapted to learning transition and observation func-tions for pomdps. He, and later McCallum [104], gave heuristic state-splitting rulesto attempt to learn the smallest possible model that captures the structure of a givenenvironment.The Baum-Welsh algorithm is known to converge to locally optimal models, andthe same is probably true of its application to learning pomdp models. However,no method is known for converging to a globally optimal model for general pomdps.Thus, even if an optimal policy could be found for the learned model, there is still noguarantee that the process would converge to an optimal policy for the environment.In their work on model-based methods for pomdps, Chrisman and McCallumlearned a particular representation of the value function that did not require an ex-plicit representation of the reward function. To apply the sophisticated techniques ofChapter 7 in the context of a learned model, it is necessary to represent the rewardfunction R directly. Fortunately, this is not di�cult to do.Given a learned pomdp, it is possible to use the history of actions and observationsto construct an information-state experience tuple, hxt; at; rt; xt+1i. We want to �nda reward function R that has the property that Ps xt[s]R(s; at) is the expected valueof rt. Assuming the information states are properly maintained, this is equivalent to asupervised-learning problem with a simple linear function. The update rule�R(s; at) = �txt[s] rt �Xs xt[s]R(s; at)! ;where �t is a learning rate, can be shown to make the reward function converge to onethat predicts the immediate rewards arbitrarily accurately [66].6.7 Open ProblemsThe study of algorithmic and complexity properties of pomdps is still relatively young.Although the results I presented in this chapter constitute signi�cant progress towardsunderstanding these problems, many important issues remain unresolved.� Given a pomdp, an initial distribution, and a reward bound, is it possible todetermine whether there is an in�nite-horizon policy that can achieve the reward



137bound or better from the given initial distribution? What about when the pomdpis unobservable? There is some reason to believe that the problem is undecidable,but proving this appears extremely di�cult.3� Is there is a pomdp problem and initial distribution, all represented with rationalnumbers, whose optimal value from that initial distribution has irrational value?The answer to this might shed some light on the decidability of pomdp problems.� Consider a pomdp in which there is a zero-reward absorbing state that is reachedwith probability 1 under all policies. If the pomdp is completely observable, thiscondition is the all-policies-proper condition, and the optimal value function isbounded even if � = 1. Is this also true when the pomdp is partially observable?If the minimum probability of reaching the absorbing state is non zero from allstates, say p, the answer is yes: an equivalent pomdp can be created by decreasingthe probability of reaching the absorbing state and setting the discount factor to1� (1� �)p.� Several researchers [178, 122] have shown that pomdps with no zero probabilitiesin their transition or observation matrices can be solved arbitrarily well by policiesthat remember a �nite amount of history. This is because non-zero probabilitieshave a tendency to make distant observations and actions irrelevant to currentdecision making; this can be viewed as informational discounting, analogous tothe value discounting that makes distant future rewards irrelevant to currentdecision making. Are pomdps with informational discounting easier to solve thangeneral pomdps? Are they decidable? Can the idea of informational discountingmake it possible to analyze approximate state estimators?� Sondik [149] de�nes the class of �nitely transient policies, and shows that thesepolicies can be represented as �nite-memory policies. The pomdp decision prob-lem described earlier is decidable for the class of pomdps with �nitely transientoptimal policies, because we can simply enumerate all the �nite-memory policiesuntil one is found that is provably optimal. Can value iteration be used to iden-tify optimal policies for �nitely transient pomdps? Is informational discountingguaranteed to make a pomdp �nitely transient?3Work currently in progress by Hanks uses a result from the probabilistic automata literature [118]to show that problem of solving undiscounted pomdps is undecidable; it is unclear whether these resultscan be adapted for discounted pomdps.



138� The problem of �nding the optimal value for a �nite-horizon deterministic pomdpis NP-complete. It has been shown that there are heuristics that are useful for�nding optimal memoryless policies [91], another NP-complete problem. Arethere good heuristics for solving �nite-horizon deterministic pomdps?� The search method used in the PSPACE algorithm for computing optimal valuesfor deterministic, in�nite-horizon pomdps with boolean rewards (Section 6.3.2)also works for general-reward pomdps, except that the values themselves mayrequire an exponential number of bits to write down. Is there a way to representthe optimal values more compactly? If so, it might be possible to extend thePSPACE result to cover general-reward pomdps.� The existence of Bellman equations for the boolean-reward case (Section 6.3.2)suggests that it might be possible to develop a theory of optimal policies for otheralgebraic structures. Are there other algebraic structures that could be used ina sequential decision-making setting?� Is there a class of natural pomdps? The carefully constructed hard pomdps Ireference in this chapter do not seem very natural. Do the pomdps found inreal-world problems have structure that makes them any easier to solve?� The complexity results in this chapter address the di�culty of computing exactsolutions to pomdps. Finding approximate solutions is likely to be easier. Whatis the complexity of computing approximately optimal pomdp policies?� Is there a reinforcement-learning method that converges to an optimal policy?Although no such algorithm is known, I believe McCallum's su�x-tree algorithmis close to being convergent, at least applied to pomdps with optimal �nite-history policies. Is there a non-trivial subclass of pomdps that can be solved byreinforcement learning? Would it help to consider \natural" pomdps?6.8 Related WorkIn this chapter, I presented partially observable Markov decision processes, gave abrief overview of solution methods that have been employed to solve them, developedassociated complexity results, and described reinforcement-learning approaches.



139The fundamental mathematical structure of pomdps was developed by Drake [48]and Astr�om [5]. The algorithmic foundation was laid by Sondik [149, 150]. Additionalinformation on algorithmic approaches can be found in Section 7.8.State estimation in a type of continuous-space pomdp was explored by Kalman [77]and others, although the \spatial" assumptions required by Kalman's approach areviolated for the graph-like state spaces considered in this chapter.Several researchers have explored the problem of �nding �nite-memory policies forpomdps. Platzman [121] developed a �nite-history-window approach in his thesis, andlater explored a heuristic method for �nding more general stochastic �nite-memorypolicies [123]. White and Scherer [178] also presented bounds on the suboptimality of atype of �nite-history-window approach. Cassandra, Kaelbling, and Littman [32] showedhow �nite-memory policies can sometimes be found using value iteration. Littman [91]showed that �nding good memoryless policies is NP-complete; closely related resultswere proven by Papadimitriou and Tsitsiklis [116] and Koller and Megiddo [82]. BothLittman's and Papadimitriou and Tsitsiklis' proofs can be extended to show that �ndingoptimal stochastic memoryless policies is NP-hard.The study of the complexity of Markov decision processes was initiated by Papadim-itriou and Tsitsiklis [116]. For pomdps, they showed that the �nite-horizon problem isPSPACE-hard. More recent work by Burago, de Rougemont and Slissenko [31] showedthat a class of pomdps with bounded unobservability can be solved in polynomial time.They introduced a parameter m which is a measure of how \unobservable" the envi-ronment is; given that observations are a deterministic function of the state, m is thelargest number of states that possess the same observation. Special cases where m = 1(completely observable) and m = jSj (completely unobservable) have been studiedseparately.The relevant reinforcement-learning literature is quite varied. Singh, Jaakkola andJordan [146] presented the theory behind de�ning optimal memoryless (and by ex-tension, �nite-memory) policies in partially observable reinforcement-learning environ-ments. They argued persuasively in favor of using an undiscounted criterion. Jaakkola,Jordan and Singh [70] described a provably convergent reinforcement-learning algo-rithm for maximizing undiscounted reward in partially observable environments; theiralgorithm �nds locally optimal stochastic memoryless policies.Wilson [182] presented results on applying a classi�er-system-based memorylessreinforcement-learning algorithm to a large partially observable environment to fairly



140good e�ect. Littman [91] repeated these experiments using Q-learning with similarresults. Wilson [181] recently suggested a register-memory extension to a classi�ersystem; Cli� and Ross [35] implemented this idea and found that it works well forvery simple problems. McCallum [105] examined a tree-based-memory approach forsimultaneously learning a predictive model and an approximate value function.Neural networks have been used to �nd short-term memories for reinforcement-learning agents. Schmidhuber [137] designed a novel connectionist learning algorithmfor Markovian and non-Markovian environments. Lin and Mitchell [89] surveyed severaldi�erent architectures including �nite-history windows, observation prediction models,and recurrent networks for approximating the optimal value function. Meeden, Mc-Graw, and Blank [106] applied a simple backpropagation-based algorithm [2] to a re-current network that learned to drive a remote-controlled car. Lin and Whitehead [179]presented reinforcement-learning algorithms for learning internal representations of thestate, and an algorithm for learning to behave in such a way as to obviate the needfor internal state representation. In all these papers, the problems described would bedi�cult to formalize as pomdps; some involve continuous state spaces, others act in thereal-world in the absence of a model, and the rest have state spaces that are so largethat it would be di�cult to solve them using existing algorithms. However, withoutadditional formal analysis, it is di�cult to predict whether these results will scale wellto larger domains.Chrisman [34] and McCallum [104] extended an algorithm for learning hiddenMarkov models to the case of learning a reward and transition model for a pomdp.Their algorithms used an impoverished linear representation for the value function,but sophisticated rules for determining when to extend the number of states in theapproximate model; Chrisman used a rule based on the accurate prediction of observa-tions, and McCallum used a rule based on the accurate prediction of values. Bengio andFrasconi [14] created an algorithm for learning input/output HMMs, a model that isequivalent to a pomdp with no rewards. Abe and Warmuth [1] studied the problem oflearning approximately correct probabilistic automata from experience. Their learningframework is very interesting, and worth extending to pomdps. Hernandez-Lerma andMarcus [65] approach the problem of reinforcement-learning in pomdps from a di�erentperspective; their results show that given a method for learning a parameterized modelof the environment, it is possible to use a variation of value iteration to simultaneouslylearn the model and converge to an optimal policy.



1416.9 ContributionsIn this chapter, I examine partially observable Markov decision processes. My funda-mental contribution to this area is a collection of complexity results that show howdi�cult it is to select optimal actions for this model, even when the problem is con-strained in various ways. I explain that no provably convergent learning algorithmexists and I augment the existing heuristic model-learning algorithms by devising anew algorithm for learning the reward function for an unknown pomdp.As the complexity results in this chapter show, pomdps are simply too di�cultto solve. However, they are also too important to ignore. Perhaps a resolution ofthis di�culty will come when researchers begin to explore applications of pomdps toimportant real-world problems. The constraints present in these applications mightbe su�cient to make the corresponding pomdps solvable. Some progress has beenmade: Hansen [60] blended completely unobservable and completely observable mdpsto form an intermediate model, and Simmons and Koenig [144] controlled a robot usinga pomdp model. From the interest that has been generated, I believe it is likely thata great deal of additional progress will be made in the next few years.



Chapter 7Information-State MarkovDecision ProcessesPortions of this chapter and its associated appendix have appeared in ear-lier papers: \Planning and acting in partially observable stochastic do-mains" [73] with Kaelbling and Cassandra, \Acting optimally in par-tially observable stochastic domains" [32] with Cassandra and Kaelbling,\The witness algorithm: Solving partially observable Markov decision pro-cesses" [92], \Learning policies for partially observable environments: Scal-ing up" [94] with Cassandra and Kaelbling, and \An e�cient algorithmfor dynamic programming in partially observable Markov decision pro-cesses" [95] with Cassandra and Kaelbling.In this chapter, I present a number of algorithms for solving information-state Markovdecision processes. As discussed in Section 6.2.2, an information-state mdp arisesin the context of solving pomdps when the agent encodes its history of actions andobservations as a probability vector over states of the environment. The algorithmsfrom Chapter 2 are not adequate because the information-state mdp has an in�nitenumber of states|the algorithms in Chapter 2 apply only to �nite-state mdps.7.1 IntroductionAn information state is a vector of probabilities, one probability value for each statein the pomdp, that sums to one. Given a pomdp model, information states can be142
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πFigure 7.1: A pomdp agent can be decomposed into a state estimator (SE) and a policy(�).updated using basic probability theory and encode su�cient information for makingoptimal decisions. Because they constitute a su�cient statistic for optimal behavior, itis possible to use information states to de�ne a particular kind of in�nite-state mdp [5].7.2 Information-state mdpsInformation-state Markov decision processes arise when the problem of controlling apomdp is decomposed into the two components shown in Figure 7.1. The agent makesobservations and generates actions. It uses memory to summarize its previous experi-ence. The component labeled SE in the �gure is the state estimator : it is responsiblefor updating the memory state based on the most recent action and observation andthe previous memory state (it is a type of memory-state-update module, as discussedin Section 6.2.2). The component labeled � is the policy: as before, it is responsiblefor generating actions, but now as a function of the agent's memory state rather thanthe state of the environment.In this chapter, the contents of the agent's memory is an information state: aprobability distribution over states of the environment. Information states are su�cientsummaries of past history to make optimal decisions. This is because, given the agent'scurrent information state, no additional data about its past actions or observationswould supply any further information about the current state of the environment.Figure 7.2 illustrates a simple pomdp with four states, one of which is a goal statemarked with a star. There are two possible observations: one is always made whenthe agent is in state 1, 2, or 4; the other, when it is in the goal state. There are two
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1 2 3 4Figure 7.2: A simple pomdp example.possible actions: right and left. These actions succeed with probability 0:9, andwhen they fail the movement is in the opposite direction. If no movement is possiblein a particular direction, then the agent remains in the same location.We assume that the agent is initially equally likely to be in any of the three non-goalstates. Thus, its initial information state is (0:333; 0:333; 0:000; 0:333), where the orderof components in the vector corresponds to the order of states in the �gure.If the agent takes action right and does not observe the goal, then the new infor-mation state is (0:100; 0:450; 0:000; 0:450). Not observing the goal a second time aftertaking action right results in an information state in which the right-most state ismost probable: (0:100; 0:164; 0:000; 0:736). Notice that as long as the agent does notobserve the goal state, it will always have some non-zero chance that it is in any of thenon-goal states; only the third component of the information state will be zero.7.2.1 Computing Information StatesAn information state x is a probability distribution over S. We let x[s] denote theprobability assigned to state s by information state x. The axioms of probabilityrequire that 0 � x[s] � 1 for all s 2 S and that Ps2S x[s] = 1. The state estimatormust compute a new information state x0, given an old information state x, an actiona, and an observation z. The new probability of some state s0, x0[s0], can be obtainedfrom basic probability theory as follows:x0[s0] = Pr(s0jz; a; x)= Pr(zjs0; a; x) Pr(s0ja; x)Pr(zja; x)= Pr(zjs0; a)Ps2S Pr(s0ja; x; s) Pr(sja; x)Pr(zja; x)= O(s0; a; z)Ps2S T (s; a; s0)x[s]Pr(zja; x)



145The denominator, Pr(zja; x), can be treated as a normalizing factor, independent of s0,that causes x0 to sum to 1. The state-estimation function SE(x; a; z) has as its outputthe new information state x0.Thus, the state-estimation component of a pomdp controller can be constructedquite simply from a given model.7.2.2 Basic FrameworkThe policy component in Figure 7.1 takes an information state as input and producesan action. LetM = hS;A; T; R;Z; O; �i be a partially observable Markov decision pro-cess. Because the information state is a su�cient statistic, we can treat it as a state andde�ne the information-statemdp, B = hX ;A; N; �; �i, where X is the jS�1j-dimensionalunit simplex representing the set of all information states, N(x; a) = fSE(x; a; z)jz 2Zg is a next-state function for information states, �(x; a; x0) = Pz IfSE(x; a; z) =x0gPr(zja; x) is the information-state transition function, and �(x; a) =Ps x[s]R(s; a)is the information-state reward function.This information-state mdp has the property that an optimal policy for it, coupledwith the state-estimation function, will give rise to optimal behavior (in the discountedin�nite-horizon sense) in the original pomdp [150, 5]. The remaining problem, then,is to solve this mdp. It is very di�cult to solve continuous-space mdps in the generalcase [133], but, as we shall see in the next section, the information-state mdp has specialproperties that can be exploited to simplify its solution.7.2.3 Acting OptimallyThe continuous nature of the information-state mdp presents several challenges to�nding optimal behavior computationally. As in the case of �nite-state mdps, thetarget is a policy that maximizes discounted expected reward, and this policy can bede�ned as the greedy policy with respect to the optimal value function. Once again,the optimal value function is well-de�ned and can be approximated by value iteration.The primary di�culty is that the value function can no longer be represented by atable of values, one for each state, because the state space itself is continuous.There appears to be no method for representing general optimal value functions forin�nite-horizon information-state mdps. The best we can hope for is an approximation.In this chapter, I discuss algorithms that address this issue using a parameterized



146representation of the exact value functions produced in value iteration; algorithmshave been developed that attempt to represent approximations of the in�nite-horizonvalue function more directly [100], but I will not discuss these representations here.7.3 Algorithms for Solving Information-state mdpsThe information-state mdp is a special kind of mdp, and many di�erent algorithms areavailable for solving it. The algorithms in Chapter 2 do not apply directly, becausethose algorithms were designed for �nite-state mdps. However, versions of policy it-eration [150] and value iteration [135] have been developed for the information-statemdp.The algorithms I present in this section are all variations of value iteration. They�nd near-optimal in�nite-horizon value functions by exactly solving for t-step �nite-horizon value functions for larger and larger t, until the di�erence between successivevalue functions is su�ciently small. Section 7.3.1 shows that �nite-horizon value func-tions for the information-state mdp are always piecewise-linear and convex, implyingthat they can be exactly represented by a �nite set of linear functions. This is not nec-essarily true for the in�nite-horizon discounted value function; it remains convex [175],but may have in�nitely many facets. I present the algorithms from the simplest andleast e�cient, to the most complicated and most e�cient, including a novel algorithmcalled the witness algorithm [95].7.3.1 The Policy-Tree MethodIn this section, I present a simple algorithm for �nding t-step value functions that,although impractical, serves as the basis for the more e�cient algorithms developedin the remainder of the chapter. We begin by considering the structure of optimal�nite-horizon policies.When an agent has one step remaining, all it can do is take a single action. Withtwo steps to go, it can take an action, make an observation, then take another action,perhaps depending on the previous observation. In general, an agent's non-stationaryt-step policy can be described by a policy tree as shown in Figure 7.3. It is a tree ofdepth t that speci�es a complete t-step policy. The top node determines the �rst actionto be taken. Then, depending on the resulting observation, an arc is followed to a node
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|Z |Figure 7.3: A t-step policy tree.on the next level, which determines the next action. This is a complete recipe for tsteps of conditional behavior.Now, what is the expected discounted value to be gained from executing a policytree p? It depends on the true state of the environment when the agent starts. In thesimplest case, p is a 1-step policy tree (a single action). The value of executing thataction in state s is Vp(s) = R(s; act(p)); where act(p) is the action speci�ed in the topnode of policy tree p. More generally, if p is a t-step policy tree, thenVp(s) = R(s; act(p)) + � Expected value of the future= R(s; act(p)) + � Xs02S Pr(s0js; act(p))Xz2Z Pr(zjs0; act(p))Vsubtree(p;z)(s0)= R(s; act(p)) + � Xs02S T (s; act(p); s0)Xz2Z O(s0; act(p); z)Vsubtree(p;z)(s0)= R(s; act(p)) + �Xz2Z stval(act(p); z; subtree(p; z))[s]; (7.1)where subtree(p; z) is the (t� 1)-step policy subtree associated with observation z atthe top level of a t-step policy tree p, and stval(a; z; p0)[s] is the probability-weightedvalue contributed by the subtree p0 in the context of a policy tree with action a at theroot when p0 is the subtree for observation z:stval(a; z; p0)[s] = Xs02S T (s; a; s0)O(s0; a; z)Vp0(s0):Although this quantity has minimal intuitive appeal, it plays a crucial role in severalof the algorithms.Because we will never know the exact state of the environment, we must be able todetermine the value of executing a policy tree p, from some information state x. This
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0 xFigure 7.4: The optimal t-step value function is the upper surface of all the valuefunctions associated with t-step policy trees.is just an expectation over states of executing p in each state, which can be computedas a dot product: Vp(x) = Xs2S x[s]Vp(s):Now we have a function that represents the value of executing policy tree p inevery possible information state. To construct an optimal t-step policy, however, itwill generally be necessary to execute di�erent policy trees depending on the initialinformation state. Let Pt be the �nite set of all t-step policy trees. ThenVt(x) = maxp2PtXs x[s]Vp(s):That is, the optimal t-step value of starting in information state x is the value ofexecuting the policy tree that is best in x.This de�nition of the value function leads to some important geometric insightsinto its form. Each policy tree p induces a value function that is linear in x, andthe optimal t-step value function Vt is the upper surface of those functions. So, Vt ispiecewise-linear and convex, as illustrated in Figure 7.4. Consider a pomdp with onlytwo states. Each information state for the pomdp can be written as a vector of twonon-negative numbers, hx[s1]; x[s2]i, that sum to 1: it has only one degree of freedom.The value function associated with a policy tree p1, Vp1 , is a linear function of x[s1] andis shown in the �gure as a line. The value functions of other policy trees are similarlyrepresented. Finally, Vt is the maximum of all the Vpi's at each information state,giving us the upper surface, which appears in the �gure as a bold line.When there are three states in the environment, an information state is determinedby two values. The space of information states can be visualized as a triangle in two-space with vertices (0; 0), (1; 0), and (0; 1). The value function associated with a single
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s2Figure 7.5: A value function in three dimensions.policy tree is a plane in three-space, and the optimal value function is typically a bowlshape that is composed of planar facets; an example is shown in Figure 7.5. Thisgeneral pattern holds in higher dimensions, but becomes di�cult to contemplate andeven harder to draw!The convexity of the optimal value function makes intuitive sense when we thinkabout the value of di�erent information states. Information states that are at thecorners of the space X of information states correspond to situations in which theagent is certain of the true underlying state. These information states have relativelyhigh values (unless they correspond to states that are extremely undesirable), whereasinformation states closer to the \middle" correspond to high uncertainty situations inwhich it is more di�cult for the agent to select actions appropriately to gain long-termreward.Table 7.1 shows how policy trees can be used as a basis for a value-iteration algo-rithm. For each t, the policy-tree method enumerates the set Pt of all t-step policytrees, and then calls the function BellmanErrMag to determine whether the value func-tions represented by Pt and Pt�1 are close together. A linear-programming algorithmfor BellmanErrMag is given in Section G.1.The policy-tree method is, of course, hopelessly computationally intractable. Eacht-step policy tree contains (jZjt � 1)=(jZj � 1) nodes (the branching factor is jZj, thenumber of possible observations). Each node can be labeled with one of jAj possibleactions, so the total number of t-step policy trees isjAj jZjt�1jZj�1 ;



150PolicyTreeMethod(hS;A; T;R;Z ;O; �i; �) := ft := 0loopt := t+ 1until BellmanErrMag(Pt;Pt�1) < �return Ptg Table 7.1: Value iteration using the policy-tree method.which grows astronomically in t.It is not known whether any algorithm for computing a set of policy trees to rep-resent the t-step value function has a better worst-case run time. This is because thenumber of policy trees needed to represent the t-step value function might actually bedoubly exponential in t in the worst case. For solving a �nite-horizon pomdp with agiven initial belief state, the PSPACE �nite-horizon algorithm of Papadimitriou andTsitsiklis [116], mentioned in Section 6.3.3, can be made to run in singly exponen-tial time in t, which is better in the worst case. In the next few sections, I presentalgorithms that run faster for pomdps that possess simple value functions.7.3.2 A Note on ImplementationSeveral of the algorithms in this section make use of sets of policy trees as a primitivedata structure. Policy trees can be represented by a tree-like data structure; however,for e�ciency of space and computation speed, other data structures might be preferred.The policy-tree data structure needs to support the operators de�ned in Table 7.2.All the necessary primitive operations on policy trees can be implemented on adata structure that consists of a vector of values, an action, and a pointer for eachobservation to a vector of values or a policy tree.7.3.3 Useful Policy TreesIn general, the set Pt of t-step policy trees contains many policy trees whose valuefunctions are totally dominated by or tied with value functions associated with otherpolicy trees. Figure 7.6 shows a situation in which the value function associated withpolicy tree pd is completely dominated by (everywhere less than or equal to) the value



151tree(a; �) create a new policy tree with action a at rootand subtree for observation z equal to �(z)Vp return a vector representing the value function forpolicy tree p with one component per stateact(p) return the action at the root of policy tree psubtree(p; z) return the subtree of policy tree p associatedwith observation z; a subtree can be a policytree, or more simply, the value function of the subtreestval(a; z; p) return a vector representing the probability-weightedvalue of following policy tree p as the observationz subtree of a policy tree with a at the root�, �a;z compare policy trees lexicographically according totheir value functionsTable 7.2: A list of operations needed for policy-tree-based algorithms.function for policy tree pb. The situation with the value function for policy tree pc issomewhat more complicated; although it is not completely dominated by any singlevalue function, it is completely dominated by pa and pb taken together.Given a set G of policy trees representing a piecewise-linear convex value function,it is possible to de�ne a minimal subset � that represents the same function that Grepresents. I call the elements of this set the useful policy trees; it is unique up tosubstitutions of policy trees with exactly the same value function. In the followingdiscussion, I assume that no two policy trees in G have the same value function. Inpractice, it is easy to examine a set of policy trees and to throw out all but one policytree for each value function represented. This does not change the piecewise-linearconvex function represented and guarantees that no two policy trees yield identicalvalue functions (an implementation appears in Table 7.3).Using the de�nition of useful policy trees directly, it appears that to determinewhether a policy tree is useful, we must perform a combinatorial search for the set �.The following lemma shows that usefulness is a property of the individual vectors inG.Lemma 7.1 Let G be a set of policy trees. A policy tree p 2 G is useful if and only ifthere is some information state x such that Vp(x) is strictly greater than V~p(x) for allother policy trees ~p 2 G.Proof: A proof is given in Section G.2. �
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uniq(G) := fG0 := ;while (G 6= ;) fp := any element in GG0 := G0 [ fpgG := G� fpgforeach (~p 2 G)if (Vp = V~p) G := G� f~pggreturn G0gTable 7.3: Subroutine for removing policy trees from G so that any pair of policy treesremaining have di�erent value functions.



153Filter(G) := fG := uniq(G)� := ;foreach p 2 Gif (dominate(p;G) 6= false) � := � [ fpgreturn �g Table 7.4: Subroutine for returning the useful policy trees in G.dominate(p;G) := fif (G = ;) then return any element in XSolve the following linear program:maximize: ds.t.: Ps x[s]Vp(s) �Ps x[s]V~p(s) + d, for all ~p 2 G� fpgand: Ps x[s] = 1and: x[s] � 0, for all s 2 Svariables: d, x[s] for all s 2 Sif (d > 0) then return xelse return falsegTable 7.5: Subroutine for �nding an information state at which policy tree p dominatesall other policy trees in G.Lemma 7.1 gives us a way of computing the set � of useful policy trees, the minimalset of policy trees needed to represent the value function for G. We need only loop overthe policy trees in G, testing whether there is an x where each policy tree dominatesthe others (an implementation appears in Table 7.4). The domination condition itselfcan be checked using linear programming (an implementation appears in Table 7.5).The linear program can take many di�erent forms; as presented here, a variable d isused to represent the amount by which a policy tree p dominates all the policy trees inG at information state x. Maximizing d results in the identi�cation of the x at which pdominates the policy trees in G the most. If the maximum amount is negative or zero,p does not dominate all the policy trees in G anywhere and is therefore not a memberof �.



154EnumerationMethod(hS;A; T;R;Z ;O; �i; �) := ft := 0�0 := ;loopt := t+ 1Gt := ftree(a; �)ja 2 A; � 2 T (Z ! �t�1)g�t := Filter(Gt)until BellmanErrMag(�t;�t�1) < �return �tgTable 7.6: Value iteration in information-state mdps using the enumeration method.The ability to compute the set of useful policy trees serves as a basis for a moree�cient version of the value-iteration algorithm in Table 7.6, generally attributed toMonahan [109].Some new notation is introduced in Table 7.6. First, T (Y ! �) represents the setof all mappings from a �nite set Y to a �nite set �. For � 2 T (Y ! �), �(y) 2 � forall y 2 Y . There are j�jjYj elements in the set T (Y ! �) and they can be enumeratedeasily.Second, tree(a; �) is the t-step policy tree with action a at its root, and a policysubtree for each observation z 2 Z equal to �(z), where � 2 T (Z ! Pt�1). As ademonstration of this new notation, here is a recursive de�nition for the set of t-steppolicy trees: Pt = ftree(a; �)ja 2 A; � 2 T (Z ! Pt�1)g:7.3.4 The Enumeration MethodThe enumeration method is used by a family of algorithms that exploit the followingidea: �t�1, the set of useful policy trees for the (t� 1)-step value function, can be usedto construct a superset Gt of the useful t-step policy trees. In constructing the policytrees in Gt, the choice of subtree is restricted to those (t � 1)-step policy trees thatwere useful. This is justi�ed by the fact that, for any information state and any choiceof policy subtree, there is always a useful subtree that is at least as good at that state;there is never any reason to include a non-useful policy subtree.The time complexity of a single iteration of this algorithm can be divided into two



155parts: generating Gt and �ltering Gt. There are jAjj�t�1jjZj elements in Gt becausethere are jAj di�erent ways to choose the action, and j�t�1jjZj di�erent mappings fromZ to �t�1 corresponding to the di�erent combinations of subtrees. The value functionsfor the policy trees in Gt can be computed e�ciently from those of the subtrees. Thus,generating Gt is exponential in the number of observations.Filtering also takes exponential time, but even worse, it involves solving an ex-ponential number of exponential-size linear programs. Although this algorithm mayrepresent a large computational savings over the policy-tree method, it still does morework than may be necessary. The next section shows how the linear programs used toimplement the �ltering stage can be made signi�cantly smaller.7.3.5 Lark's Filtering AlgorithmThe �ltering algorithm in Table 7.4 uses the dominate subroutine to decide whethera policy tree p dominates all others in a set G. When there is no information statex at which p has a larger value than all policy trees in G, dominate returns false.However, when there is such an x, dominate returns it, but Filter ignores its actualvalue.A �ltering algorithm attributed to Lark [176] shows how the useful policy trees canbe identi�ed one by one by making use of the identity of the information state x atwhich one policy tree dominates the others. As a result, the size of the linear programsused to test domination can be bounded by the size of the set of useful policy trees inG, instead of the size of G itself.Lark's �ltering algorithm uses the following insight. Let U be a set of policy treesthat have been determined to be useful. The set U does not equal the complete set �of useful policy trees if and only if some policy tree p 2 G dominates the policy treesin U .The algorithm maintains a set U of policy trees that have been determined tobe useful, and a set unchecked of policy trees that have not yet been determinedto not be useful. An iteration of the algorithm proceeds by choosing a policy treep from unchecked and checking whether there is an x at which it dominates all theuseful policy trees in U . If no such x exists, then p is not useful and is removed fromunchecked.If there is an x at which p dominates the policy trees in U , then there is at least



156one useful policy tree still missing from U . The missing policy tree is not necessarilyp: we know that p dominates the policy trees in U at x, not that it dominates all thepolicy trees in G at x. The following lemma provides one way we can use x to identifya policy tree that is guaranteed to be useful.Lemma 7.2 Given a set of policy trees G and an information state x, let p� be thepolicy tree in G that has the largest value at x where ties are broken in favor of thepolicy tree with the lexicographically greater value vector. Then p� is useful with respectto G.Proof: A proof appears in Section G.2. �We say that one vector is lexicographically greater than another vector if, givensome predetermined ordering over the states in S, the �rst vector has a larger �rstcomponent, or the two vectors are tied on their �rst i components and the �rst vectoris larger in component i+1. We can use this to de�ne an ordering relation over policytrees: p1 � p2 if the vector of values Vp1 is lexicographically greater than the vector ofvalues Vp2 .The subroutine best in Table 7.7 chooses a policy tree from a set P that has max-imum value at an information state x and is guaranteed to be useful. The subroutinein Table 7.8 makes use of best to identify useful policy trees from a set. As describedabove, each call to dominate is given only the set of known useful policy trees. As aresult, no linear program larger than the full set of useful policy trees is constructed.Using FilterLark in place of Filter in the value-iteration algorithm in Table 7.6results in a much faster algorithm [95].7.3.6 The Witness AlgorithmThe pomdp value-iteration algorithms discussed in the previous sections su�er fromthe problem that the set Gt of possibly useful policy trees is constructed at each step.Since the size of Gt is exponential in the number of observations, these algorithms areterribly ine�cient for solving pomdps with more than a small number of observations(jZj = 6 appears to be a practical upper limit [95]).If we hope to solve larger problems, we need to avoid generating Gt. The witnessalgorithm works by building up a set of useful policy trees, one by one, analogous tothe way Lark's �ltering algorithm operates, except without making use of an explicit



157best(x; P ) := fmaxtree := any element in Pmaxval :=Ps x[s]Vmaxtree(s)foreach p 2 P � fmaxtreeg fval :=Ps x[s]Vp(s)if ((val > maxval) or ((val = maxval) and (p � maxtree))) then fmaxtree := pmaxval := valggreturn maxtreegTable 7.7: Subroutine for �nding a useful policy tree at x, given a set of policy treesP .FilterLark(G) := fU := ;unchecked := Gwhile (unchecked 6= ;) fp := any element in uncheckedx := dominate(p; U)if (x = false) then unchecked := unchecked� fpgelse fp� := best(x; unchecked)U := U [ fp�gunchecked := unchecked� fp�gggreturn Ug Table 7.8: Lark's method for computing the useful policy trees in G.



158WitnessOuter(M = hS;A; T; R;Z ;O; �i; �) := f�0 := ;t := 0loopt := t+ 1foreach a 2 A�at := WitnessInner(a;�t�1;M)�t := FilterLark(Sa �at )until BellmanErrMag(�t;�t�1) < �return �tg Table 7.9: Value iteration in information-state mdps using the witness algorithm.representation of Gt. When Lark's �ltering algorithm is used in the context of valueiteration, it uses the set Gt in two ways. First, it uses Gt as a source of policy treesthat might reveal that U is incomplete; once all the policy trees in Gt are considered,Lark's algorithm terminates. Second, Gt is searched to identify a useful policy treegiven an information state x. The witness algorithm avoids both of these uses of Gt.The main di�erence between the high-level structure of the witness algorithm andthat of the algorithms mentioned earlier is that the witness algorithm �rst �nds a repre-sentation for the t-step Q functions. As a result, the outer loop of the witness algorithm(Table 7.9) closely resembles the value-iteration algorithm for mdps in Table 2.2, withthe set �at playing the role of the Q function Qt(�; a).By arguments parallel to those in Section 7.3.1, the t-step Q function for action ais piecewise linear and convex, and can be represented by a minimal set of policy trees,�at . Because the value of an information state is the maximum Q value for that state,V (x) = maxaQ(x; a), it must be the case that every policy tree p in the set �t of usefulpolicy trees for the t-step value function is in �act(p)t . Therefore, we can compute �tgiven the �at sets by �nding the useful vectors in Sa �at , which might be a good deallarger than �.Any of the algorithms I mentioned earlier can be used to construct �at ; however, allneed to construct the exponential-size set of possibly useful policy trees. To build upto �at without enumerating an exponential-size set, we need to answer two questions:\How do we �nd useful policy trees without enumerating all policy trees?" and \How



159UsefulPolicyTreeFromState(x; a;�t�1;M = hS;A; T; R;Z ;O; �i) := fforeach z 2 Z�(z) := bestSubtree(x; a; z;�t�1;M)return tree(a; �)gbestSubtree(x; a; z; P; hS;A; T;R;Z ;O; �i) := fmaxtree := any element in Pmaxval :=Ps x[s]stval(a; z; maxtree)[s]foreach p 2 P fval :=Ps x[s]stval(a; z; p)[s]if ((val > maxval) or ((val = maxval) and (p �a;z maxtree))) then fmaxtree := pmaxval := valggreturn maxtreeg Table 7.10: Computing a useful policy tree at x, given action a.will we know when we are done?"The �rst question was answered in the context of Smallwood and Sondik's [148]pomdp algorithm. The subroutine UsefulPolicyTreeFromState in Table 7.10 showshow to construct a useful (with respect to �at ) t-step policy tree for action a that isuseful at information state x, given the set �t�1. It works much like the implementationof best in that it identi�es the policy tree with maximum value at x, breaking ties usinglexicographic ordering. Instead of considering each candidate policy tree separately, itconstructs one directly.To see how UsefulPolicyTreeFromState works, �rst notice that we can build apolicy tree with maximum value at x by maximizing the subtree values. If Pat is the setof t-step policy trees with action a at the root, then the value of the best policy tree



160at x ismaxp2Pat Vp(x) = maxp2Pat  Xs x[s] R(s; a) + �Xz stval(a; z; subtree(p; z))[s]!!= Xs x[s] R(s; a) + �Xz maxpz2Pt�1 stval(a; z; pz)[s]!= Xs x[s]R(s; a) + �Xz maxpz2�t�1Xs x[s]stval(a; z; pz)[s]: (7.2)This is justi�ed by the formula for Vp in Equation 7.1, and the fact that �t�1 is the setof useful (t� 1)-step policy trees. Equation 7.2 essentially says that we can choose thesubtree for each observation separately. The code in Table 7.10 implements this idea,choosing the best subtree for each observation using bestSubtree. The bestSubtreesubroutine works much like best, choosing a policy tree with maximum (subtree) valuewith respect to x, breaking ties lexicographically (the relation p1 �a;z p2 is true if thevector stval(a; z; p1) is lexicographically greater than stval(a; z; p2)). Close examina-tion of Equation 7.2 reveals that breaking ties for each observation subtree in favor ofthe lexicographic maximum yields the lexicographically largest policy tree when thesubtrees are combined. Therefore, by Lemma 7.2, UsefulPolicyTreeFromState re-turns a useful policy tree, even in the case of ties, without enumerating an exponential-size set.To answer the question \How will we know when we are done?" we need someadditional terminology. Policy trees p1 and p2 are neighbors if act(p1) = act(p2), andsubtree(p1; z) = subtree(p2; z) for all but one z 2 Z . Each t-step policy tree hasjZj(j�t�1j � 1) neighbors, which can be enumerated easily. The following lemma formsthe basis of a termination test.Lemma 7.3 Let U be a set of policy trees that have been determined to be useful withrespect to action a. The set U does not equal the complete set �a of useful policy treesif and only if some policy tree p, in the set of neighbors of policy trees in U , dominatesthe policy trees in U .Proof: A proof appears in Section G.5. �Lemma 7.3 is quite powerful because it lets us determine whether a subset U ofuseful policy trees is complete by examining only the relatively small set of neighboringpolicy trees.
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a1Figure 7.7: Q functions can be arbitrarily more complex than their corresponding valuefunctions.The code in Table 7.11 builds up the set of useful policy trees. The set unchecked isan agenda, initialized with a single arbitrary policy tree. Each iteration takes a policytree p o� the agenda and determines whether there is an information state x that can\witness" the fact that p dominates the policy trees in U . If such an x is discovered,its associated policy tree is added to U and all neighbors of the policy tree are addedto the agenda. If p does not dominate the policy trees in U , then p is removed fromthe agenda. When the agenda is empty, the algorithm terminates.Because it only ever constructs the neighbors of the useful policy trees (and notall possibly useful policy trees), the witness algorithm runs very e�ciently over a widerange of pomdps. Like the enumeration algorithms, however, the witness algorithmmay do more work than is necessary. In particular, the witness algorithm spendsa great deal of time �nding the exact set of policy trees needed to represent the Qfunctions, when, in fact, many of these policy trees may not be useful when they arepooled to form the optimal value function; Figure 7.7 is an example value function inwhich the number of policy trees in the optimal Q function is much larger than thenumber of policy trees in the optimal value function. It would be desirable to identify alemma analogous to Lemma 7.3 that pertains to value functions instead of Q functions.No such lemma is known, and there are complexity-theoretic reasons to believe that itmay not exist (see Section 7.5).7.3.7 Other MethodsSeveral other algorithms have been proposed to perform value-iteration updates ininformation-state mdps. Sondik [149] proposed the �rst such algorithm. Although
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WitnessInner(a;�t�1;M = hS;A; T; R;Z; O; �i) := fU := ;unchecked := fany element in Ptgwhile (unchecked 6= ;) fp := any element in uncheckedx := dominate(p; U)if (x = false) then unchecked := unchecked� fpgelse fp� := UsefulPolicyTreeFromState(x; a;�t�1;M)U := U [ fp�gunchecked := unchecked[ neighbors(p�;M)ggreturn Ugneighbors(p;�t�1; hS;A; T;R;Z ;O; �i) := fU := ;foreach z 2 Z �(z) := subtree(p; z)foreach z 2 Z fforeach p0 2 �t�1 � fsubtree(p; z)g f�(z) := p0U := U [ tree(act(p); �)g�(z) := subtree(p; z)greturn UgTable 7.11: Computing the set of useful t-step policy trees for action a, via the witnessalgorithm.



163the algorithm is complicated and, in principle, avoids enumerating the set of possiblyuseful policy trees at each iteration, it appears to run more slowly than the simplerenumeration methods in practice [33].Cheng [33] developed a collection of algorithms for solving pomdps. His relaxedregion and linear support algorithms work by building up a set U of useful policytrees using specialized algorithms for enumerating the extreme points in the sets ofinformation states over which each p 2 U dominates. The algorithms run very quicklywhen jSj is small, but scale poorly because the number of extreme points can growexponentially with the size of the state space.White and Scherer [177] propose an alternative approach in which the reward func-tion is changed so that all of the algorithms discussed in this chapter will tend to runmore e�ciently. This technique has not yet been combined with the witness algorithm,and may provide some improvement.7.4 Algorithmic AnalysisAn information-state mdp is a generalized mdp with an in�nite state space and maxi-mum expected value optimality criterion. Theorem 3.2 bounds the number of iterationsneeded for value iteration to identify a value function with an �-optimal policy.In this section, I analyze the time complexity of a single step of value iteration forseveral of the algorithms described in Section 7.3. I refer to the problem of computingthe set �t of useful policy trees from a set �t�1 of vectors as the one-stage pomdpproblem. The sets �t and �t�1 represent the t-step and (t � 1)-step value function,respectively. The size of a one-stage pomdp problem is equal to jSj + jZj + jAj forthe state, observation and actions sets; plus the size of jSj2jAj+ jSjjAj+ jSjjAjjZj+ 1rational numbers for the transition function, observation function, reward function, anddiscount factor; plus the size of j�t�1jjSj rational numbers for the (t � 1)-step valuefunction.Although the algorithms described earlier use policy trees to represent the (t� 1)-step value function, it is not di�cult to adapt them to work directly with sets of vectors.I use this model here because it makes it easier to construct examples with particularproperties. I abuse notation and write �t�1 for the set of vectors representing Vt�1,instead of the set of policy trees.



1647.4.1 Enumeration AlgorithmsSeveral algorithms for �nding �t work by enumerating the set Gt of possibly usefulpolicy trees, and then identifying which of these policy trees is useful: Monahan'salgorithm [109] was the �rst and later Eagle [51] and Lark [176] provided improvements.However, all these algorithms, regardless of their details, build Gt, the size of which isjAjj�t�1jjZj. Thus, even if a policy tree could be identi�ed as useful in constant time,the run times of these algorithms are at least exponential in jZj, making them of littleuse for solving pomdps with anything but the smallest observation sets.7.4.2 The One-pass AlgorithmSondik's one-pass algorithm [149, 148] was the �rst exact algorithm for solving �nite-horizon pomdps. At a high level, the algorithm works by taking a useful policy treep and constructing a set of linear constraints over the set of information states thatguarantee that p will be the optimal policy tree throughout the constrained region.There is one constraint for each policy tree pa obtained by substituting action a for theroot of p, plus one for each neighbor of the pa trees. By identifying the optimal policytree in each region adjacent to the constrained region, a systematic search for optimalpolicy trees can be carried out.Because of the complicated nature of the algorithm, and its poor performance inempirical evaluations [33], I will not present a detailed analysis of the one-pass algo-rithm. However, it is possible to construct pomdps in which it is necessary to create allpossible constraint sets; as a result, the worst-case run time of the one-pass algorithm isat least (jAjj�t�1j)jZj iterations, which can be considerably worse than the worst-casebound for enumeration algorithms.7.4.3 Extreme-point AlgorithmsCheng's linear support and relaxed region algorithms [33] make use of special-purposeroutines that enumerate the vertices of each linear region of the value function.Bounding the number of vertices in a polyhedron is a well-studied problem [80] andit is known that there can be an exponential number. In fact, there is a family ofone-stage pomdp problems such that, for every n, jSj = n+ 1, jAj = 2n+ 1, jZj = 1,j�t�1j = 1, j�tj � 2n + 1, and yet the number of vertices in one of the regions is 2n.The construction is given in Section G.3. Since visiting each vertex is just one of the



165operations the extreme-point algorithms perform, we can expect the worst-case runtime to grow at least exponentially in the size of the one-stage pomdp problem.7.4.4 The Witness AlgorithmThis section contains a run-time analysis of the witness algorithm on one-stage pomdpproblems, in terms of the size of the problem and Pa j�at j, the size of the sets of usefulpolicy trees for each action. The run time is polynomial in these quantities, althoughit is not di�cult to construct examples in which Pa j�at j is exponential in the size ofthe one-stage pomdp problem.At the highest level, the witness algorithm computes �at for each a 2 A, and thenselects �t from the union of the �at sets. In computing �at , the total number of policytrees added to unchecked is equal to the number of neighbors of the policy trees used toconstruct the vectors in �at plus the arbitrarily chosen starting policy tree, speci�cally,1+jZj(j�t�1j�1)j�at j. Each pass through the \while" loop in the inner loop (Table 7.11)either consumes an element from unchecked (1 + jZj(j�t�1j � 1)j�at j times) or adds avector to U (j�at j times). Thus, the total number of iterations in WitnessInner is1 + jZj(j�t�1j � 1)j�at j+ j�at j:The statements in the loop in WitnessInner can all be implemented to run inpolynomial time; this includes dominate, since polynomial-time algorithms for linearprogramming with polynomial-precision rational numbers exist [140]. The total runtime of WitnessInner for each a is therefore bounded by a polynomial in the size ofthe one-stage pomdp problem and j�at j.The WitnessOuter routine calls WitnessInner for each a 2 A and then callsFilterLark, which creates one linear program for each policy tree found. For one-stage pomdp problems in which Pa j�at j is polynomially bounded, this implies that thetotal run time is polynomial. The algorithm takes no more than exponential time inthe worst case because Pa j�at j � jGtj = jAjj�tjjZj.7.5 Complexity ResultsIn this section, I present some results pertaining to the computational complexity ofthe one-stage pomdp problem described in the previous section.



166It is not di�cult to show that no algorithm can compute �t from �t�1 in polynomialtime for general pomdps, simply because �t can be exponentially large with respectto the size of the one-stage pomdp problem. An example pomdp illustrating thisphenomenon is presented in Section G.3.Any algorithm for computing �t in polynomial time must only apply to a subclassof pomdps. We call a family of one-stage pomdp problems polynomially output boundedif j�tj can be bounded by a polynomial in the size of the pomdp and �t�1.No existing algorithm has been shown to run in polynomial time on polynomiallyoutput-bounded one-stage pomdp problems, and the next theorem suggests that theremay be a good reason for this.Theorem 7.1 The best algorithm for solving polynomially output-bounded one-stagepomdp problems runs in polynomial time if and only if RP=NP.Proof: The theorem is proved in Section G.4. �The importance of Theorem 7.1 is that it links the problem of exactly solving one-stage pomdps with the complexity-theoretic question of whether RP=NP.These results imply that further restrictions on the class of one-stage pomdp prob-lems are needed before a polynomial-time algorithm will be found. A family of one-stagepomdp problems is polynomially action-output bounded if Pa2A j�at j is bounded by apolynomial in the size of the one-stage pomdp problem. As before, �at is the minimumset of policy trees needed to represent the t-step Q function for action a.The quantity Pa2A j�at j is an upper bound on j�tj, though the bound may bearbitrarily loose. By focusing on polynomially action-output-bounded pomdps, we cansolve for �t in polynomial time as long as we can �nd �at in polynomial time for eacha 2 A.The performance of the algorithms described in this chapter on this restricted classof pomdps is summarized in the following theorem.Theorem 7.2 Of the existing algorithms that can be used to solve polynomially action-output bounded pomdps, only the witness algorithm runs in polynomial time.Proof: The theorem follows from the run-time analyses in Section 7.4. �



1677.6 Reinforcement Learning in Information-state mdpsI now briey describe several approaches to learning a policy for an information-statemdp from experience. This di�ers from learning a policy for a pomdp from experience(see Section 6.6) in that here the experience tuples have the form: hx; a; x0; ri; theinformation states are provided instead of observations. This type of experience tuplewould arise in situations where the rewards and transition probabilities are known inadvance or when an accurate model of the environment has been learned on line.This is an interesting application of reinforcement learning, because the model isknown in advance and yet there are still sound reasons for trying to learn the optimalQ function from experience; for example, reinforcement learning could possibly �nd auseful approximation over the important parts of the state space more quickly thanthe analytical methods described earlier. Still, there are major challenges to applyingany of the algorithms discussed earlier to learning in an information-state mdp, mostparticularly the fact that the optimal Q function cannot be represented by a table ofvalues.In this section, I sketch several methods for �nding linear or piecewise-linear convexapproximations to the optimal Q functions for pomdps. In each, a simple, parameter-ized function representation is used to approximate the optimal Q function for eachaction. In some cases, the parameterized function is linear, that is, a set of coe�cients,one for each state; it assigns values to information states by taking the dot productof the information state and the coe�cients. The approximate value function for aninformation state is the maximum value assigned to that state by any of the Q func-tions; this means that if the Q functions are approximated by linear or piecewise-linearconvex functions, the approximate value function will be piecewise linear and convex.7.6.1 Replicated Q-learningAs described in Section 6.6, Chrisman [34] and McCallum [104] explored the problemof learning a pomdp model in a reinforcement-learning setting. At the same timethat their algorithms attempt to learn the transition and observation probabilities,an extension of Q-learning [173] was used to approximate Q functions for the learnedpomdp model. Although it was not the emphasis of their work, their replicated Q-learning rule is of independent interest.Replicated Q-learning generalizes Q-learning to apply to vector-valued states and



168uses a single vector, qa, to approximate the Q function for each action a: Q(x; a) =Ps x[s]qa[s].The components of the vectors are updated using the rule�qa[s] = � x[s]�r + �maxa0 Q(x0; a0)� qa[s]� :The update rule is applied for every s 2 S each time the agent makes a state transition;� is a learning rate, x an information state, a the action taken, r the reward received,and x0 the resulting information state. This rule applies the Q-learning update ruleto each component of qa in proportion to the probability that the agent is currentlyoccupying the state associated with that component.This learning rule can be applied to the problem of solving information-state mdps.If the observations of the pomdp are su�cient to ensure that the agent is always certainof its state (i.e., x[s] = 1 for some s at all times), this rule reduces exactly to standardQ-learning and existing convergence theorems apply (see Section 2.6.1).The rule itself is an extremely natural extension of Q-learning to vector-valued statespaces. In fact, an elaboration of this rule was developed independently by Connell andMahadevan [38] for solving a distributed-representation reinforcement-learning problemin robotics.7.6.2 Linear Q-learningAlthough replicated Q-learning is a generalization of Q-learning, it does not extendcorrectly to cases in which the agent is faced with signi�cant uncertainty. Consider apomdp in which the optimal Q function can be represented with a single linear function.Since replicated Q-learning independently adjusts each component of the approximatelinear representation of the Q function to predict the moment-to-moment Q values, thelearning rule tends to move all components of qa toward the same value.The components of qa ought to be set to match the coe�cients of the linear functionthat predicts the Q values. This suggests using the delta rule for neural networks [131],which, adapted to the information-state mdp framework, becomes:�qa[s] = � x[s]�r + maxa0 Q(x0; a0)�Q(x; a)� :Like the replicated Q-learning rule, this rule reduces to ordinary Q-learning when theinformation state is deterministic.
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100–Figure 7.8: A pomdp that cannot be solved with a single linear function per action.Unmarked rewards are zero, unmarked observations are z1, unmarked transitions areself transitions, and the initial information state has equal probability on states s2 ands3. In neural network terminology, linear Q-learning views fx; r+�maxa0 Q(x0; a0)g asa training instance for the function Q(�; a). Replicated Q-learning, in contrast, uses thisexample as a training instance for the component qa[s] for every s. The rules behavesigni�cantly di�erently when the components of qa need to have widely di�erent valuesto solve the problem at hand [94].7.6.3 More Advanced RepresentationsAlthough replicated Q-learning and linear Q-learning seem to work quite well on smallproblems, the linear functions they use are not adequate in general. As mentionedearlier, piecewise-linear convex functions can approximate the optimal Q functions asclosely as necessary. In contrast, the linear functions used by the learning algorithmscan result in arbitrarily bad approximations.As a concrete example of a pomdp that cannot be solved using simple linear Q func-tions, consider the pomdp illustrated in Figure 7.8. A policy is linearly representableif it can be represented as the greedy policy with respect to some linear representationof the Q functions. I will show that the optimal policy for the pomdp of Figure 7.8 isnot linearly representable, and therefore that a more complex representation is neededto solve it.As an aside, there is some connection between the notion of linear separability inclassi�cation tasks and linear representability of optimal pomdp policies. Indeed, the



170argument that the optimal policy for the pomdp of Figure 7.8 is not linearly repre-sentable fairly closely mimics the classic argument that \xor" is not linearly separa-ble [66].To show that the pomdp of Figure 7.8 is not linearly representable, I �rst describethe optimal policy for this environment and argue that it is unique, then show that anychoice of a single vector to represent the Q values for action a1 leads to a suboptimaldecision for some information state on the path from the initial state to the goal state.The optimal policy can be represented using a single vector for actions a2, a3, and a4and two vectors for action a1.The unique optimal policy in this environment is to take action a2 to determinewhether the agent is in state s2 (observation z2) or state s3 (observation z3). If theagent is in state s2, it needs to take action a1, then a3. If the agent is in state s3, itneeds to take action a1, then a4. The expected number of steps to goal for this policyis 3 and the value of the initial state is 10�3.To see that no other policy does as well, note that actions a3 and a4 from the initialstate are clearly suboptimal. If a1 is selected as the initial action, the second actionwould have to be either a3 or a4. For either choice, half of the time this would lead theagent to a reward of �100, and the other half, the agent would receive 10. The averageis then �45 < 10�3; thus, the unique optimal policy is the one stated above.Given that we know how to behave optimally for this pomdp, we now need toshow that no single-vector-per-action representation can capture the optimal policy.To do this, let us examine three particular information states, each of which places allits probability weight on two states (s2 and s3). The starting information state forthis pomdp places equal weight on states s2 and s3; this information state is x0 =h0; 0:5; 0:5; 0; 0i. After taking the optimal action in this state (a2), the agent is theninformed as to which of the two possible initial states it is in, either x2 = h0; 1; 0; 0; 0ior x3 = h0; 0; 1; 0; 0i.Assume that the optimal policy can be expressed using a single vector for eachaction. Let q1 be the vector associated with action a1 and q2 be the vector associatedwith a2. In the optimal policy, x0 � q2 > x0 � q1 (a2 is optimal from the initial state),x2 � q1 > x2 � q2 (a1 is optimal from s2), and x3 � q1 > x3 � q2 (a1 is optimal from s3).The �rst inequality can be rewrittenq1[s2] + q1[s3] < q2[s2] + q2[s3]: (7.3)



171The second two inequalities are equivalent to q1[s2] > q2[s2] and q1[s3] > q2[s3], whichtogether imply q1[s2] + q1[s3] > q2[s2] + q2[s3]. But this directly contradicts Inequal-ity 7.3; thus, the assumption that a single vector per action su�ces is in error.Representing the optimal policy using two vectors for action a1 is trivial.7.6.4 A Piecewise-linear-convex Q-learning AlgorithmA simple approach to learning a piecewise-linear convex Q function is to maintain aset of vectors for each action and to use a competitive updating rule: when a newtraining instance (i.e., information state/value pair) arrives, the vector with the largestdot product is selected for updating. The actual update follows the linear Q-learningrule. In some cases, di�erent vectors will come to cover di�erent parts of the spaceand thereby represent a more complex function than would be possible with a singlevector [94].Although this algorithm performs well on some problems, its performance on otherproblems has been disappointing. The primary di�culty is that noisy updates can causea vector to \sink" below the other vectors. Since this approach only updates vectorswhen they are the largest for some information state, these sunken vectors can neverbe recovered. A related problem plagues almost all competitive learning methods [66].A classic approach to the sunken-vector problem is to avoid hard \winner-take-all"updates. Parr and Russell [117] solved information-state mdps using a di�erentiableapproximation of the maximum function and found they could produce good policiesfor many simple pomdps. The approach is promising enough to warrant further study.7.7 Open ProblemsAlgorithms for solving information-state Markov decision processes are still being de-veloped and many questions remain.� Are there any provably e�cient approximate solutions to the information-statemdp?� There are value functions for pomdps with n states and 2n actions where thenumber of vertices in a value-function region is 2n. By analogy with existingwork on counting the vertices of polyhedral regions [80], it ought to be possible toconstruct an example with a constant number of actions and a logarithmic number



172of observations for which the number of vertices in some region is exponential.Can such an example be identi�ed?� It is possible to �nd the best linear approximation (in a max norm sense) to a setof points using linear programming. Is there an extension of this result to morecomplex approximations? This would have implications for learning optimal valuefunctions and putting bounds on the suboptimality of a learned value function.� In this section, I suggested that the class of polynomially action-output boundedpomdps was worthy of study. This comment was motivated by complexity-theoretic concerns. Are there naturally occurring pomdp subclasses that canbe identi�ed and explored?� Are there pomdps in which j�tj grows as a double-exponential function of t? Arethere pomdps in which j�tj grows a a single-exponential function of t? Is it everthe case that the PSPACE algorithm of Chapter 6 is superior to the algorithmsdescribed in this chapter?� Although lexicographic ordering plays a crucial role in separating useful and non-useful policy trees, there is a sense in which it is an artifact of the proof ofLemma 7.1. Is there another simple way to quickly identify useful policy trees?� Q-learning is known to converge to the optimal Q function in �nite-state mdps,under the right conditions. Reinforcement-learning methods do not appear toconverge for general information-state mdps. Is there some way of structuringthe problem so it is solvable by reinforcement learning? Does linear Q-learningconverge to the optimal Q functions if they are linear? Does linear Q-learningconverge to an optimal policy if it is linearly representable? Schapire and War-muth [136] showed that a minor variation of TD(�) performs reasonably wellprovided that there is some linear predictor that performs well; could these re-sults shed some light on learning good policies?7.8 Related WorkAlgorithmic approaches to solving pomdps, especially in terms of the information-statemdp, have been surveyed extensively. The surveys by Monahan [109], Lovejoy [100],and White [176] are all clear, concise, and contain a great deal of useful information.



173Although in this chapter I focus on approximating the in�nite-horizon problemusing exact methods for the �nite-horizon, other methods have been explored. Lovejoy'ssurvey cites several other methods for solving the information-state mdp in additionto those that use a piecewise-linear convex representation of the value function; forinstance, in one class of methods, the in�nite-horizon value function is approximatedusing a �xed grid of information states [99].Sondik [150] presented a policy-iteration algorithm for �nding approximate solutionsto in�nite-horizon pomdps. Sawaki and Ichikawa [135] advocated the use of the value-iteration method, e�ectively reducing the problem of �nding an approximate in�nite-horizon value function to that of �nding an exact �nite-horizon value function. This isidentical to the approach taken in this chapter.The vector representation of �nite-horizon value functions was �rst explored bySondik [149] in his dissertation, which made it possible for a computational treatmentof pomdps to commence. The policy-tree representation is implicit in his work, and wasmade explicit by Cassandra, Kaelbling and Littman in the course of this research [32,73].Monahan [109] provided the �rst description of the enumeration method, also im-plicit in Sondik's work. Monahan attributes the enumeration algorithm to Sondik,although later authors [33, 100] give the credit to Monahan. Smallwood and Sondik'sone-pass algorithm [148] avoids enumeration, at the expense of extensive record keeping.Cheng [33] developed a collection of pomdp algorithms and his Ph.D. thesis surveysalmost all the algorithms existing at the time. White and Scherer [177] extended thereward-revision method, developed for mdps, to pomdps.The development of the witness algorithm [32, 92, 95] was inspired most directlyby Cheng's linear support algorithm [33], with the di�erence that standard linear pro-gramming was to be used in place of vertex enumeration to identify missing vectors.An early version was shown to be incorrect [92], and later versions introduced the ideaof �nding a representation for the Q functions. As presented here, the algorithm bearsa close resemblance to Lark's �ltering algorithm [176].Chrisman [34] introduced the pomdp model to the reinforcement-learning commu-nity. His work, and that of McCallum [104], primarily addressed learning the pomdpmodel itself, and used the simplest possible representation for value functions.Methods for solving the continuous state-space information-state mdps that come



174from pomdps must work with a parameterized representation of the value function. Ex-cept in some very special cases, these representations are approximate. Reinforcementlearning and dynamic programming using approximate value functions is attractingincreasing interest. Boyan and Moore [29] examined methods for solving a particularclass of continuous state-space mdps, Gordon [58] and Tsitsiklis and Van Roy [164]demonstrated closely related provably convergent dynamic-programming algorithms,and Baird [7] derived a gradient-descent rule for adjusting the parameters representinga value function in a reinforcement-learning setting; a survey of these techniques andothers has recently been compiled [30].The linear Q-learning and piecewise-linear convex Q-learning rules were developedin a parallel research e�ort by Littman, Cassandra, and Kaelbling [94]. Independently,Russell and Parr [117] attacked the same problem using a more complex value-functionrepresentation that can be adjusted by gradient descent.7.9 ContributionsInformation-state mdps arise as a way of coping with the potentially unbounded his-tories that must be considered when solving partially observable Markov decision pro-cesses. Exact algorithms for solving information-state mdps over �nite horizon havebeen around for 25 years, though a careful complexity study of these algorithms hadnot been undertaken. I provide a new worst-case analysis of several algorithms forsolving this problem, and explain that, even when the optimal value function is simple,these algorithms can take exponential time. I develop a new complexity result thatshows that it is likely that this is an inherent di�culty with the problem, for it canbe solved in polynomial time if and only if all problems in NP can be solved in ran-domized polynomial time. I describe a new algorithm, called the witness algorithm,which I developed in collaboration with Cassandra and Kaelbling, and prove that ithas complexity-theoretic properties that make it extremely attractive.In the process of developing this algorithm, I discovered the importance of breakingties between policy trees using a lexicographic ordering, and developed e�cient algo-rithms for doing so. The concepts I derived in this context are critical to boundingthe run time of earlier algorithms as well, although, because this is the �rst in-depthanalysis of these algorithms, this fact was not recognized.In the area of reinforcement learning, I analyzed the replicated Q-learning rule



175and argued that the new linear Q-learning rule is more appropriate. I also provideda concrete example for which no linear representation will su�ce to encode optimalbehavior.Although the witness algorithm goes a long way toward solving information-statemdps e�ciently, it is likely that no exact algorithm will be e�ective for solving large-scale pomdps. Other methods that make use of value-function approximation or �nite-memory policies appear more promising in the short run. It is my hope that thetechniques presented in this chapter will inspire and inform the development of morepractical approaches.



Chapter 8Summary and ConclusionsThe central thesis of this work is that designing algorithms with attention to complexityand convergence analysis can make it possible to solve larger and more di�cult sequen-tial decision-making problems. I illustrated this point by analyzing existing algorithmsto indicate which hold the most promise for solving large problem instances, derivingcomplexity results to show which problems are unlikely to be solvable e�ciently with-out additional restrictions, and inventing new algorithms with provably superior runtimes, wider coverage of problem instances, or guaranteed convergence.This chapter provides several \big-picture" comparisons among the sequential decis-ion-making models discussed throughout the thesis. It is intended to convey a feel forthe state of the art in algorithms for sequential decision making, as well as to point theway to the next set of problems to be solved.8.1 Comparison to Arti�cial Intelligence PlanningIn this section, I provide an extremely brief summary of work in planning and relate itto the results I described.8.1.1 Deterministic EnvironmentsPlanning in arti�cial intelligence is concerned with �nding good behavior given a de-scription of an environment. In traditional planning research, environments are de-terministic and fully observable, and the objective is to �nd any sequence of actionsthat moves the agent from a prespeci�ed start state to any of a prespeci�ed set of goal176



177states|to solve deterministic goal-oriented mdps.This model is the simplest type of sequential decision-making problem consideredin this thesis. What makes it di�cult and worthy of study is that the states of theenvironment are represented in a propositional form. Let us consider a simple example,adapted from a paper by Draper, Hanks, and Weld [50, 49].The environment is a manufacturing plant and the agent's task is to process andship a particular widget. At any moment in time, the widget is either painted (PA)or not, awed (FL) or not, blemished (BL) or not, shipped (SH) or not, rejected (RE)or not, and the supervisor has either been noti�ed (NO) or not. The actions availableto the agent are to: REJECT the widget, which should happen if it is awed; PAINTthe widget, which it must do to process it; SHIP the widget, which it should do if thewidget is processed; and NOTIFY the supervisor when processing is complete.There are two possible initial states, FL BL PA SH RE NO and FL BL PA SH RENO. The objective is to end up in either of two goal states, FL BL PA SH RE NOor FL BL PA SH RE NO. The shortest valid plan is REJECT NOTIFY if the part isawed or PAINT SHIP NOTIFY if the part is not awed. Traditional planners havevery little trouble �nding these plans.As there are six propositions and each can take on two values, the e�ective statespace consists of 26 = 64 states. In general, the size of the state space is exponentialin the number of propositions. In addition, the transitions and rewards can often bespeci�ed compactly in terms of the propositions themselves, so a complete descriptionof the domain can be made signi�cantly smaller than an exhaustive listing of thecomponents of the T andR functions. This means that the fastest possible algorithm forsolving deterministic mdps will always be exponential, simply because it must considereach of the states independently. The challenge of traditional planning research isto �nd algorithms that can run e�ciently with respect to the size of the compactrepresentation of the environment.8.1.2 Stochastic EnvironmentsIn spite of the di�culty of compact planning problems, researchers have begun toreach the limits of problems that can be solved usefully as deterministic goal-orientedproblems. Work in decision-theoretic planning has broadened its scope to stochastic



178environments with more elaborate reward structures. The fundamental di�erence be-tween work in operations research on mdps and the work in arti�cial intelligence ondecision-theoretic planning is the representation of states and actions; planning re-searchers work with compact propositional representations of the state space, whilemdp researchers assume a collection of unanalyzed, independent states.Of course, this di�erence in assumptions translates to substantial di�erences inthe types of algorithms that can be used to �nd optimal behavior; one fundamentaldi�erence is in the form of the output of the algorithms.Let us restrict our attention for the moment to stochastic, goal-oriented environ-ments. We would like to know how to behave over the �nite or in�nite horizon so thatthe probability of reaching the goal from some start state is at least 1� �. The outputof an mdp algorithm for this problem would be an optimal policy that lists, for eachstate, the best choice of action. This is impractical for planning problems, however,because the number of states is too large. In deterministic environments, the solutionto this is to return a plan, or sequence of actions, instead of a policy. The size of anoptimal plan is a function of the number of steps needed to reach the goal, not the sizeof state space, so it can be a very e�cient representation.In a stochastic environment, a linear plan is not su�cient to describe optimal behav-ior1; it is necessary to conditionalize the actions on the results of uncertain transitions.The simplest extension over a linear plan is a plan tree, which is an agent's course ofaction that includes \forks" that occur when an action can have multiple outcomes.Environments that are generally deterministic can have good plan trees that are small,and planning algorithms have been developed that can �nd these plan trees.As the number of possible action outcomes grows, the branching factor for theassociated plan tree grows as well. It rapidly becomes ine�cient for a plan to associateeach possible sequence of outcomes with an action. It makes more sense to map statesto actions than to construct a full plan tree. Such plans have been called \universalplans" [138] and are equivalent to what I have been calling \policies."I am not aware of any detailed comparisons of mdp and planning algorithms inuncertain domains. I understand that mdps with hundreds of thousands of statescan be solved using current approaches, which translates to problems with perhaps 17propositions. It is my opinion that a combination of techniques from operations researchand arti�cial intelligence will be needed to solve large planning problems e�ciently; this1Kushmerick et al. [87] attempt to �nd good linear plans for stochastic environments.



179
INSPECT

REJECT

PAINT

NOTIFY

SHIP

PAINT

BL BL

Figure 8.1: Plan for a partially observable environment.issue is explored by Boutilier, Dean, and Hanks [23].8.1.3 Partially Observable EnvironmentsSeveral projects have concerned themselves with planning in partially observable en-vironments. Plans for partially observable environments cannot be conditioned on theunderlying state, i.e., the value of the propositions. Instead, actions are endowed by theenvironment with \observational e�ects" and these e�ects (noisily) reveal the values ofparticular propositions.We can extend the widget-processing example above by making the two possiblestarting states equally likely and by introducing an additional action, INSPECT, whichreturns either \blemished" or \not blemished" depending on the state of the BL propo-sition. Figure 8.1 gives a simple DAG-structured plan that reaches a goal with highprobability.Very few algorithms have been proposed for this type of problem. Of course, anyof the pomdp algorithms described in Chapter 6 can be used, once the complete statespace is constructed. The C-Buridan [50, 49] and structured policy iteration [25] algo-rithms solve partially observable problems using compact representations directly. TheC-Buridan algorithm discovers the DAG-structured plan in Figure 8.1. Draper et al.note that \signi�cant search control knowledge is necessary to enable solution of evensimple examples" like the widget-processing example. This means that C-Buridan isunlikely to have found the plan in Figure 8.1 in any reasonable amount of time withoutadditional information about the environment.In contrast, the witness algorithm performed quite well on this problem. Of all



180possible three-step plans, it found one with the maximum success probability in a fewseconds using no additional information about the domain. This result illustrates twopoints. First, the witness algorithm can be used to solve compactly speci�ed planningproblems competitively with state-of-the-art planning algorithms. Second, the stateof the art in planning in pomdps is still quite primitive. I personally believe that thewitness algorithm is not the best way to solve compact pomdps in general. However,I believe that insights from the witness algorithm could make important contributionsto algorithms for planning in partially observable stochastic domains.In conclusion, I believe that the algorithms described in this thesis are quite rele-vant to planning researchers because (a) they can be used as alternatives to existingplanning algorithms, but more importantly (b) there are important insights here thatcan probably be used to complement existing planning algorithms to solve bigger andmore complex problems.8.2 Comparison of Game ModelsTable 8.1 compares and contrasts mdps, alternating Markov games, and Markov gamesusing the results from Chapters 2, 4, and 5. The �rst row summarizes the long-term be-havior of value iteration for each model. For both mdps and alternating Markov games,value iteration identi�es an optimal policy in a pseudopolynomial number of iterations(Sections 2.4.2 and 4.4.1). For Markov games, value iteration generates policies thatbecome closer and closer to optimal but never necessarily get there (Section 5.4.2).The second row summarizes the result of a linear-programming approach to solvingthese models. Whereas linear programs can be used to solve mdps (Section 2.3.3), it isnot known whether alternating Markov games can be solved this way (Section 4.4.3).However, for general Markov games, it is possible to argue that no linear program canbe used to identify the optimal policy (Section 5.4.3).The third row describes the form of the optimal policy: for mdps and alternatingMarkov games, a stationary deterministic policy su�ces, while, for general Markovgames, it is necessary to consider probabilistic policies as well. The fourth row givesthe state of our understanding of the computational complexity of solving the threemodels: mdps can be solved in polynomial time (Section 2.5); alternating Markov gamesare not known to have a polynomial-time solution, but belong to the class NP\co-NP,providing some evidence that a polynomial-time algorithm exists (Section 4.5); and



181alternatingmdps Markov games Markov gamesvalue iteration optimal policy optimal policy approaches optimalnaive linear program solves fails impossibleoptimal policy deterministic deterministic stochasticcomputational polynomial NP\co-NP irrationalcomplexityreinforcement learning approaches optimal approaches optimal approaches optimalTable 8.1: Comparison of properties of Markov decision processes, alternating Markovgames, and Markov games.optimal solutions to Markov games may involve irrational numbers even when therewards and transitions are rational, making it unlikely that any algorithm can solvethem exactly (Section 5.5). The �fth and �nal row states that reinforcement-learningalgorithms exist for all three models that result in arbitrarily good approximations tothe optimal policy under the proper conditions.It is worth noting that every mdp is an alternating Markov game and every alter-nating Markov game is a Markov game, and thus any algorithm for solving Markovgames can be used to solve mdps as well.8.3 Complexity SummaryThere are many aspects by which the value of an algorithm can be judged, but withouteither theoretical analysis or empirical evaluation, the development of algorithms is anexercise in aesthetics: Can you �nd an algorithm that is su�ciently \elegant"?Of course, sound theoretical and empirical study of an algorithm is di�cult. Whichexample problems are the most revealing empirically? Do the assumptions necessaryto make for the analysis to work hold in practice? How can we be sure our empiricalresults generalize? Are the constants in our asymptotic analysis small enough to a�ectthe run time of a small to medium-size problem instance?One major challenge in any theoretical analysis of an algorithm is to determinewhether the upper and lower bounds on the run time are \tight", that is, whether theyaccurately characterize the range of possible run times of the algorithm. If the analysisis tight, one needs then determine whether some other algorithm might produce fasterrun times. These issues can be extremely di�cult to address.



182polynomial horizon in�nite horizondeterministic mdp NC [116] NC [116]mdp P-complete [116] P-complete [116]deterministic alternatingMarkov game P-complete* NP\co-NP [183], P-hard*alternating Markov game P-complete* NP\co-NP [36], P-hard*deterministic Markov game P-complete* irrational*, P-hard*Markov game P-complete irrational [169], P-hard*deterministic unobservable mdp NP-complete* PSPACE-hard*/EXPTIME*unobservable mdp NP-complete [116] PSPACE-hard*deterministic pomdp NP-complete* PSPACE-hard*/EXPTIME*pomdp PSPACE-complete [116] EXPTIME-hard*Table 8.2: Summary of complexity results for �nding optimal policies.Complexity theory can be invaluable in determining when algorithmic developmentand analysis need to change direction. Complexity analysis addresses the inherentdi�culty of the problem that is being solved. Finding that in�nite-horizon pomdpsare EXPTIME-hard immediately implies that your algorithm for solving them willnot run in polynomial time|no further analysis is needed. In addition, if you do�nd an algorithm that runs in exponential time, you need not bother searching foran algorithm with better worst-case run time; at this point, it is better to focus onalgorithms for special cases, algorithms that run well on \average" problems, or someother less traditional avenue of algorithm development.Table 8.2 summarizes the complexity results for the various models. Results markedwith asterisks were �rst proven in this thesis.A de�nite trend is visible in this summary: increasing the amount of uncertaintyin a problem increases the complexity of the problem. An agent in a in�nite-horizonpomdp environment faces an uncertain future because of stochastic transitions, anuncertain state because of stochastic observations, and an inde�nite horizon. Thecorresponding computational complexity is extremely high. An agent in a deterministicMarkov game environment faces a di�erent type of uncertainty: uncertainty about theagent's behavior and its current choice of action. Again, the complexity is high, but ina di�erent way.



183These results indicate that, wherever possible, it is important to eliminate uncer-tainty from applications. Nevertheless, when signi�cant uncertainty is present, algo-rithms are available that �nd near-optimal behavior.8.4 ContributionsAlthough much of the thesis was devoted to summarizing and unifying results from anumber of di�erent disciplines, I also presented the novel results listed below.� Markov decision processes{ proof that policy iteration runs in pseudopolynomial time, and in polynomialtime for any �xed discount factor{ generalized convergence proof for Q-learning{ simpli�ed proof of the convergence of value iteration for all-policies-propermdps{ demonstration that the deterministic case can be viewed in the closed semi-ring framework� Generalized Markov decision processes{ introduction of a new model{ proof of convergence of value iteration{ proof of convergence of policy iteration{ proof of convergence of model-free reinforcement learning{ proof of convergence of model-based reinforcement learning� Markov games{ reinforcement-learning method (minimax-Q){ proof of convergence of reinforcement-learning methods{ proof of convergence of self-play approaches{ demonstration that the deterministic case can lead to irrational values



184{ polynomial-time algorithm for a special case: constant reward-cycle alter-nating Markov games{ proof of P-hardness for the deterministic �nite-horizon case� Partially observable Markov decision processes{ model-based algorithm (witness){ method for learning immediate rewards in an unknown model{ proof that the deterministic polynomial-horizon case is NP-complete{ proof that the deterministic in�nite-horizon case is PSPACE-hard, in EXP-TIME, and PSPACE-complete if rewards are boolean{ proof that the stochastic in�nite-horizon case is EXPTIME-hard, and EXP-TIME-complete if rewards are boolean{ proof that a single step of value iteration using the policy-tree representationis NP-hard under randomized reductions{ analyses of several existing algorithms for solving pomdps.8.5 Concluding RemarksSequential decision making is one of the most important problems in arti�cial intel-ligence and perhaps all of computer science, and the search for e�cient algorithmsis still relatively young. The most important areas of future research are (1) �ndingrestrictions to some of the harder problems that capture the structure of problems inthe real world while admitting e�ciently computable approximate solutions, and (2)�nding e�cient algorithms for models speci�ed in structured form.Both of these areas will require signi�cant synergy between researchers exploringapplications and researchers inventing and analyzing new algorithms. As long as thelines of communication remain open, there is every reason to be optimistic that thecoming years will bring more e�cient algorithms for more important problems.



Appendix ASupplementary IntroductoryInformationIn this appendix, I provide background material on computational complexity andlinear programming, and summarize some of the conventions I use to illustrate thealgorithms in this thesis.A.1 Computational ComplexityThe goal of research into computational complexity is to classify and categorize compu-tational problems. The most fundamental quantity in this area is run time: How muchtime does it take to solve a particular problem? At the same time, it is often useful toconstrain other quantities such as the space used or the number of processors requiredin a parallel implementation.Time is measured in terms of basic computer operations like simple logical oper-ations or branches. In the arithmetic model , arithmetic operations are assumed totake unit time. In the bit-operation model , the time taken for arithmetic operationsis a function of the magnitude of the numbers involved. Since we expect the numbersused in the programs to be represented using conventional computers, we most oftenrestrict our attention to integers or rational numbers (the ratio of two integers). Thearithmetic model is often more intuitive to work with and when we can guarantee thatall operations will be on rational numbers of a given precision, it is easy to convertbounds under an arithmetic model to those under a bit-operation model.185



186Most complexity results are framed in terms of decision problems|problems thatrequire a yes/no response for each well formed input. The time and space complexityof decision problems are given as a function of the amount of space needed to writedown an input. The goal of complexity analysis is to �nd, for a given class of decisionproblems, how the worst-case run time of an algorithm scales as a function of the inputlength. Note that many fundamental questions in this area are open. This means thatmany important results are given in the slightly cumbersome form \such and such istrue only if some complexity theoretic property which is generally believed to be trueis true." I examine examples of this in the next section.A.1.1 Complexity classesHere are brief descriptions of some of the complexity classes I use in this thesis.� P: The set of decision problems that can be answered with certainty in a polyno-mial number of operations (polynomial time). Traditionally, this class has beenequated with the set of problems that have e�cient algorithms.� NP: The set of decision problems that can be answered non-deterministically inpolynomial time. Most NP problems have the property that a \yes" answer canbe supported by a short example.� co-NP: This is the complement of NP. Most co-NP problems have the propertythat a \no" answer can be supported by a short example.� NP\co-NP: This is the set of problems that are in both NP and co-NP. Member-ship in this class can be taken as evidence that a problem is in P [55], althoughthere are some signi�cant examples in this class whose exact complexity remainsunknown.� NC: The set of problems that can be decided on a parallel computer using apolynomial number of processors and polylogarithmic (O(logk n), for some k)time. All problems in NC are in P.� P-hard: The set of problems such that if they are in NC, all problems in P arein NC.� RP: The set of problems that can be decided in randomized polynomial time,that is, if the answer is truly \yes," an algorithm will give a \yes" answer with



187at most a bounded probability of error; if the answer is \no," the algorithm willsay \no." All decision problems in P are in RP and all decision problems in RPare in NP.� PSPACE: The set of problems that can be decided using polynomial space. Allproblems in P and NP and co-NP are in PSPACE.� EXPTIME: The set of problems decidable in exponential time. All problems inPSPACE are in EXPTIME.� NP-hard: The set of problems such that if they are in P, all problems in NP arein P. Similarly for PSPACE-hard.� NP-complete: Problems in NP that are NP-hard. They are the hardest problemsin NP and many natural decision problems are in this class. No e�cient algo-rithms are known for exactly solving problems in this class. The important andopen question \does P=NP?" basically boils down to whether any NP-completeproblem can be solved in polynomial time. For our purposes, we assume that Pmostly likely does not equal NP and therefore that any NP-complete or NP-hardproblem is intractable in general.� PSPACE-complete: Analogous to NP-complete. Even if P=NP, it is very likelythat PSPACE does not equal P. Showing that a problem is PSPACE-complete isvery nearly a proof of its intractability in general.� EXPTIME-complete: The hardest problems in EXPTIME. Includes problemsthat are provably intractable, therefore the class of EXPTIME-complete problemsis the easiest set of problems known to be intractable.Saying a problem is in PSPACE (or NP or EXPTIME or NC or RP) gives an upperbound on its di�culty, since knowing that a problem is in PSPACE, for example, meansthat we never need more than polynomial space to solve it. Saying a problem is NP-hard(or PSPACE-hard or EXPSPACE-hard or P-hard) gives a lower bound on its di�cultysince an NP-hard problem is no easier than any problem in NP. \Completeness" resultsare particularly tidy since they give matching upper and lower bounds on the di�cultyand as such (with regard to current theory) exactly determine how hard a problemis. For more background information on decision problems and NP-completeness, seeGarey and Johnson's book [55].



188A.1.2 ReductionsA reduction is simply a mapping of an instance of one problem A to an instance ofanother B, so that the solution to B can be used to solve A. Reductions are extremelyimportant for relating two problems to show that one is no easier than the other. Forexample, by reducing A to B, we show that solving A is no more di�cult than solvingB. And if the transformation from A to B and from the answer for B back to theanswer for A takes, for instance, polynomial time, then A takes no longer to solve thanB to within a polynomial factor.One use of reductions is to show that a given problem is hard. An example, discussedin more detail in Chapter 6, is that solving �nite-horizon pomdps is PSPACE-hard.The proof goes like this. Take an instance of the quanti�ed-boolean-formula problem.It is known that the quanti�ed-boolean-formula problem is PSPACE-hard (PSPACE-complete, in fact), meaning that a polynomial-time algorithm for solving the problem ingeneral would prove that all problems in PSPACE are solvable in polynomial time. It ispossible to show that a �nite-horizon pomdp can be constructed from an instance of thequanti�ed-boolean-formula problem in polynomial time, and that the solution to thepomdp could be used to provide a solution to the quanti�ed-boolean-formula problemin polynomial time. Since this is true, a polynomial-time algorithm for solving general�nite-horizon pomdps would provide a polynomial-time algorithm for the quanti�ed-boolean-formula problem, which would, in turn, imply that all problems in PSPACE aresolvable in polynomial time. Thus the �nite-horizon pomdp problem is PSPACE-hard.It is also possible to use the notion of reductions to show how easy a given problemis. An example of this is in Chapter 2, where the problem of solving mdps is reducedto the problem of solving linear programs. Since the reduction can be carried out inpolynomial time, and since linear programs can be solved in polynomial time, thisproves that mdps can be solved in polynomial time. Interestingly, this is the onlyexisting proof of this fact.In the next section, I use reductions to show that many decision problems are equalin di�culty to their corresponding optimization problems.A.1.3 Optimization ProblemsDespite the mathematical richness of decision problems, most naturally occurring prob-lems do not appear in a \yes/no" form, and hence the complexity classes described



189above cannot really be applied to them. Nevertheless, many optimization problems,such as the sequential decision-making problems that are the topic of this thesis, arepolynomially reducible to decision problems.For example, consider the following problem: given a description of an mdp, �ndthe optimal policy. A related decision problem might be: given a description of anmdp, and a rational number w, and a starting state s0, is there a policy that achievesexpected reward greater than or equal to w starting from s0?Clearly if we could solve the optimization problem, the decision problem would betrivial|simply take the mdp, �nd its optimal policy, and evaluate it to see if V �(s0) �w. We can also use an e�cient solution to the decision problem to solve the optimiza-tion problem. The basic idea is to use binary search to �nd the largest possible valuefor w for each s0. As long as we have a guarantee that the optimal value function con-sists of polynomial-precision rational numbers (and we do for mdps, see Theorem 2.1),a polynomial-time answer to the decision problem gives a polynomial-time answer tothe optimization problem.Thus, for this and many other problems, the decision-problem formulation and theoptimization formulation are \equivalent" in that they have the same worst-case runtime to within a polynomial factor. For many problems, it is therefore reasonable touse the decision-problem terminology when taking about optimization problems.These reductions almost always depend on the solution to the optimization prob-lem being a rational number expressible with at most a polynomial number of bits.Thus, showing that an optimization problem can have an irrational solution, even for aproblem speci�ed with only rational values, is taken as evidence that the optimizationproblem is strictly harder than its corresponding decision problem.A stronger result might be to show that solving the optimization problem is equiv-alent to �nding exact solutions to arbitrary polynomial equations. Galois theory tellsus that there is no �nite-time algorithm (restricted to simple arithmetic operations androots) for solving arbitrary polynomial equations [6]. Thus, such problems are, in asense, uncomputable. In spite of the di�culty of this class of optimization problems,several of them admit �-optimal approximations that can be computed in time that isa function of 1=�.



190A.1.4 Other Complexity ConceptsThere are several other complexity-theoretic concepts that are used in this thesis. Theyinvolve the speci�cation of a problem's complexity when the input involves representa-tions of numbers.When a problem is in P, it has an algorithm whose run time scales as a polynomial inthe size of the input. When the input involves numbers, we assume that these numbersare given in the most compact possible form, for example, as integers speci�ed in binarynotation. Similarly, when we say a problem is NP-complete, we are stating that it ishard with respect to a compact representation of the input numbers.Sometimes it is interesting to consider the complexity of the problem when its inputis given in unary. This means we are considering the run time with respect to themagnitude of the numbers involved and not the size of their representations in binary.Presenting the input numbers in unary makes a problem easier in the following sense.Consider the problem of determining if a number x is prime. One simple algorithmchecks every number from 2 to bpxc to see if any divide x evenly. The run time ofthis algorithm is proportional to bpxc and is thus polynomial in the input size if x isexpressed in unary, but exponential in the input size if x is expressed in binary.With this in mind, here are some major categories of time complexity:� strongly polynomial: The run time of the algorithm, measured in arithmeticoperations, can be bounded as a polynomial function of the size of the input,measured as the number of numbers. An example is matrix multiplication whichneeds no more than n3 arithmetic operations to multiply two n by n matrices.� polynomial: The run time of the algorithm, measured in arithmetic or bit oper-ations, can be bounded as a polynomial function of the size of the input, mea-sured in bits. Although all strongly-polynomial algorithms are polynomial, somepolynomial-time algorithms (such as the ellipsoid method for solving linear pro-grams and mdps) are not strongly polynomial because the number of arithmeticoperations needed depends on the size of the numbers involved.� pseudo-polynomial: The run time of the algorithm, measured in arithmetic orbit operations, can be bounded as a polynomial function of the magnitude of thenumbers in the input. An example is the value-iteration algorithm for solvingmdps, for which the number of iterations can grow as a polynomial function of



191the magnitude of the discount factor, 1=(1� �). Any polynomial-time algorithmis also pseudo-polynomial.� NP-complete: A decision problem is NP-complete if it is in NP and the existenceof a polynomial-time algorithm to solve it would imply that P=NP.� strongly NP-complete: A decision problem is strongly NP-complete if it is in NPand the existence of a pseudo-polynomial-time algorithm to solve it would implythat P=NP.A.2 Algorithmic ExamplesThroughout this thesis, I use short code fragments to make concrete the algorithmsbeing discussed. I use a number of conventions to help make the code fragments asclear and simple as possible.First of all, the notation I use does not correspond to any existing computer lan-guage. It borrows a great deal of structure from \C," but with a number of extensionsfor more complex data types.Table A.1 contains a meaningless subroutine that illustrates some of the conventionsused to de�ne program fragments. In this example, a subroutine greeting is de�nedto take 3 arguments, a, b, and c. The local variable t is initialized to zero and thendoubled and incremented by k, for each k from 1 to a. Next, a is increased by 3 ift does not equal b and c is greater than or equal to 10. Otherwise, b is raised to thesecond power and c is assigned the value of b� 3. Finally, the subroutine returns thelargest value of a, b, and c.The distinction between global and local variables should be clear depending on thecontext. The data type of a given variable is not given explicitly, but again, it shouldalways be clear from the context or the associated text.Typographically, names of user-de�ned subroutines are in typewriter font, reservedwords are bold, variables are in italics, and mathematical functions are in roman font.For the most part, any subroutine called within the de�nition of another subroutinewill be de�ned elsewhere in the thesis. The only di�cult functions that are left un-speci�ed are routines for solving linear programs and systems of linear equations. The�rst is intended to take a set of variables, linear constraints on those variables, and anobjective function, and return bindings for the variables that satisfy the constraints and



192greeting(a; b; c) := ft := 0foreach k 2 [1 : : :a] t := 2t+ kif ((t 6= b)and(c � 10)) then a := a+ 3else fb := b2c := b� 3greturn maxfa; b; cggTable A.1: Example subroutine illustrating the sample-code conventions used through-out this thesis.maximize the objective function. The second �nds a binding for a set of variables thatsatis�es a set of equality constraints on linear functions of those variables. Althoughneither of these procedures are considered standard in most programming languages,there are many excellent commercial (and free) software packages available.My intention is that an experienced programmer should have little trouble imple-menting the algorithms described in this thesis.A.3 Linear ProgrammingNearly every chapter refers to, or makes use of, linear programming. Very briey, alinear program consists of a set of variables, a set of linear inequality constraints onthose variables, and a linear objective function to be either maximized or minimized.Linear programming is interesting because it is one of the most di�cult and generalproblems that can be solved in polynomial time. The �rst theoretically e�cient algo-rithm for solving linear programs, the ellipsoid algorithm [79], does not appear to beof practical use; however, re�nements of Karmarkar's [78] polynomial-time algorithmare competitive with the fastest practical algorithms. Another algorithm for solvinglinear programs, the simplex method [41], is theoretically ine�cient but runs extremelyquickly in practice.An excellent book by Schrijver [140] describes the theory of linear programs andthe algorithms used to solve them.



Appendix BSupplementary Information onMarkov Decision ProcessesIn this appendix, I present an analysis of two results from Puterman's mdp text-book [126] and discuss their implications for the complexity of mdps. I also provethat deterministic mdps are closed semirings.B.1 Comparing Policy Iteration and Value IterationThis result is given much more precisely in Puterman's mdp book [126] as Theorem6.4.6. The goal of this section is to provide intuitive verbal arguments so that thecritical points can be examined more closely. We start with a host of de�nitions.Let �0 be an arbitrary policy. For t � 0, let Vt be the value function for �t and �t+1be a greedy policy with respect to Vt. Thus, the Vt functions form a sequence of valuefunctions obtained by executing policy iteration starting from �0. Let U0 be the valuefunction for �0 (i.e., V0) and for t � 0, let Ut+1 be the result of applying value iterationto Ut. Thus the Ut functions form a sequence of value functions obtained by executingvalue iteration starting from �0's value function. Let V � be the optimal value function.Theorem B.1 For all s 2 S and t � 0, Ut(s) � Vt(s) � V �(s), and therefore policyiteration converges no more slowly than value iteration (i.e., at least linearly).Proof: The easy part is showing that Vt(s) � V �(s) for all s 2 S and all t � 0. Thisfollows from the fact that Vt is the value function for a particular policy and the optimalvalue function is larger than all such value functions at all states.193



194To show that Ut(s) � Vt(s) for all s 2 S and t � 0, we proceed by induction on t.For t = 0, clearly U0(s) � V0(s) for all s 2 S since U0 is de�ned to be equal to V0. Thisproves the base case.Let us assume that Ut(s) � Vt(s) for all s 2 S. We will use this to show thatUt+1(s) � Vt+1(s) for all s 2 S.First, let U 0t+1 be the value function that results from taking one step of valueiteration on Vt. I will argue that U 0t+1(s) � Vt+1(s) and that Ut+1(s) � U 0t+1(s) for alls 2 S and the inductive proof will follow from chaining these inequalities.Note that U 0t+1 is the value function for a non-stationary policy that follows �t+1 forone step and then �t thereafter. This non-stationary policy is no worse than one thatfollows �t forever since the non-stationary policy chooses its �rst action to maximizethe long term reward given that �t will be followed thereafter. Certainly this is noworse than following �t all along. Thus U 0t+1(s) � Vt(s) for all s 2 S.The quantity U 0t+1(s)�Vt(s) � 0 is the amount of improvement the non-stationarypolicy achieves over policy �t starting from state s. Following policy �t+1 is like usingthe non-stationary policy but restarting it after each transition. This can be no worsethan the non-stationary policy since it is as if the U 0t+1(s) � Vt(s) gain is reaped onevery step instead of just once. (This is true, although the actual argument is a bitmore subtle. It can be proven as a consequence of the results in Section 3.3.3.) SinceVt+1 is the value function for this policy, we have Vt+1(s) � U 0t+1(s) for all s 2 S.How does U 0t+1 compare to Ut+1? Well U 0t+1 is the result of taking one step of valueiteration on Vt and Ut+1 is the result of taking one step of value iteration on Ut. Usingthe inductive hypothesis that Ut(s) � Vt(s) for all s 2 S, it is easy enough to show thatUt+1(s) � U 0t+1(s) for all s 2 S.Chaining these results gives us the desired answer that Ut+1(s) � Vt+1(s) for alls 2 S and therefore that policy iteration converges no more slowly than value iterationwhen started from the same point. �One extremely important observation is that this argument depends on the fact thatpolicy updates are done in parallel. The proof does not hold for sequential improvementvariations such as simple policy iteration. The reason is that, in comparing valueiteration and policy iteration, the proof uses the fact that applying a step of eitheralgorithm involves �nding the same greedy policy with respect to the value functionfrom the previous iteration. In value iteration, this greedy policy is adopted for a single



195step. In policy iteration, it is adopted as a stationary in�nite-horizon policy. But deepdown, it is the same policy and therefore the two algorithms have some common groundon which to be compared.It is possible to imagine using Puterman's approach to compare other pairs ofalgorithms. For instance, consider a version of policy iteration in which on the tthiteration, the action choice for state t mod jSj is ipped. It might be possible to comparethis type of \single ip" policy-iteration algorithm to a version of value iteration wherethe value for state t mod jSj is modi�ed on step t. Unlike simple policy iteration, it isimpossible for these algorithms to spend exponential time between considering changesto the action choice for any given state; it is likely that these algorithms will havesimilar convergence properties to true value and policy iteration.On the other hand, it is di�cult to imagine how this type of proof could be ap-plied to simple policy iteration. In simple policy iteration, the state updated dependson the current value function. A related version of value iteration might be one inwhich the state with the lowest index number whose Bellman residual is nonzero is up-dated. I could easily believe that such a value-iteration algorithm would have terribleconvergence properties and would therefore serve as a useless bound on simple policyiteration.In summary, Puterman's proof relating value iteration to policy iteration makesuse of the fact that both perform updates with respect to greedy policies. As a result,only parallel improvement policy iteration is covered by this theorem. Variations ofpolicy iteration can be discussed, but only as they relate to analogous variations ofvalue iteration.B.2 On the Quadratic Convergence of Policy IterationPuterman [126] proves a theorem concerning the rate of convergence of policy iteration.It shows that, under the appropriate conditions, policy iteration converges at a ratethat is quadratic (i.e., the error is squared on each iteration). The linear convergence ofpolicy iteration [126] can be used to show that policy iteration runs in pseudopolynomialtime (see Section 2.4.3). A proof of quadratic convergence would have even moreimportant implications to the complexity analysis of policy iteration, so it is worthunderstanding what the theorem implies in this case. I will argue that Puterman'stheorem applied to general �nite state/action mdps leads to a vacuous conclusion.



196Here, P� is the transition probability matrix associated with policy �.Theorem B.2 Suppose Vt is the tth value function generated by policy iteration, andthat �t is a greedy policy with respect to Vt, and there exists a K; 0 < K <1 for whichkP�t � P��k � KkVt � V �k (B.1)for t = 1; 2; : : :. Then kVt+1 � V �k � K �1� � kVt � V �k2: (B.2)Proof: See Puterman [126], Theorem 6.4.8. �I begin by considering the conditions of the theorem, particularly Inequality B.1.First of all, as there may be more than one optimal policy, it is not necessarily thecase that kP�t � P��k goes to zero as n increases. However, the theorem gives us theexibility to choose �t as any policy that is greedy with respect to Vt, so we choose �tto be as similar as possible to ��.What more can we say about the convergence of the transition matrices in Inequal-ity B.1? Convergence of Vt to V � takes place in a �nite number of iterations, whichwe call t�. For t � t�, we have equality in Inequality B.1 for all K, since both sidesare equal to zero. For t < t� in deterministic mdps, all the entries in the transitionmatrices for policies �t and �� are zeros and ones and the two matrices di�er in atleast one component. Therefore, for deterministic mdps, kP�t � P�� jj = 1 for t < t�and 0 afterwards. Because deterministic mdps are a subset of the mdps to which thistheorem should apply, it is important to see how the theorem applies to this case.How do we choose K so that Inequality B.1 holds for all t � 1? I argued that theleft-hand side of Inequality B.1 goes to zero in one discrete jump at t�. In contrast, weknow that kVt�V �k goes to zero in a series of steps. Tseng [162] argues that when therewards and transition probabilities of an mdp are all rational numbers, and Vt is thevalue function for some policy, then there is a value � > 0 such that kVt�V �k is eitherzero or greater than or equal to �. That is, any pair of value functions derived frompolicies that are closer than � to one another are, in fact, exactly equal. This resultprovides a range of values for K that makes Inequality B.1 hold: K � 1=�. This worksbecause the smallest possible value of kVt � V �k for t < t� is �, so KkVt � V �k � 1,



197as required. In addition, any smaller value for K would not work, because � representsthe closest that the value functions for two policies can be without being equal.I showed, at least at an abstract level, a way of satisfying Inequality B.1 by settingK appropriately, and gave an argument that smaller values of K will not su�ce. The-orem B.2 relates the distance between the (t+ 1)-step value function and the optimalvalue function to the distance between the t-step value function and the optimal valuefunction. For Inequality B.2 to be useful in proving the convergence rate of policy itera-tion, it must be that successive value functions are getting closer to optimal. Therefore,we need kVt+1 � V �k < kVt � V �k, orkVt � V �k > K �1� � kVt � V �k2 (B.3)for t < t�. Using the facts that kVt � V �k � �, and K = 1=�, Inequality B.3 impliesthat � < 1=2. Or, to put it another way, when the discount factor is one half ormore, the convergence bound given by Theorem B.2 allows the distance between valuefunctions and the optimal value function to grow over successive iterations. This impliesthat Theorem B.2 is mute on the convergence rate of policy iteration unless � < 1=2.Section 2.4.3 shows that policy iteration, when the discount factor is bounded awayfrom one, runs in polynomial time, so it appears that Theorem B.2 contributes littleto the analysis.Theorems related to Theorem B.2 are presented by Puterman and Brumelle [124,125] in a more abstract setting that might make it possible to prove superlinear con-vergence of policy iteration, given some additional analysis.B.3 Deterministic mdps as Closed SemiringsIn this section, I show how to de�ne deterministic mdps as closed semirings. As aconsequence, deterministic mdps can be solved in O(jSjjAj+ jSj3) time.Let V = R[ f�1;+1g and L = N [ f�1; 0;+1g. De�ne S= V� L. Anelement of Sis a summary of the discounted �nite-horizon value of a path, where the�rst component gives the value and the second component gives the length. Note thatL � V. De�ne �1+ v = �1 for all v 2 Vand +1 + v = +1 for all v 2 V� f�1g.Otherwise, v1+ v2 is de�ned as normal addition. For discount factor 0 < � < 1, de�ne��1 = +1, �0 = 1, �+1 = 0, and otherwise �` is de�ned as normal exponentiation



198for ` 2 L. Finally, de�ne (+1)(�1) = �1, (+1)0 = 0, (+1)v = +1 (for v 2V� f�1; 0g), and otherwise v1v2 is de�ned as normal multiplication.De�ne operator � as follows. Let (v1; `1) 2 Sand (v2; `2) 2 S. Then(v1; `1)� (v2; `2) � 8>>>>><>>>>>: (v1; `1); if v1 > v2;(v2; `2); if v1 < v2;(v1; `1); if v1 = v2 and `1 > `2,(v2; `2); otherwise.Thus, � acts as a lexicographic maximum operator over path values with ties broken inan arbitrary but consistent way. In the language of closed semirings, it is the summaryoperator .De�ne operator � as (v1; `1)�(v2; `2) � (v1+�`1v2; `1+`2). The � operator can beinterpreted as a concatenation operator for a pair of paths. In the language of closedsemirings, it is the extension operator .De�ne �0 = (�1;�1) and �1 = (0; 0). Then �0 acts as a sort of path sink and �1 asthe empty path. Finally, de�ne(v; `)? = �1� (v; `)� ((v; `)� (v; `))� ((v; `)� (v; `)� (v; `))� : : := (0; 0) if v � 0 and (v�`=(1� �);+1) otherwise.Here the star is being used as an operator, not a notational symbol as in V �. Itrepresents the maximum value of cycling around a path zero or more times.Now, for (S;�;�; �0; �1) to be a closed semiring, a collection of properties must besatis�ed.1. (S;�; �0) is a monoid.� Sis closed under �. This is trivial since the result of s1� s2 is always eithers1 or s2.� � is associative. This follows fairly easily from the de�nition because thelexicographic ordering is total and therefore independent of the order inwhich elements are combined.� �0 is an identity for �. Since both components of �0 are �1, �0�s = s��0 = sfor all s 2 S.2. (S;�; �1) is a monoid.



199� S is closed under �. This follows from the fact that L and V are closedunder addition, V is closed under multiplication, and �` 2 V for ` 2 L.� � is associative. This is easily veri�ed algebraically.� �1 is an identity for �. This is easy to see given that �0 = 1 and v � 0 = 0.3. �0 is an annihilator: (v1; `1) � (�1;�1) = (v1 + �`1 � 1; `1 � 1) = �0 and(�1;�1)� (v1; `1) = (�1 + ��1v1;�1+ `1) = �0.4. � is commutative. This follows from the commutativity of lexicographic maxima.5. � is idempotent. Again, this follows from the idempotence of maxima.6. � distributes over �. First, s1 � (s2 � s3) = (s1 � s2) � (s1 � s3) because theleft-hand side is s1 concatenated to whichever path has greater value, s2 or s1;and the right-hand side is the path with greater value between s1 concatenatedto s2 or s1 concatenated to s3. Second, (s2 � s3)� s1 = (s2 � s1)� (s1 � s3) forsimilar reasons.7. If s1; s2; s3; : : : is a countable sequence of elements in Sthen the in�nite summarys1 � s2 � s3 � � � � is well de�ned and in S. This follows from the fact that VandL are closed under countable sequences of � operations. It is important that+1 2 V for this reason.8. Associativity, commutativity, and idempotence apply to in�nite summaries, thus,any in�nite summary can be rewritten as an in�nite summary in which each termof the summary is included just once and the order of evaluation is arbitrary.9. � distributes over in�nite summaries.As a result, every deterministic mdp is a closed semiring.



Appendix CSupplementary Information onGeneralized mdpsIn this appendix, I prove important properties of a collection of summary operators, thecontraction of dynamic-programming operators in the all-policies-proper case, the con-vergence of policy iteration, and the convergence of a doubly asynchronous stochasticprocess.C.1 Summary OperatorsIn this section, I prove several properties associated with functions that summarize setsof values. These summary operators are important for de�ning generalized Markovdecision processes, which involve summaries over the action set U and the set of nextstates N(x; u) for each state-action pair (x; u).Let I be a �nite set and h : I ! R. We de�ne a summary operator J over I to bea function that maps a real-valued function over I to a real number. The maximumoperator maxi2I h(i) and the minimum operator mini2I h(i) are important examples ofsummary operators.Let h be a real-valued function over I . We say a summary operator J is a non-expansion if it satis�es two properties:mini2I h(i) �Ki2I h(i) � maxi2I h(i); (C.1)200



201and �����Ki2I h(i)�Ki2I h0(i)����� � maxi2I jh(i)� h0(i)j: (C.2)I will show that the max and min summary operators are both non-expansions, afterproving a series of simpler results.Let h and h be real-valued functions over I . For i 2 I , let Ji be the summaryoperator Jii02I h(i0) = h(i).Theorem C.1 The summary operator Ji is a non-expansion.Proof: Condition C.1 requires that Jii02I h(i0) = h(i) lie between mini02I h(i0) andmaxi02I h(i0). This holds trivially.To see that Condition C.2 holds, note that jJii02I h(i0) �Jii02I h0(i0)j = jh(i) �h0(i)j � maxi02I jh(i0)� h0(i0)j: �I next examine a more complicated set of non-expansions. For real-valued functionh over I , let ordni2Ih(i) be the nth largest value of h(i) (1 � n � jI j). According tothis de�nition, ord1i2Ih(i) = maxi h(i) and ordjIji2Ih(i) = mini h(i). I will show that theordn summary operator is a non-expansion for all 1 � n � jI j. To do this, I show thatpairing the values of two functions in their sorted order minimizes the largest pairwisedi�erence between the functions.Lemma C.1 Let h1 and h2 be real-valued functions over I and i1; i2; i3; i4 2 I. Ifh1(i1) � h1(i2) and h2(i3) � h2(i4), thenmaxfjh1(i1)� h2(i3)j; jh1(i2)� h2(i4)jg� maxfjh1(i1)� h2(i4)j; jh1(i2)� h2(i3)jg:Proof: Two bounds can be proven separately:jh1(i1)� h2(i3)j = maxfh1(i1)� h2(i3); h2(i3)� h1(i1)g� maxfh1(i2)� h2(i3); h2(i4)� h1(i1)g� maxfjh1(i1)� h2(i4)j; jh1(i2)� h2(i3)jg;



202and jh1(i2)� h2(i4)j = maxfh1(i2)� h2(i4); h2(i4)� h1(i2)g� maxfh1(i2)� h2(i3); h2(i4)� h1(i1)g� maxfjh1(i1)� h2(i4)j; jh1(i2)� h2(i3)jg:Combining these two inequalities proves the lemma. �I use Lemma C.1 to create a bound involving the ordn summary operator.Lemma C.2 Let h1 and h2 be real-valued functions over I. Thenmaxn jordni2Ih1(i)� ordni2Ih2(i)j � maxi2I jh1(i)� h2(i)j:Proof: Both quantities in the inequality involve taking a maximum over di�erencesbetween matched pairs of values. This lemma states that, of all possible matchings,pairing values with the same position in a sorted list of values gives the smallest max-imum di�erence.To prove this, I argue that, from any matching that violates the sorted order we canproduce a matching that is \more sorted" without increasing the maximum di�erence(and perhaps decreasing it). The idea is that we can �nd a pair of pairs of values thatare matched out of order, and swap the matching for that pair. By Lemma C.1, theresulting matching has a maximum di�erence no larger than the previous matching.After generating pairings that are more and more sorted, we eventually reach the totallysorted matching. Since the initial matching was arbitrary, the lemma follows. �That ordn is a non-expansion follows easily from Lemma C.2.Theorem C.2 The ordn operator is a non-expansion for all 1 � n � jI j.Proof: Condition C.1 is satis�ed easily since it is always the case that ordni2Ih(i) = h(i)for some i 2 I .To verify Condition C.2, let h1 and h2 be real-valued functions over I . It followsfrom Lemma C.2 thatjordni2Ih1(i)� ordni2Ih2(i)j � maxn jordni2Ih1(i)� ordni2Ih2(i)j� maxi2I jh1(i)� h2(i)j:



203Since n was arbitrary, the theorem is proved. �Theorems C.1 and C.2 state that two very speci�c classes of summary operatorsare non-expansions. The next theorem makes it possible to create more complex non-expansions by blending non-expansions together.Theorem C.3 If J1 and J2 are non-expansions, then for any 0 � � � 1, the sum-mary operator Ki2I (1+2);�h(i) = �Ki2I 1h(i) + (1� �)Ki2I 2h(i)is a non-expansion.Proof: Once again, Condition C.1 is not di�cult to verify since the operators are beingcombined using a (convex) weighted average.Condition C.2 follows from�����Ki2I (1+2);�h(i)�Ki2I (1+2);�h0(i)�����= ������Ki2I 1h(i) + (1� �)Ki2I 2h(i)�  �Ki2I 1h0(i) + (1� �)Ki2I 2h0(i)!�����= ������  Ki2I 1h(i)�Ki2I 1h0(i)!+ (1� �) Ki2I 2h(i)�Ki2I 2h0(i)!������ � �����Ki2I 1h(i)�Ki2I 1h0(i)�����+ (1� �) �����Ki2I 2h(i)�Ki2I 2h0(i)������ �maxi2I jh(i)� h0(i)j+ (1� �)maxi2I jh(i)� h0(i)j = maxi2I jh(i)� h0(i)j:The proof is easily extended to weighted averages of more than two operators. �The previous theorem demonstrated one way of making non-expansions out of othernon-expansions by averaging. The next theorem shows a more sophisticated methodfor constructing non-expansions.If J1 is a summary operator over I1, and J2 is a summary operator over I2, wede�ne the composition of J1 and J2 to be a summary operator over I1 � I2,(K1 �K2)(i1;i2)2I1�I2h((i1; i2)) = Ki12I11 Ki22I22h((i1; i2)):Theorem C.4 Let J = J1 �J2 for non-expansions J1 over I1 and J2 over I2.Then J over I = I1 � I2 is a non-expansion.



204Proof: Let h and h0 be real-valued functions over I . For Condition C.1, we see thatK(i1;i2)2I h((i1; i2)) = �K1 �K2�(i1;i2)2I h((i1; i2))= Ki12I11 Ki22I22h((i1; i2))� maxi12I1 Ki22I22h((i1; i2))� maxi12I1maxi22I2 h((i1; i2))� max(i1;i2)2I h((i1; i2)):The argument that J(i1;i2)2I h((i1; i2)) � min(i1;i2)2I h((i1; i2)) is similar.For Condition C.2,������ K(i1;i2)2I h((i1; i2))� K(i1;i2)2I h0((i1; i2))������= ���(K1 �K2)(i1;i2)2Ih((i1; i2))� (K1 �K2)(i1;i2)2Ih0((i1; i2))���= ������Ki12I11 Ki22I22h((i1; i2))� Ki12I11 Ki22I22h0((i1; i2))������� maxi12I1 ������Ki22I22h((i1; i2))� Ki22I22h0((i1; i2))������� maxi12I1maxi22I2 jh((i1; i2))� h0((i1; i2))j = max(i1;i2)2I jh((i1; i2))� h0((i1; i2))j:This proves that J is a non-expansion. �As a non-trivial application of the preceding theorems, I will show that the minimaxsummary operator, used in Markov games, is a non-expansion. Let A1 and A2 be �nitesets. The minimax summary operator over A1 � A2 is de�ned asminimax(a1;a2)2A1�A2h((a1; a2)) = max�2�(A1) mina22A2 Xa12A1 �[a1]h((a1; a2)):Let � 2 �(A1) and let h1 be a real-valued function over A1. De�neKa12A1�h1(a1) = Xa12A1 �[a1]h1(a1);by Theorem C.3 and Theorem C.1, J� is a non-expansion. Let h be a real-valuedfunction over A1 � A2. By Theorem C.2, the minimum operator is a non-expansion.



205Rewriteminimax(a1;a2)2A1�A2h((a1; a2)) = max�2�(A1) �min �K��(a2;a1)2A2�A1 h((a1; a2));minimax is a non-expansion by Theorem C.4 and the compactness of the set �(A1) ofprobability distributions over A1.The class of non-expansions is quite broad. It is tempting to think that any operatorthat satis�es Condition C.1 will be a non-expansion. This is not the case.Lemma C.3 De�ne the boltzmann weighted average of h asBOLTZTi2Ih(i) =Xi2I h(i) eh(i)=TPi2I eh(i)=T :The operator BOLTZT is not a non-expansion.Proof: Let I = f1; 2g, T = 1, h(1) = 100, h(2) = 1, h0(1) = 1, and h0(2) = 0. ForBOLTZT to be a non-expansion, it must be the case that Conditions C.1 and C.2 hold.Although Condition C.1 holds,jBOLTZTi2Ih(i)� BOLTZTi2Ih0(i)j= �����Xi h(i) eh(i)=TPi eh(i)=T �Xi h0(i) eh0(i)=TPi eh0(i)=T ������ j(100+ 0)� (0:731+ 0)j = 99:269 > 99 = maxi2I jh(i)� h0(i)j;proving that the operator is not a non-expansion. �C.2 Contractions in the All-policies-proper CaseConsider a �nite-state generalized Markov decision process1 under the expected rewardcriterion satisfying the all-policies-proper condition. This condition states that onestate, call it x0, is a zero-reward absorbing state (T (x0; u; x0) = 1 and R(x0; u) = 0 forall u), and every other state has a positive probability of reaching x0 eventually, forany policy.In this section, we work through a novel proof that, under these conditions, thedynamic-programming operator H is a contraction mapping under some weighted max1Recall that generalized mdps are de�ned to have a �nite action set.



206norm, even if � = 1. Alternate proofs for the mdp case are given by Bertsekas andTsitsiklis [18], and Tseng [162].De�ne w(x0) = 0 and w(x) = maxu �1 +Px02N(x;u)T (x; u; x0)w(x0)�; that is, w(x)is the maximum expected steps to absorption from state x over all policies. This isthe Bellman equation for a simple all-policies-proper mdp, and is well de�ned [126].Because of the all-policies-proper condition and the de�nition of w, 0 � w(x) <1 forall x 2 X . De�ne �w = �maxx((w(x)� 1)=w(x)); it is strictly less than one becauseboth w(x) and jX j are �nite.Let V1 and V2 be value functions and Q1 and Q2 be Q functions withQ1(x; u) = R(x; u) + � Xx02N(x;u)T (x; u; x0)V1(x0);and Q2(x; u) = R(x; u) + � Xx02N(x;u)T (x; u; x0)V2(x0):The de�nitions of H , w and �w, along with the non-expansion properties of Nimply kHV1�HV2kw = maxx j[HV1](x)� [HV2](x)jw(x)= maxx j[NQ1](x)� [NQ2](x)jw(x)� maxx maxu jQ1(x; u)� Q2(x; u)jw(x)� maxx maxu � Xx02N(x;u)T (x; u; x0) jV1(x0)� V2(x0)jw(x)� maxx maxu � Xx02N(x;u)T (x; u; x0)w(x0)w(x) jV1(x0)� V2(x0)jw(x0)� maxx �maxu Xx02N(x;u)T (x; u; x0)w(x0)w(x) kV1 � V2kw� maxx �w(x)� 1w(x) kV1 � V2kw� �wkV1 � V2kw:This shows that H is a contraction mapping with respect to the weighting function wwith contraction coe�cient �w.Note that the weights w are can be determined by the solution of an mdp. Bythe reasoning in Theorem 2.1, each of the weights (and �w) can be written using a



207polynomial number of bits. This is important for arguing that value iteration for all-policies-proper mdps converges in pseudopolynomial time.Let Q1 and Q2 be Q functions. Using reasoning similar to the above,kKQ1 �KQ2kw= maxx maxu j[KQ1](x; u)� [KQ2](x; u)jw(x)= maxx maxu � Xx02N(x;u)T (x; u; x0) j[NQ1](x0)� [NQ2](x0)jw(x)� maxx maxu � Xx02N(x;u)T (x; u; x0)maxu0 jQ1(x0; u0)�Q2(x0; u0)jw(x)� maxx �maxu Xx02N(x;u)T (x; u; x0)w(x0)w(x) maxu0 jQ1(x0; u0)� Q2(x0; u0)jw(x0)� maxx �maxu Xx02N(x;u)T (x; u; x0)w(x0)w(x) maxx0 maxu0 jQ1(x0; u0)�Q2(x0; u0)jw(x0)� maxx �w(x)� 1w(x) kQ1 � Q2kw� �wkQ1 �Q2kw;demonstrating that the K operator on Q functions is also a contraction mapping withrespect to the w weighted max norm.It is interesting to ask whether this result holds true for di�erent de�nitions ofL, such as the minimization operator. In fact, the result does not hold for eitherminimization or maximization, unless the state space is entirely acyclic (no policy hasa positive probability path from a state to back itself).C.3 Monotonicity of Several OperatorsSection C.1 describes a collection of important non-expansion operators based on ele-ment selection, ordering, convex combinations, and composition. All of these operatorsobey an additional monotonicity property as well.Summary operator J is monotonic if, for all real-valued functions h and h0 over a�nite set I , h(i) � h0(i) for all i 2 I impliesKi2I h(i) �Ki2I h0(i):



208Theorem C.5 The following summary operators are monotonic: Ji for all i 2 I,ordn for all 1 � n � jI j, J(1+2);� for all 0 � � � 1 if J1 and J2 are monotonic, andJ1 �J2 if J1 and J2 are monotonic.Proof: The monotonicity ofJi, J(1+2);�, andJ1 �J2 follow immediately from theirde�nitions. The monotonicity of ordn can be proven by considering the e�ect of in-creasing h(i) to h0(i) for each i 2 I , one at a time. A simple case analysis shows thateach increase in h(i) cannot decrease the value of ordni2Ih(i). �C.4 Policy-Iteration Convergence ProofIn this section, I develop the necessary results to show that the generalized policy-iteration algorithm of Section 3.3.3 converges to the optimal value function. I will�rst prove several simple lemmas that illuminate the fundamental properties of valuefunctions in maximizing generalized mdps.First, for maximizing generalized mdps, a single step of value iteration on a valuefunction associated with a mapping !, results in a value function that is no smaller.Lemma C.4 For all ! : X ! R, HV ! � V !.Proof: From Equation 3.4, the constraints on N, and the de�nition of V !,[HV !](x) = Ou (x) R(x; u) + �Mx0 (x;u)V !(x0)!= max�2ROu �;(x) R(x; u) + �Mx0 (x;u)V !(x0)!� Ou !(x);(x) R(x; u) + �Mx0 (x;u)V !(x0)! = V !(x): �Let H! be the dynamic-programming operator associated with the mapping ![H!V ](x) =Ou !(x);(x) R(x; u) + �Mx0 (x;u)V (x0)! :The next lemma says that the monontonicy properties of N and L carry over to Hand H!.



209Lemma C.5 The mappings H and H! are monotonic for maximizing generalizedmdps.Proof: For value functions V and V 0, we want to show that if V � V 0, then HV � HV 0and H!V � H!V 0. This follows easily from the de�nitions and the monotonicity ofthe operators involved. �Theorem 3.5 states that the optimal value function dominates the value functionsfor all !. I will now prove this using Lemmas C.4 and C.5.From Lemma C.4, we have that V ! � HV ! for all !. Combining this with the resultof Lemma C.5, we haveHV ! � H(HV !). By induction and transitivity, V ! � (H)kV !for all integers k � 0 where (H)k corresponds to the application of H repeated k times.Because limk!1(H)kV ! = V �, it is not di�cult to show that V ! � V �, provingTheorem 3.5.The �nal result we need relates the convergence of policy iteration to that of valueiteration. Let Ut be the iterates of value iteration and Vt be the iterates of policyiteration, starting from the same initial value function. Let !t : X ! R be thesequence of mappings such that Vt = V !t.Lemma 3.6 states that, for all t and x 2 X , Ut(x) � Vt(x) � V �(x). We proceedby induction. Clearly U0(x) � V0(x), because they are de�ned to be equal. Now,assume that Ut(x) � Vt(x) � V �(x). By Lemma C.5, HUt(x) � HVt(x). By de�nition,HUt(x) = Ut+1(x), and by an argument similar to the proof of Theorem 3.5,HVt = H!t+1Vt � (H!t+1)kVt � V !t+1 = Vt+1:Therefore, Ut+1(x) � Vt+1(x). By Theorem 3.5, Vt+1(x) = V !t+1 � V �(x), completingthe proof of Lemma 3.6.Lemma 3.6 and Lemma 3.4 together imply the convergence of policy iteration.Lemma 3.6 also provides a bound on the convergence rate of the algorithm; it is noslower than value iteration, but perhaps faster.C.5 A Stochastic-Convergence ProofIn this section, I prove Theorem 3.7, which is useful for proving the convergence ofreinforcement-learning algorithms in generalized mdps.The proof relies critically on the following lemma concerning the convergence ofstochastic processes.



210Lemma C.6 Let Z be an arbitrary set and consider the sequencext+1(z) = gt(z)xt(z) + ft(z)kxt(z) + �t(z)k;where z 2 Z and �t(z) � 0 converges to zero. Assume that for all k,limn!1�nt=kgt(z) = 0uniformly in z with probability 1 and ft(z) � �(1�gt(z)) with probability 1. Then xt(z)converges to 0 with probability 1.Proof: The proof is in a paper by Szepesv�ari and Littman [158]. A similar claim isproven by Jaakkola, Jordan and Singh [69]. �Let H be a contraction mapping with respect to a weighted max norm with �xedpoint V �, and let Ht approximate H at V �. Let V0 be an arbitrary value function, andde�ne Vt+1 = Ht(Vt; Vt). If there exist functions 0 � Ft(x) � 1 and 0 � Gt(x) � 1satisfying the conditions below with probability one, then Vt converges uniformly toV � with probability 1:1. for all value functions U1 and U2 and all x 2 X ,j(Ht(U1; V �))(x)� (Ht(U2; V �))(x)j � Gt(x)kU1 � U2k;2. for all value functions U and V , and all x 2 X ,j(Ht(U; V �))(x)� (Ht(U; V ))(x)j � Ft(x)kV � � V k;3. for all k > 0, �nt=kGt(x) converges to zero uniformly in x as n increases; and,4. there exists 0 � � < 1 such that for all x 2 X and large enough t,Ft(x) � �(1� Gt(x)):To prove this, we will de�ne a sequence of auxillary functions, Ut, that is guaranteedto converge, and relate the convergence of Vt to the convergence of Ut. Let U0 be anarbitrary value function and let Ut+1 = Ht(Ut; V �). Since Ht approximates H , Utconverges to HV � = V � with probability 1 uniformly over X . We will show that



211kUt � Vtk converges to zero with probability 1, which implies that Vt converges to V �.Let �t(x) = jUt(x)� Vt(x)jand let �t(x) = jUt(x)� V �(x)j:We know that �t(x) converges to zero because Ut converges to V �.By the triangle inequality and the constraints on Ht, we have�t+1(x) = jHt(Ut; V �)(x)�Ht(Vt; Vt)(x)j� jHt(Ut; V �)(x)�Ht(Vt; V �)(x)j+ jHt(Vt; V �)(x)�Ht(Vt; Vt)(x)j� Gt(x)kUt � Vtk+ Ft(x)kV � � Vtk� Gt(x)�t(x) + Ft(x)kV � � Vtk� Gt(x)�t(x) + Ft(x)(kV � � Utk+ kUt � Vtk)� Gt(x)�t(x) + Ft(x)(k�t(x)k+�t(x))Inequality C.3 is now in the correct form for Lemma C.6, which tells us that �t(x)goes to zero with probability 1. This proves Theorem 3.7.



Appendix DSupplementary Information onAlternating Markov GamesIn this appendix, I prove that Markov games in which players switch turns after everyaction and Markov games in which players switch turns according to the current stateare equivalent in complexity.D.1 Equivalence to Strictly Alternating Markov GamesThere are two models that might properly be called \alternating Markov games"; inone, control of the play strictly alternates between the two players, in the other, controlremains with a player for an unspeci�ed number of actions before switching to the otherplayer. The two models are equivalent in the sense that a polynomial-time algorithmfor one could be used to solve instances of the other model in polynomial time.A strictly alternating Markov game (SAMG) is de�ned by the tuplehS;A1;A2; T; R; �iand play strictly alternates between the two players. An alternating Markov game(AMG) is de�ned by hS1;S2;A1;A2; T; R; �i, and control belongs to player 1 if thecurrent state is in S1, and it belongs to player 2 otherwise. Given a SAMG, we cancreate an equivalent AMG by duplicating the state space into sets S1 and S2 so thatthe state encodes the turn of the player, and rede�ning transitions so they alternatebetween the two copies of the states. 212



213Given an AMG, we can also create an equivalent SAMG. The di�culty is thatthe �rst player takes an unspeci�ed number of actions in the AMG before control isturned over to the second player. How can we make control alternate on every turn?We can do this by introducing a number of \dummy" states where one or the otherplayer nominally has control, but from which the state transition is actually completelydetermined.In more detail, consider an AMG G = hS1;S2;A1;A2; T; R; �i. We will de�ne aSAMG G 0 = hS;A1;A2; T 0; R0; �0i such that the solution to G 0 can be used to quickly�nd the solution to G. The set S consists of all the states in S1 and S2 as well as thedummy states. For every state s1 2 S1 and action a1 2 A1 we introduce a new states2 into S and de�ne the transition function T 0 so that action a1 from state s1 resultsin a deterministic transition to state s2, and from s2, any action a2 2 A2 results in thesame state transitions de�ned by T for state-action pair (s1; a1). In this way, state s2\intercepts" the transition, resulting in a (dummy) action for player 2 after player 1'saction. This ensures that every action for player 1 is immediately followed by an actionfor player 2.We need to also introduce dummy states that intercept the incoming transitions tothe states in S2. This requires one dummy state added to S for each state in S2. Oncethis transformation is complete, each transition in G has been replaced by a pair oftransitions in G 0: a transition for a S1 state followed by a dummy move for player 2, ora dummy move for player 1 followed by a transition for an S2 state. The transformationhas the critical property that the probability of reaching some state s in t steps in Gunder some policy is exactly equal to the probability of reaching s in 2t�1 steps underthe analogous policy in G 0.It remains to be shown how to modify R and � to ensure that the optimal value ofstate s in G is equal to its optimal value in G 0. To a �rst approximation, this is quiteeasy. Because one step in G is equivalent to two steps in G 0, we need the discount factorto decay half as fast: �0 = p�. We then modify the rewards so that all the dummystates have only zero-reward transitions, the states in S1 have the same rewards in G 0that they have in G, and the states in S2 have their rewards increased by a factor of1=�0. It is not hard to show that the optimal value of a state s 2 S1 in G is preciselyequal to the optimal value of the analogous state in G 0 and that the optimal value ofa state s 2 S2 in G is precisely equal to the optimal value of the analogous state in G 0multiplied by �0.



214A major di�culty remains. Even if G is speci�ed using only rational numbers of Bor fewer bits, the discount factor �0 for G 0 may be irrational. I now argue that there isa rational value for �0 that is close enough to p� to ensure an optimal policy for G 0 isoptimal for G and yet can be speci�ed with a number of bits polynomial in the size ofG and B.The argument has three parts. First, there is a value � > 0 such that an �-optimalvalue function yields an optimal policy. This follows from the argument in the proof ofLemma 2.1.Second, there is a value � > 0 such that using a discount factor of � + � in placeof � when evaluating a policy results in a value function that is no more than � awayfrom the true value function for that policy. Finally, the �rst two parts together implythat we can use a polynomial-bit approximation of p� in the construction describedearlier and still be able to identify optimal policies.We choose � � �(1��)2=(M+(1��)�). Let V � be the value function for some policy� under discount factor �, and let V �0 be the value function for � under discount factor�+�. Let s� be the state for which jV �0(s�)�V �(s�)j is maximized. Once again, letMbe the magnitude of the largest absolute immediate reward. Substituting de�nitionsreveals jV �0(s�)� V �(s�)j= j�Xs0 T (s; �(s); s0)(V �0(s0)� V �(s0)) + �Xs0 T (s; �(s); s0)V �0(s0)j� �Xs0 T (s; �(s); s0)jV �0(s0)� V �(s0)j+ �Xs0 T (s; �(s); s0)jV �0(s0)j� �jV �0(s�)� V �(s�)j+ �M=(1� (� + �))Solving for jV �0(s�)� V �(s�)j and noting that1� � � � = 1� � � �(1� �)2=(M + (1� �)�)= ((M + (1� �)�)(1� �)� �(1� �)2)=(M + (1� �)�)= (M(1� �))=(M + (1� �)�)



215lets us continue withjV �0(s�)� V �(s�)j � �M=(1� (� + �))=(1� �)� �M(1� �)(1� (� + �))� �(1� �)2M(1� �)(1� (� + �))(M + (1� �)�)� �(1� �)2M(1� �)(1� (� + �))(M + (1� �)�)� �(1� �)2M(M + (1� �)�)(1� �)(M + (1� �)�)(M(1� �))� �;as desired.From the expressions for � and �, it is not hard to show that the number of bits ofaccuracy needed in the computation of p� is polynomial in the necessary parameters.Therefore, an AMG can be turned into an equivalent SAMG with only a polynomialincrease in size. If the resulting SAMG can be solved in polynomial time, so can theoriginal AMG.



Appendix ESupplementary Information onMarkov GamesIn this appendix, I present a new result concerning the optimal value function of adeterministic Markov game.E.1 A Deterministic Markov Game with an IrrationalValue FunctionThe existence of deterministic stationary optimal policies for mdps and alternatingMarkov games makes it easy to show that these models can be solved in �nite time,simply by enumerating the possible policies and evaluating each one by solving a systemof linear equations.Markov games are di�erent, in that optimal policies are sometimes stochastic. Ofcourse, if the probabilities needed to express an optimal policy can be written as rationalnumbers (consider the \Rock, Paper, Scissors" example from Chapter 5), it still mightbe possible to identify an optimal policy in �nite time. This is not generally the casefor Markov games, however; even if the transitions, rewards, and discount factor areall represented by rational numbers, the optimal value of the game and the optimalstochastic policy can both require irrational numbers to express.This fact was mentioned in Shapley's original paper [143], and a speci�c exampleappears in Vrieze's survey article [170]. Vrieze's example is a stochastic Markov game,and, because deterministic models are often easier to solve, there is reason to believe216
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a1 a3,( )Figure E.1: A deterministic Markov game with rational rewards and � = 3=4 for whichthe optimal value function is irrational.�1(s0; a0) = 1=2 (�5 +p41) � :702�1(s0; a1) = 1=2 (7� p41) � :298�2(s0; a2) = 1=12 (�1 +p41) � :450�2(s0; a3) = 1=12 (13�p41) � :550Table E.1: The optimal pair of stochastic policies for a deterministic Markov game.that the deterministic case might be simpler. This does not appear to be the case forMarkov games|deterministic Markov games can have irrational value functions evenif all rewards and the discount factor are speci�ed using rational numbers.Consider the three-state deterministic Markov game illustrated in Figure E.1. Inthis game, state s2 is a zero-reward absorbing state, state s1 is a zero-reward state withdeterministic transitions to state s0, and state s0 results in a transition to s0, s1, ors2, depending on the actions chosen by the two players. From state s0, player 1 mustchoose between actions a0 and a1 and player 2 must choose between actions a2 and a3;in the �gure, transitions from state s0 are labeled by pairs of actions.The value of state s0 in this game is V �(s0) = �3 +p31 � 3:403, which was foundby solving a quadratic equation. This can be veri�ed by evaluating the stochasticpolicies in Table E.1. These policies are optimal because, if the agent adopts �1, itguarantees itself a value of V �(s0) regardless of the opponent's policy. Similarly, if theopponent adopts �2, it guarantees itself V �(s0) regardless of the opponent's policy.The fact that optimal value functions can be irrational does not directly rule out thepossibility that an exact algorithm exists; for example, if the values are all solutions toquadratic equations, then perhaps the equations themselves can be used to representthe values. However, no radix-type representation for the numbers will result in anexact algorithm.



Appendix FSupplementary Results onpomdpsIn this appendix, I show that solving deterministic pomdps is PSPACE-hard, andsolving stochastic pomdps is EXPTIME-hard. I also describe an example, due toChrisman, of a di�cult pomdp for Q-learning.F.1 Hardness of Deterministic pomdpsIn this section, I prove that the problem of determining whether a deterministic pomdphas an in�nite-horizon policy with zero reward is PSPACE-hard. The proof does notmake use of the observation set, therefore the hardness result applies to unobservablepomdps as well.The proof relates deterministic unobservable pomdps to �nite-state automata. A�nite-state automaton is much like a deterministic mdp with a �nite set of states Sand actions A, a next-state function N , and an initial state s0. A subset F of thestates of the automaton are called accepting states . A �nite-state automaton acceptsstring ` 2 A? (the star superscript denotes the Kleene star) if the state s reached afterexecuting the string of actions ` starting from state s0 is an accepting state (i.e., it isin F ).Lemma F.1 Given a �nite-state automaton F = hS;A; N; s0; F i, there is a determin-istic, unobservable, boolean-reward pomdp problemM = hS[facceptg;A[facceptg; N 0;R; x0i such that F accepts string ` 2 A? if and only if executing the action sequence `218



219followed by \accept" results in zero reward and a transition to a zero-reward absorbingstate in M.Proof: CreateM by making a copy of F so that every transition in F is a zero-rewardtransition in M. De�ne the state accept to be a zero-reward absorbing state. For everystate s 2 S and action a 2 A, de�ne N 0(s; a) = N(s; a). For every accepting statesf 2 F , de�ne N 0(sf ; accept) = accept and R(sf ; accept) = 0, and for every other states in S, make N 0(s; accept) = s and R(s; accept) = �1. De�ne x0[s0] = 1 and x0[s0] = 0for all s0 6= s.The resulting pomdp satis�es the requirements of the lemma. �Given a �nite collection of �nite-state automataF1; : : : ;Fk, all with the same actionset A but disjoint state sets S1; : : :Sk, we say that string ` 2 A? is in the intersectionof the sets of strings accepted by the �nite-state automata if ` is accepted by all kautomata.We can create a deterministic, unobservable, boolean-reward pomdp problem thatis equivalent to a collection of �nite-state automata.Lemma F.2 Given a collection of k �nite-state automata, Fi = hSi;A; Ni; si;0; Fiifor each 1 � i � k, there is a deterministic, unobservable, boolean-reward pomdpproblem M = hSi Si[facceptg;A[facceptg; N 0; R; x0i such that string ` 2 A? is in theintersection of the strings accepted by the �nite-state automata if and only if executingthe action sequence ` followed by \accept" results in zero reward and a transition to azero-reward absorbing state in M.Proof: The rewards R and the next state function N 0 are de�ned analogously totheir de�nitions in Lemma F.1. We de�ne x0[si;0] = 1=k for each 1 � i � k and zerootherwise. Thus, in the initial state, there is a probability of 1=k of being in each initialstate of the collection of �nite-state automata.If, upon presentation of an action sequence `, �nite-state automaton i is in state sifor each i, then, in the information state x for M, x[si] = 1=k for each i. As a result,the pomdp simulates all k of the �nite-state automata concurrently. An accept actionhas zero reward if only if all k machines are in accepting states. �The �nite-state-automata-intersection problem is de�ned by a collection of �nite-state automata. The problem is to decide whether there is any sequence ` 2 A? in theintersection of the sets of strings accepted by the �nite-state automata; we call such



220a string ` an accepting string. The pomdp construction from Lemma F.2 cannot beused directly to determine the existence of an accepting string, because any policy thatnever issues the accept action will have the same value as one that issues accept after anaccepting string. To make sure that policies are penalized for not issuing an acceptingstring when one exists, we can make use of a standard result that states that if thereis an accepting string, then there must be an accepting string no more than Qi jSijsymbols long. By adding a counter to the pomdp construction from Lemma F.2, wecan use it solve the �nite-state-automata-intersection problem.Lemma F.3 Given a collection of k �nite-state automata Fi = hSi;A; Ni; si;0; Fii, foreach 1 � i � k, there is a deterministic, unobservable, boolean-reward pomdp problemM = hSi[facceptg[fsi;j j1 � i � k; 1 � j � jSijg[finc; actg;A[facceptg[fincij1 �i � kg; N 0; R; x0i such that the intersection of the strings accepted by the �nite-stateautomata is non-empty if and only if there is a zero-reward policy for M.Proof: The de�nitions from Lemma F.2 all apply here. One slight di�erence is thatthe initial state has x0[si;0] = 1=(2k + 1) instead of 1=k. The \new" states si;j , inc,and act, and actions inci will be used to implement a set of counters that will issue anegative reward if no accept action is chosen over the course of a sequence of Qi jSijactions.The initial probability on the inc and act states is x0[inc] = 0 and x0[act] = 1=(2k+1). The inci actions result in a transition from inc to act, and the other actions a 2 Aresult in a transition from act to inc. If any action a 2 A is selected from the inc state,there is a reward of �1. This forces the optimal policy to alternate between actions inA and inci actions.As before, the actions in A correspond to transitions in all the �nite-state automatasimultaneously. The inci actions are used to implement a counter using the si;j states.In the initial distribution, x0[si;1] = 1=(2k + 1) for all i, and x0[si;j ] = 0 for all i andj � 2. This represents the reset state for the counters.There is one counter for each �nite-state automaton in the collection; counter 1 isthe low-order counter, and counter k is the high-order counter. Action inci incrementscounter i, resets all the lower order counters, and does not change any of the higher



221order counters, N(si0;j ; inci) = 8>>><>>>: si0 ;0; i0 < i;si;j+1; j � jSij � 1; i0 = i;si0 ;j ; i0 > i:The reward for all these transitions is zero. Counter i is full when the probability ofbeing in state si;jSij is non-zero. Incrementing a full counter results in negative reward,R(si;jSij; inci) = �1.To maximize the number of inci actions before a negative reward, a policy wouldissue inc1 until the low-order counter was full, then inc2 to increment the second counterand reset the �rst counter, then inc1 once again. After Qi jSij increments of this kind,all k counters will be full. Any inci action at this point results in a negative reward.If there is an accepting string for all the automata, a zero-reward policy wouldalternate between selecting actions corresponding to the shortest possible acceptingstring (any string shorter than Qi jSij would do), and the appropriate inci actions.Then, once the automata are all in their accepting states, issuing the accept actionensures the policy a total reward of zero.If there is no accepting string, it is impossible to avoid a negative reward; if theaccept action is selected, this will result in a negative reward, and if more than 2Qi jSijsteps elapse without issuing accept, a negative reward will be received.Thus, the resulting pomdp problem has a zero-reward policy if and only if thereis a string in the intersection of the sets of strings accepted by the given �nite-stateautomata. �Theorem F.1 The deterministic, unobservable, boolean-reward pomdp problem is P-SPACE-hard.Proof: This theorem follows easily from the reduction in Lemma F.3 and the PSPACE-completeness of the �nite-state-automata-intersection problem [55]. �F.2 Hardness of Stochastic pomdpsIn this section, I show that solving in�nite-horizon boolean-reward pomdps with sto-chastic transitions and observations is EXPTIME-hard by showing that solving suchpomdps yields a solution to a particular type of game on boolean formulas.



222The game was devised by Stockmeyer and Chandra [151] in their paper linkingcombinatorial two-player games to the class EXPTIME. The speci�c EXPTIME-hardgame I use in this section is referred to as G4, or \Peek," in their paper. It is aparticular kind of deterministic alternating Markov game played by two players takingturns changing values of boolean variables, in an attempt to make a given formulaevaluate to \true."The game is de�ned by a choice of which player moves �rst, disjoint sets X andY of variables, an initial assignment for these variables, and a disjunctive-normal-formboolean formula de�ned over the variables with 13 literals (variables or negations ofvariables) per term. Such a formula is called a \13-DNF" formula. The two playerstake turns changing the value of at most one of the variables in the formula; player 1can only change the value of variables in X , and player 2 can only change the value ofvariables in Y . The game is over when the 13-DNF formula evaluates to true with thewinner being the player whose action caused this to happen. The decision problem iswhether there is a winning strategy for player 2 from the initial assignment.I will show that every game of this form has an equivalent boolean-reward pomdpsuch that player 2 has a winning strategy in the game if and only if the optimal policyin the pomdp from a given initial state has negative expected reward. I use the setof states of the pomdp to represent the variable assignments and actions in the game,where the states with non-zero probability in the pomdp encode the state of the game.In the pomdp, the agent plays the role of player 1. Of course, in a pomdp thereis no second player; however, we can use the stochastic transitions to represent theactions of the second player. Because we judge the optimal policy by whether or notit achieves zero reward, any probability of encountering a negative reward amountsto certain failure. This makes it possible to assume that the worst possible transitionoccurs each time there is a choice; stochastic transitions are equivalent to worst-casetransitions.A game instance is a tuple G = h�;X; Y;F; �i where � 2 f1; 2g is the �rst player tomove, X is the set of variables that player 1 can change, Y is the set of variables thatplayer 2 can change, F is the 13-DNF formula for deciding termination represented asa set of terms each of which is a set of 13 literals, and � : X [ Y ! ftrue; falseg is aninitial assignment of the variables. Given G, we de�ne the equivalent boolean-rewardpomdp problem M = hS;A; T; R;Z ;O; S0i as described below.The set S of states consists of the literals, X [ f�xjx 2 Xg [ Y [ f�yjy 2 Y g (the



223\literal-related" states); the stateX ; states for each possible action of player 2, fpassg[ftog(y)jy 2 Y g [ ftogwin(y; t)jy 2 Y; t 2 Fg (the \player-2-action" states); and states\start" and \done." Only \start" is in the set of non-zero probability initial states, S0.The set A of actions consists of an action \start" for starting the game; actions fortoggling the boolean value of each of the variables, ftog(x)jx 2 Xg[ftog(y)jy 2 Y g; anaction pass for passing; actions for simultaneously ipping a variable and declaring a winfor player 1 by satisfying a particular term in the formula F , ftogwin(x; t)jx 2 X; t 2 Fg;and actions for challenging a win declared by player 2, fchallenge(y; t; l)jy 2 Y; t 2 F; l 2Lg, where L is the set of literals.It is via the observations that player 2's choices of actions are realized. The set Zof observations consists of an element for each of player 2's actions, pass [ ftog(y)jy 2Y g [ ftogwin(y; t)jy 2 Y; t 2 Fg.Roughly, here is how the states of the pomdp represent the state of the game. Theinformation state of the pomdp is captured by the set of states which have non-zeroprobability. An assignment to the variables of the formula is represented by non-zeroprobabilities on the literal-related states; in particular, if a variable v is true, statev has non-zero probability while state �v has zero probability; if a variable v is false,state v has zero probability while state �v has non-zero probability. When it is player1's turn, state X has non-zero probability and the player-2-action states have zeroprobability. When it is player 2's turn, exactly one of the player-2-action states hasnon-zero probability. When the game is over, state \done" has non-zero probabilityand all others zero, and when the game starts, state \start" has non-zero probabilityand all others zero.Initially, the probability of each of the states is 0, except for the \start" state, whichhas probability 1. The \start" action causes a stochastic transition that results in theliteral-related states representing the initial assignment �, as well as a transition toeither X or all the player-2-action states. The start action results in negative rewardfrom all other states, meaning that it will only be chosen as the �rst action. Figure F.1depicts the pomdp state space, and the transitions, rewards, and observations for the\start" action.Player 1 can take three types of moves, the simplest of which is to toggle a singleX variable. The tog(x) action causes the probability in states x and �x to swap. Inaddition, a stochastic transition is made from state X to the player-2-action states;each of these states has a unique observation associated with it, and therefore only one



224will have non-zero probability after an observation is made. From the literal-relatedstates, any of the player-2-action observations can be made; as a result, they havezero probability after a transition if and only if they had zero probability before thetransition. To prevent player 1 from choosing out of turn, negative rewards are issuedfor a tog(x) action from all of the player-2-action states. Figure F.2 depicts the rewards,transitions, and observations associated with the tog(x) actions. The second type ofmove, pass, is implemented similarly, except that it may also be issued when it is player2's turn.In the third type of move, player 1 can simultaneously toggle a variable and declarea win. Recall that player 1 wins if the 13-DNF formula is true after that player's move.For a 13-DNF formula to be true, at least one of the terms of the formula must be trueand all 13 of the literals in that term must be true. We de�ne action togwin(x; t) totoggle the value of variable x 2 X and declare that term t of the formula is true. Givenany togwin(x; t) action, all states make a transition to \done" (the game is over). Onceagain, precautions are taken to ensure that player 1 moves in turn, however, additionalconstraints force player 1 to take a togwin(x; t) action only when it results in a win.This is done by placing a negative reward on every state associated with a literal thatappears negated in term t (except for x which has a negative reward directly, becauseits toggled value is considered in making the decision as to whether or not the term issatis�ed), and thus the action has zero reward if and only if all the literals in term tare true.Since player 2 is not explicitly represented in the pomdp, we must force the agent(player 1) to make player 2's moves on its behalf. To do this, we introduce tog(y)and challenge(y; t; l) actions for each y 2 Y , t 2 F , and literal l. Once again, we usenegative rewards to ensure that the agent takes a player-2 action when it is player 2'sturn. Player 2's choice of action is represented by the single player-2-action state thathas non-zero probability. For action tog(y), there are negative rewards out of state Xand the other player-2-action states; this makes tog(y) the only action choice possiblewhen state tog(y) has non-zero probability.The challenge(y; t; l) actions are a bit di�erent. When state togwin(y; t) has non-zero probability, this means that player 2 claims that toggling the value of variabley results in a win for player 2 because term t becomes true. Player 1's response isto choose a literal in term t that proves that term t is not true. For each y, t, ltriple, challenge(y; t; l) results in a transition to \done" with a negative reward on the
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y1 t2,Figure F.3: Transitions for the challenge(y1; t2; �x2) action. All states with no outgoingtransition have negative-reward transitions. All observations are equal.transition from literal l; this means that if l is actually true, player 1 loses. It is inplayer 1's best interest to choose a literal that proves that term t is not satis�ed (ifsuch a literal exists). Figure F.3 depicts the rewards, transitions, and observationsassociated with the challenge(y; t; l) actions.Given this construction, there is a tight analogy between reachable con�gurationsof states in the pomdp and legal states of the game. In particular, if player 2 has awin, there is no policy that will prevent the agent from reaching a negative reward.Conversely, if player 1 has a win or a draw, then player 1 has a choice of actions thatresult in only zero rewards forever. Thus, a procedure for deciding whether a pomdp hasa zero-reward optimal policy can be used to decide the winner in the boolean-formulagame, after an easy transformation.Because the boolean-formula game is known to EXPTIME-hard, solving boolean-reward pomdps is EXPTIME-hard. It is known that P6=EXPTIME and that there areproblems in EXPTIME that truly take exponentially long to solve. Unlike the NP andPSPACE-hard problems described earlier, which are likely to be intractable, pomdpsare provably intractable.F.3 A Di�cult pomdp For Q-learningThis section briey describes an example pomdp, constructed by Chrisman, for whicha naive Q-learning algorithm learns the worst possible policy.The pomdp is illustrated in Figure F.4 and consists of 3 states, 3 actions, and asingle observation. The discount factor is 0:9 and state s1 is the start state. An optimalpolicy in this environment is to take action a1, and then to alternate between actions
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-1Figure F.4: A hard pomdp for Q-learning.a1 and a2. This policy has an immediate reward of �1 on the �rst step, then +1 onevery step thereafter.There are three deterministic memoryless policies for this environment: always a1,always a2, and always a3. In the long run, always a1 and always a2 have the samereward, alternating between +1 and �1 immediate reward.Will now consider the behavior of a simple Q-learning agent in this environment.The agent's internal data structure consists of a Q function mapping sensations toactions, therefore it is a vector of three values: Q[a1]; Q[a2], and Q[a3]. Let us initializethe Q values to be all zeros, and use a learning rate of 0:1. Action selection is greedy(choose the action with the highest Q value), with ties broken according to the order:a1, a2, a3.Here is what happens when the Q-learner faces Chrisman's pomdp: It starts withQ values all the same. By the tie-breaking scheme, action a1 is chosen in state s1 tostart. The immediate reward of �1 makes state s1 look the worst. Now the agent is instate s2 with a tie between actions a2 and a3. The agent chooses action a2. This resultsin an immediate reward of �1 for action a2, and makes action a3 the best remainingchoice. After taking action a3 in state s3, the agent returns to state s1 with all Qvalues tied once again. Thus, actions a1, a2, and a3 are deterministically selected inthat order resulting in immediate rewards of �1 at every step. No policy achieves worseperformance in this environment.This example is fairly robust to changes in the learning rate and the discount factor.It is not robust to changes in the action selection scheme, either by choosing actions



228non-greedily or breaking ties di�erently. Nevertheless, it illustrates that a simple Q-learning algorithm can perform miserably on a simple pomdp.



Appendix GSupplementary Results onInformation-state mdpsIn this appendix, I prove several fundamental results concerning information-stateMarkov decision processes. I show that it is not di�cult to compute the Bellmanerror magnitude when value functions are represented by policy trees, that useful pol-icy trees can be identi�ed easily, that there are complicated one-stage pomdps, thatsolving one-stage pomdps is NP-complete under randomized reductions, and that wit-nesses can be identi�ed easily.G.1 Computing the Bellman Error MagnitudeOne method for stopping value iteration in an information-state mdp is to wait for themaximum di�erence between consecutive value functions Vt and Vt�1 to be less thansome �. The maximum di�erence between value functions, called the Bellman errormagnitude, is easily computed for �nite-state-space models. In this section, I examinetwo algorithms for computing the Bellman error magnitude in information-state mdpswhen the value functions are represented as sets of policy trees �t and �t�1.The �rst algorithm is exact and somewhat expensive, while the second is a boundbut very cheap to compute. Both run in polynomial time. The section is not intendedas an exhaustive account of possible algorithms; instead, it simply serves to show thate�cient algorithms for this problem exist.229



230G.1.1 An Exact MethodBriey, the exact method considers all pairs of policy trees pt 2 �t and pt�1 2 �t�1. Ituses linear programming to �nd an information state x� such that1. pt dominates the policy trees in �t at x�,2. pt�1 dominates the policy trees in �t�1 at x�, and3. � = jVpt(x�)� Vpt�1(x�)j is maximized over all x� satisfying the �rst two condi-tions.The �rst two conditions guarantee that Vpt(x�) = Vt(x�) and Vpt�1(x�) = Vt�1(x�).The third condition makes � a lower bound on the largest di�erence between valuefunctions. By �nding the pair of policy trees that give the largest value for �, theBellman error magnitude is identi�ed.An algorithm that uses this idea to compute the Bellman error magnitude appearsin Table G.1. To compute the maximum absolute value, two separate linear programsare constructed.G.1.2 A BoundThe previous section described a method for computing the maximum di�erence be-tween two piecewise-linear and convex value functions represented as sets of policytrees. This section describes a simpler approach that is much more e�cient to computebut only gives an upper bound on the di�erence.We want to bound the biggest di�erence between two value functions, Vt(x) =maxp2�t Vp(x) and Vt�1(x) = maxp2�t�1 Vp(x). The following lemma gives an inexpen-sive way to bound the biggest positive di�erence between Vt and Vt�1.Lemma G.1 Let � = maxpt2�t minpt�12�t�1maxs2S (Vpt(s)� Vpt�1(s)):Then, for all information states x, Vt(x)� Vt�1(x) � �.Proof: Consider some particular information state x. Let p�t = argmaxp2�t Vp(x),p�t�1 = argmaxp2�t�1 Vp(x), andp0t�1 = argmin~p2�t�1 maxs2S (Vp�t (s)� V~p(s)):
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BellmanErrMag(�t;�t�1) := fmaxdiff := �1foreach pt 2 �t, pt�1 2 �t�1 f�1 := checkpair(pt�1;�t�1; pt;�t)�2 := checkpair(pt;�t; pt�1;�t�1)maxdiff := maxfmaxdiff; �1; �2ggreturn maxdiffgcheckpair(p;�; p0;�0) := fSolve the following linear program:maximize: �s.t.: Ps x[s]Vp(s) �Ps x[s]V~p(s), for all ~p 2 � � fpgand: Ps x[s]Vp0(s) �Ps x[s]V~p(s), for all ~p 2 �0 � fp0gand: � =Ps x[s]Vp(s)�Ps x[s]Vp0(s),and: Ps x[s] = 1and: x[s] � 0, for all s 2 Svariables: �, x[s] for all s 2 Sif (� = undefined) then return �1else return �gTable G.1: Subroutine for computing the exact Bellman error magnitude in polynomialtime.
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δ≤Figure G.1: Upper bound on the maximum di�erence between value functions.In words, p�t is the best policy tree in �t at x, p�t�1 is the best policy tree in �t�1 atx, and p0t�1 is the policy tree whose value function has the smallest possible biggestdi�erence from that of p�t at any state. De�ne � as in the statement of the lemma. Thissituation is depicted in Figure G.1.We can boundVt(x)� Vt�1(x) = Vp�t (x)� Vp�t�1(x)� Vp�t (x)� Vp0t�1(x) = Xs2S x[s]Vp�t (s)�Xs2S x[s]Vp0t�1(s)� Xs2S x[s](Vp�t (s)� Vp0t�1(s))� maxs2S (Vp�t (s)� Vp0t�1(s)) = minpt�12�t�1maxs2S (Vp�t (s)� Vpt�1(s))� maxpt2�t minpt�12�t�1maxs2S (Vpt(s)� Vpt�1(s)) = �;as desired. Since x was chosen arbitrarily, the bound holds for all x 2 X . �Lemma G.1 gives a one-way bound on the Bellman error magnitude. A morecomplete bound can be found by reversing the roles of �t and �t�1 in the lemma andcombining the result with the bound from Lemma G.1.Although the bound obtained this way can be arbitrarily loose, it is a good ap-proximation in the following sense. If the policy trees in �t are identical to the policytrees in �t�1, the bound will (correctly) state that the Bellman error magnitude is zero.And, although it is di�cult to formalize, if the two sets are only slightly di�erent, thegiven bound will be fairly accurate.Table G.2 provides a subroutine for the upper bound.



233BellmanErrMagBound(�t;�t�1) := f�1 := maxpt2�t minpt�12�t�1 maxs2S(Vpt(s)� Vpt�1(s))�2 := maxpt�12�t�1 minpt2�t maxs2S(Vpt�1(s)� Vpt(s))return maxf�1; �2gg Table G.2: Computing a bound on the Bellman error magnitude.G.2 Identifying Useful Policy TreesIn this section, I prove Lemma 7.1, which states that the useful policy trees are preciselythose that dominate the other policy trees for some information state. To show this, Ibegin by proving Lemma 7.2.Given an information state x and a set of policy trees F , let p� be the lexicographicmaximum policy tree in F such that Vp�(x) = Vt(x). Lemma 7.2 asserts the existenceof an x0 such that p� dominates all other policy trees in F at x0.To show this formally, we need some additional notation. Information state x is a�-step from x1 towards x2 if x = �(x2 � x1) + x1, 0 � � � 1. Let es be the vectorcorresponding to the \corner" of X where all the probability mass is on state s 2 S.Lemma G.2 Let W = fp 2 F jVp(x) � Vp0(x) for all p0 2 Fg; that is, W is the set ofpolicy trees in F that dominate those in F �W at x. For all s 2 S, if x 6= es, there isa value � > 0 such that for the information state x0 that is a �-step from x towards es,the policy trees in W still dominate those in F �W .Proof: For any p 2 W and any p0 2 F � W , de�ne � = Vp(x) � Vp0(x) > 0. Letx0 = �(es � x) + x. We can �nd a value for � > 0 such that Vp is bigger than Vp0 at x0.Using the linearity of the value function for policy trees, the following statements areequivalent: Vp(x0) > Vp0(x0)(Vp(�(es � x) + x)� Vp0(�(es � x) + x) > 0(1� �)(Vp(x)� Vp0(x)) + �(Vp(es)� Vp0(es) > 0(1� �)�+ �(Vp(s)� Vp0(s)) > 0�(�+ Vp0(s)� Vp(s)) < �



234Since � > 0, we can divide by it without changing the inequality. Let � = 1+(Vp0(s)�Vp(s))=�. Then the above expression is equivalent to �� < 1. If � � 0, the inequalityholds with � � 1. Otherwise, we can set � � 1=(2�) to satisfy the inequality.This shows that for every s, we can �nd a � > 0 for each pairing of p 2 W andp0 2 F �W such that a �-step from x to es gives an x0 such that Vp(x0) > Vp0(x0). Sincethere are a �nite number of ways of pairing elements in W with those in F �W , thereis a � > 0 that works for all pairs (namely, the minimum � for any pair). �We can now use Lemma G.2 to prove Lemma 7.2. The plan is to take successive �-steps from x towards each corner es. Each step is small enough so that the lexicographicmaximum policy tree in W still dominates the policy trees in F �W , but large enoughso that some ties within W are broken.Let W0 = W be the set of policy trees maximal at x0 = x. By Lemma G.2, thereis an information state, x1, strictly di�erent from x0 if x0 6= es0 and in the direction ofes0 at which the policy trees in W0 are still bigger than the others. Let W1 be a subsetof W0 consisting of the policy trees maximal at x1. If x0 = es0 , let W1 = W0.It should be clear that the policy trees in W1 are precisely those p 2 W0 for whichVp(s0) = Vp�(s0), that is, those tied with the lexicographically maximal policy tree inthe �rst component.If we apply this argument inductively for each component,Wi becomes the set of allpolicy trees in W that agree with Vp� in the �rst i components of their value functions.The policy trees in Wi dominate those in F � Wi at xi. After every state has beenconsidered, we are left with WjSj = fp�g with p� as the unique policy tree dominatingall others in F at xjSj.This concludes the proof of Lemma 7.2. In addition to its computational impor-tance, Lemma 7.2 is also helpful for proving Lemma 7.1, which states that a policy treeis useful if and only if there is an information state for which it dominates all otherpolicy trees.Let G be a set of policy trees and V (x) = maxp2G Vp(x) be the value function theyrepresent. Let � be the set of policy trees in G that dominate the other policy trees inG for some information state. I �rst show that every policy tree p 2 � is necessary forrepresenting V . Consider any x for which p dominates the policy trees in G. Such an xexists by construction of �. From the de�nition of domination, we know that no otherpolicy tree in G gives as large a value at x as p does. Therefore, the value function



235represented by any set U � G � fpg would have a strictly smaller value at x than Vdoes. Thus, every p 2 � is needed to represent V .Next, we show that � is a su�cient representation of V , that is,V (x) = maxp2� Vp(x):To see this, consider any x 2 X . Let p� be the lexicographic maximum policy treein G such that Vp�(x) = maxp2G Vp(x). By Lemma 7.2, there exists an x0 such thatp� dominates all other policy trees in G at x0, so p� will be included in �. Thus,V (x) = maxp2G Vp(x) = Vp�(x) = maxp2� Vp(x). Since this holds for every x, �represents the same function that G does.G.3 Example One-stage pomdp ProblemsIn this section, I provide several constructions that illustrate various important pomdpissues. I will start with a lemma that makes it easier to describe speci�c one-stagepomdp problems.Recall that to specify a one-stage pomdp problem, it is necessary to de�ne sets S,Z , and A; functions T , O, and R; a scalar �; and a set � of jSj-vectors. The set �0 isthe minimum set of policy trees such thatmaxp2�0 Vp(x) = maxa2A max�2T (Z!�)Xs x[s] R(s; a) + �Xz Xs0 T (s; a; s0)O(s0; a; z)�(z)[s0]! ;(G.1)for all x 2 X , where T (Z ! �) is the set of all functions mapping Z to �. The set �0of jSj-vectors can be viewed as a representation of a piecewise-linear convex functionf(x) = maxp2�0 Vp(x) over the (jSj� 1)-dimensional simplex. Because �0 is de�ned viaa one-stage pomdp problem, the Z , A, T , O, R, �, and � quantities can be viewed asa speci�cation of a piecewise-linear convex function.I will show that there are values for Z , A, T , O, R, �, and � such that thepiecewise-linear convex function they specify via �0 has particular properties. I showthat by specifying a �nite set K of jSj-vectors, and a �nite collection � of pairs ofjSj-vectors with components between zero and one, it is possible to specify a piecewise-linear convex function that is the solution to a one-stage pomdp problem, withoutneeding to identify Z , A, T , O, R, �, and � directly.



236Let K be a set of jSj-vectors. Let V be a �nite set of variables , and B be the set ofall bindings mapping the elements of V to f1; 2g (B = T (V ! f1; 2g)). Let � be a set ofjSj-vectors, � = f�zkjz 2 V ; k 2 f1; 2gg. Let the sets K and � specify a piecewise-linearconvex function f over X byf(x) = max�max�2K(x � �);maxb2B (x � �b)� ;where �b =Pz2V �zb(z) for b 2 B.The next lemma shows that any piecewise-linear convex function that can be spec-i�ed this way can also be speci�ed as the solution to a one-stage pomdp problem ofsimilar size.Lemma G.3 Given a set of variables V, and setsK and � of jSj-vectors (jSj � jVj+2),and a set � = f�zkjz 2 V ; k 2 f1; 2gg (0 � �zk[s] � 1; 8s 2 S), there is a one-stagepomdp problem such thatmaxp2�0 Vp(x) = max�max�2K (x � �);maxb (x � �b)� :The pomdp has jZj = jVj, jAj = jKj+ 1, and j�j = 2.Proof: De�ne the one-stage pomdp as follows. The set of observations is the set ofvariables (Z = V), and there is one action for each vector in K and one correspondingto the � set, A = fa�j� 2 Kg [ fa0g: Let � be a set of two jSj-vectors, 1 and 2, andlet � = 1. De�ne 1 and 2 byk[s0] = 8>>><>>>: (3� 2k)(jZj+ 1); if s0 � jZj;(k � 1)jZj(jZj+ 1); if s0 = jZj+ 1;0; otherwise,for k 2 f1; 2g.Let each a� action result in an immediate reward of x � � and a transition to statejZj + 2 (which has zero value under �); for all s, R(a�; s) = �[s], T (s; a�; s0) = 1,O(s0; a�; z) = 1=jZj if s0 = jZj + 2 and zero otherwise. Since k[jZj + 2] = 0 fork 2 f1; 2g, for all � 2 T (Z ! f1; 2g) and s 2 SR(s; a�) + �Xz Xs0 T (s; a�; s0)O(s0; a�; z)�(z)[s0] = R(s; a�) = �[s]: (G.2)



237The a0 action is a bit more complex. De�ne the pomdp functions as follows,R(s; a0) = Xz �z1[s] + �z2[s]� 12 ;T (s; a0; s0) = 8>>>>>><>>>>>>: �s01 [s]��s02 [s]+12(jZj+1) ; if s0 � jZj,1jZj+1 ; if s0 = jZj+ 1,1�PjZj+1s0=1 T (s; a0; s0); if s0 = jZj+ 2,0; otherwise. ;O(s0; a0; z) = 8>>><>>>: 1; if z = s0;0; if s0 � jZj and z 6= s0;1jZj ; otherwise. ;It is not hard to show that the components of T and O add to 1 in the proper way.For any s 2 S, � 2 T (Z ! �), let b be the binding such that �(z) = b(z) for allz 2 Z , then,R(s; a0) + �Xz Xs0 T (s; a0; s0)O(s0; a0; z)�(z)[s0]= R(s; a0) + �Xz Xs0 T (s; a0; s0)O(s0; a0; z)b(z)[s0]= Xz �z1[s] + �z2[s]� 12 +Xz �z1[s]� �z2[s] + 12(jZj+ 1) b(z)[z] +Xz 1jZj+ 1 1jZjb(z)[jZj+ 1]= Xz ��z1[s] + �z2[s]� 12 + �z1[s]� �z2[s] + 12(jZj+ 1) (3� 2b(z))(jZj+ 1)+ 1jZj+ 1 1jZj(b(z)� 1)jZj(jZj+ 1)�= Xz ��z1[s] + �z2[s]� 12 + �z1[s]� �z2[s] + 12 (3� 2b(z)) + (b(z)� 1)�= Xz ��z1[s](4� 2b(z)) + �z2[s](�2 + 2b(z)) + 2� 2b(z)2 + (b(z)� 1)�= Xz (�z1[s](2� b(z)) + �z2[s](�1 + b(z)) + 1� b(z) + b(z)� 1)= Xz �zb(z)[s] = �b[s]: (G.3)



238Combining Equations G.1, G.2, and G.3, we havemaxp2�0 Vp(x)= maxa2A max�2T (Z!�)Xs x[s] R(s; a) + �Xz Xs0 T (s; a; s0)O(s0; a; z)�(z)[s0]!= max( max�2T (Z!�)Xs x[s] R(s; a0) + �Xz Xs0 T (s; a0; s0)O(s0; a0; z)�(z)[s0]! ;max�2K max�2T (Z!�)Xs x[s] R(s; a�) + �Xz Xs0 T (s; a�; s0)O(s0; a�; z)�(z)[s0]!)= max�maxb2B (x � �b);max�2K (x � �)� ;therefore, the supplied vectors correspond exactly to the set of value functions obtainedby solving a one-stage pomdp problem. �G.3.1 Exponential Number of Useful Policy TreesI show that there exists a family of one-stage pomdps such that, for every n > 2,jSj = 2n, jAj = 1, jZj = n, j�t�1j = 2, and j�tj = 2n.Let S = f1; : : : ; 2ng, and V = f1; : : : ; ng. For k 2 f1; 2g, let �zk[2z + k � 2] = 1,and 0 otherwise. Let K = ;. By Lemma G.3, there is a pomdp with jAj = 1, jZj = n,and j�j = 2 such that G = Sb2BfPz �zb(z)g. Note that jGj = jBj = 2jV j = 2n. Weknow that the set �0 is a subset of G. We can show that, in fact, these sets are equal,because every policy tree in G dominates all other policy trees in G at some x 2 X .Lemma G.4 In the construction just described, for every b 2 B there is an x� 2 Xsuch that x� � �b > x� � �b0 for all b0 6= b.Proof: For a binding b, for each z 2 V , let x�[2z + b(z)� 2] = 1=n and 0 otherwise.



239The components of x� are non-negative and sum to 1, so x� 2 X . Now, for any b0 2 B,x� � �b0 = x� �Xz �zb0(z)= Xs (x�[s]Xz �zb0(z)[s])= Xz Xs (x�[s]�zb0(z)[s])= Xz x�[2z + b0(z)� 2]= 1nIfb0(z) = b(z)g;which is uniquely maximized for b0 = b. �G.3.2 Exponential Number of Vertices in a RegionIn this section, I show that there is a family of one-stage pomdp problems such that,for every n > 2, jSj = n + 1, jAj = 2n + 1, jZj = 1, j�j = 1, j�0j � 2n + 1, and thenumber of vertices in the region dominated by one of the policy trees is 2n.Once again, I will use the speci�cation described in Lemma G.3, inductively creatinga separate piecewise-linear convex function for each n. For each n, de�ne a set Kncontaining 2n+ 1 vectors, and let �n be a vector such that the vectors in Kn form thewalls of an n-dimensional hypercube bounding the region fxjx � �n � x � �; � 2 Kng:We de�ne the family of pomdps recursively, starting with n = 1. Let S1 = f1; 2g andV = f1g. Let �zk[s] = 0 for all z 2 V , k 2 f1; 2g, and s 2 S (the set � is not neededin this construction). The notation hx; yi concatenates two vectors (or a vector andscalar) into a single vector.Let K1 = fh1;�1=2i; h0; 0i; h�1; 0ig and �1 = h0; 0i. Let 
n be the set of verticesof the region fxjx � �n � x � �; � 2 Kng: The vertices are the information states whereone of the other vectors in K1 gives the same value as �1. It is easy to verify that theset of vertices 
1 = fh0; 1i; h1=3; 2=3ig.Inductively de�ne �n+1 = h�n; 0i,Kn+1 = fh�; 0i : � 2 Kng [ fh0; : : : ; 0;�1i; h1; : : : ; 1;�1igand Sn+1 = Sn [ fn+ 2g.Note that �n+1 = h0; : : : ; 0i 2 Kn+1. The vertices of �n+1's region are the infor-mation states where n + 1 of the vectors in Kn+1 give the same value as �n+1. Let



240x 2 
n. Inductively, n vectors in Kn give the same value as �n at x. Let � be any oneof these vectors. It follows from the construction of � thathx; 0i � h�; 0i= x � � = 0 = x � �n = hx; 0i � �n+1and hx; 0i � h0; : : : ; 0;�1i= 0 = hx; 0i � �n+1;so hx; 0i 2 X is a vertex of �n+1's region. Similarly,h1=2 x; 1=2i � h�; 0i = 1=2 x � � + 0 = 0 = h1=2 x; 1=2i � �n+1and h1=2 x; 1=2i � h1; : : : ; 1;�1i = 1=2� 1=2 = 0 = h1=2 x; 1=2i � �n+1;so h1=2 x; 1=2i 2 X is a vertex of �n+1's region also. As a result,
n+1 = fhx; 0i : x 2 
ng [ fh1=2 x; 1=2i : x 2 
ng:Since all the vectors in Kn+1 and 
n+1 are unique, jKn+1j = jKnj+2, and j
n+1j =2j
nj, jKnj = 2n + 1 and j
nj = 2n for all n � 2. Applying Lemma G.3, there is aone-stage pomdp problem for each n > 2 with jSj = n + 1, jAj = 2n + 1, jZj = 1,j�j = 1, j�0j = n + 1, such that the number of vertices in one of the linear regions ofthe value function is 2n.G.4 Solving One-stage pomdp Problems is HardIn this section, I show that the problem of solving polynomially output-bounded one-stage pomdp problems is NP-complete under randomized reductions. This means thatthere is a randomized algorithm for solving one-stage pomdp problems in polynomialtime if and only if RP=NP. To show this, we examine a deep connection between thisproblem and the unique-satisfying-assignment problem, de�ned below.A boolean formula in conjunctive normal form (CNF) is an \and" of a set of clausesof \ors" of literals (variables and negated variables). A satisfying assignment maps eachof the variables to either \true" or \false" so the entire formula evaluates to \true."There is a result, proved by Valiant and Vazirani [165], that implies that there existsa polynomial-time algorithm for �nding a satisfying assignment for a formula that is



241guaranteed to have at most one satisfying assignment only if RP=NP1. I will showthat a polynomial-time algorithm for solving polynomially output-bounded pomdpscould be used to solve the unique-satisfying-assignment problem in polynomial time,and therefore that such an algorithm exists only if RP=NP.I use the speci�cation described in Lemma G.3 and de�ne S, V , K, and �. Takea CNF formula consisting of a set of M > 1 clauses C, and variables V (jVj � 2).The set of variables corresponds both to the variables in Lemma G.3 and the booleanvariables in the formula. Let S = C � V . An element of S is a pair (c; z) 2 C � V .There is a pair of � vectors for each variable z 2 V , which will encode the CNF formula.Vector �z1 indicates in which clauses variable z is unnegated and �z2 indicates in whichclauses variable z is negated. More speci�cally, for each z 2 V and k 2 f1; 2g, �zk isa jC � Vj-vector with �z1[(c; z)] = 1 if variable z appears unnegated in clause c and�z2[(c; z)] = 1 if variable z appears negated in clause c. All other components of the �vectors are zero.For a binding b 2 B, b(z) = 1 if variable z is true in the assignment and b(z) = 2otherwise. Thus, if �zb(z)[(c; z)] = 1, then clause c evaluates to \true" under binding bbecause of the binding of variable z in that clause. Let � be a jC�Vj-vector with eachcomponent equal to (M�1=2)=M . For each c 2 C, de�ne a jC�Vj-vector �c, as follows.For all z 2 V , let �c[(c; z)] = 1+ (M � 1=2)=M �M and �c[(c0; z)] = 1+ (M � 1=2)=Mfor c0 6= c. As described earlier, let �b = Pz �zb(z). From the de�nition of �, everycomponent of �b is either a one or a zero.Each �b vector corresponds to a variable assignment and the �c and � vectors aredesigned to jointly dominate all possible �b vectors, except those corresponding tosatisfying assignments.Lemma G.5 Let K = f�g [ f�cjc 2 Cg. There is an x� 2 X such that x� � �b >max�2K(x� � �) if and only if b is a satisfying assignment.Proof: First, assume b is a satisfying assignment. We can construct an x� such thatx� � �b = 1, but x� � � < 1 and x� � �c < 1 for all c 2 C as follows.For each clause c 2 C, pick a single variable zc such that the binding of that variablein b causes clause c to be satis�ed. Let x�[(c; zc)] = 1=M for each c 2 C and 0 otherwise.Note that x� 2 X because M components are set to 1=M . Because of the zeros in x�1Thanks to Avrim Blum for pointing this out.



242and the � vectors,x� � �b = Xc Xz x�[(c; z)]Xz0 �z0b(z0)[(c; z)]= Xc Xz x�[(c; z)]�zb(z)[(c; z)]= Xc x�[(c; zc)]�zcb(zc)[(c; zc)] =Xc 1M = 1:Using the same x� we see that x� �� = (M�1=2)=M < 1, and for each clause c 2 C,x� � �c = Xz Xc0 x�[(c0; z)]�c[(c0; z)]= Xz 0@x�[(c; z)] 1 + M � 12M �M!+ Xc0 6=c x�[(c0; z)] 1 + M � 12M !1A= Xz  �Mx�[(c; z)] +Xc0 x�[(c0; z)] 1 + M � 12M !!= �M 1M +  1 + M � 12M !Xz Xc0 x�[(c0; z)]= �1 + 1+ M � 12M = M � 12M < 1:Thus, x� � �b = 1 > max�2K(x� � �), for satisfying assignment b.Now I show that, for a non-satisfying b, x � �b < max�2K(x � �) for all x 2 X . Weproceed by contradiction. Assume we have an x 2 X such that max�2K(x � �) � x � �bfor a non-satisfying b. Then, x � � � x � �b and x � �c � x � �b for all c 2 C. De�newc = Pz x[(c; z)]. The variable wc is the weight of clause c, and note that Pc wc = 1if x 2 X . Let c� = argmincwc; c� is a minimum weight clause.If x � � � x � �b, then (M � 1=2)=M � x � �b = x � [Pz �zb(z)] � 1 � wc� . Thelast inequality is justi�ed by the fact that b is not satisfying so at least one clausecontributes zero to the dot product and assuming it is the smallest weight clause givesus the largest possible value. This restricts wc� so thatwc� � 12M < 12M + 12(M � 1) = M � 12M(M � 1) : (G.4)At the same time, it must be the case that x � �c� � x ��b, which implies 1 + (M �1=2)=M �Mwc� � 1� wc� and therefore wc� � (M � 1=2)=(M(M � 1)). This directlycontradicts Inequality G.4, and therefore we can conclude that, for a non-satisfying b,x � �b < max�2K(x � �) for all x 2 X . �



243By Lemma G.3, there is a pomdp such thatmax2�0 (x � ) = max�max�2K (x � �);maxb (x � �b)� :This one-stage pomdp problem is derived from the unique-satisfying-assignment-prob-lem instance and has the property that �0 6� K if and only if the boolean-formulainstance is satis�able. Because of the assumption that the boolean formula has nomore than 1 satisfying assignment, j�0j � M + 2; thus, the one-stage pomdp problemis polynomially output bounded.Because the one-stage pomdp problem instance can be created in polynomial time,and the condition �0 6� K can be checked in polynomial time, a polynomial-timealgorithm for solving polynomially output-bounded one-stage pomdp problems couldbe used to �nd unique satisfying assignments in polynomial time. As mentioned at thestart of this section, this would imply RP=NP.To complete the proof of Theorem 7.1, I need to argue that if RP=NP then thereis a randomized polynomial-time algorithm for solving polynomially output-boundedone-stage pomdp problems. We can build up a set of vectors U � �0 one at a time byanswering the question \Is there an information state x such that max2U x� 6= Vt(x)?"and adding the dominating vector at x into U . For polynomially output-bounded one-stage pomdp problems, if the answer to this question is yes, then there is an x thatcan be written using polynomially many bits. Such an x can be identi�ed in non-deterministic polynomial time using standard techniques, and therefore in randomizedpolynomial time if RP=NP. Because there are at most a polynomial number of vectorsthat can be added to U , the process terminates with U = �0 in polynomial time.G.5 Proof of the Witness LemmaLet U be a set of useful policy trees for action a. In this section, I show that the setU does not equal the complete set �a of useful policy trees if and only if some policytree, in the set of neighbors of policy trees in U , dominates the policy trees in U .The \if" direction is easy since the neighbor can be used to identify a policy treemissing from U .The \only if" direction can be rephrased as: If U 6= �a then there is an informationstate x 2 X , a policy tree p 2 U , and a neighbor p0 of p such that p0 dominates all
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xFigure G.2: An illustration of some of the quantities used in Theorem 7.3.policy trees in U at x. Figure G.2 illustrates some of the relevant quantities used toshow this.Start by picking p� 2 �a � U and choose any x such that p� dominates the policytrees in U at x. Let p = argmax~p2U V~p(x). As illustrated in the �gure, p� is theoptimal policy tree at x, and p is the best policy tree in U at x. By construction,Vp�(x) > Vp(x).If p� and p are neighbors, we are done, since we are searching for a neighbor of pthat dominates the other policy trees in U at x, and p� meets these requirements.If p� and p are not neighbors, we will identify a neighbor p0 of p that does satisfythese requirements. Choose an observation z� 2 Z such thatx � stval(a; z�; p�) > x � stval(a; z�; p):There must be a z� satisfying this inequality since otherwise we get the contradictionVp�(x) = Xs x[s] R(s; a) + �Xz stval(a; z; p�)[s]!� Xs x[s] R(s; a) + �Xz stval(a; z; p)[s]!= Vp(x):Let � 2 T (Z ! �) where �(z�) = subtree(p�; z�) and �(z) = subtree(p; z) for z 6= z�.Let p0 be the policy tree constructed from � , p0 = tree(a; �). By construction, p and



245p0 are neighbors. In addition,Vp0(x) = Xs x[s] R(s; a) + �Xz stval(a; z; p0)[s]!= Xs x[s]0@R(s; a) + � Xz 6=z� stval(a; z; p)[s] + � stval(a; z; p�)[s]1A> Xs x[s] R(s; a) + �Xz stval(a; z; p)[s]!= Vp(x) = max~p2U V~p(x):Therefore the policy tree p0 dominates all policy trees in U at x.
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