Parameter Space Noise for Exploration

Matthias Plappert'?, Rein Houthooft!, Prafulla Dhariwal®, Szymon Sidor",
Richard Y. Chen’, Xi Chen*, Tamim Asfour!, Pieter Abbeel*, and Marcin Andrychowicz’
T OpenAl
¥ Karlsruhe Institute of Technology (KIT)

* UC Berkeley

Abstract

Deep reinforcement learning (RL) methods generally engage in exploratory be-
havior through noise injection in the action space. An alternative is to add noise
directly to the agent’s parameters, which can lead to more consistent exploration
and a richer set of behaviors. Methods such as evolutionary strategies use parameter
perturbations, but discard all temporal structure in the process and require signif-
icantly more samples. Combining parameter noise with traditional RL methods
allows to combine the best of both worlds. We demonstrate that both off- and
on-policy methods benefit from this approach through experimental comparison
of DQN, DDPG, and TRPO on high-dimensional discrete action environments as
well as continuous control tasks. Our results show that RL with parameter noise
learns more efficiently than traditional RL with action space noise and evolutionary
strategies individually. |

1 Introduction

Exploration remains a key challenge in contemporary deep reinforcement learning (RL). Its main
purpose is to ensure that the agent’s behavior does not converge prematurely to a local optimum.
Enabling efficient and effective exploration is, however, not trivial since it is not directed by the
reward function of the underlying Markov decision process (MDP). Although a plethora of methods
have been proposed to tackle this challenge in high-dimensional and/or continuous-action MDPs,
they often rely on complex additional structures such as counting tables [[1], density modeling of the
state space [2]], learned dynamics models [315]], or self-supervised curiosity [6].

An orthogonal way of increasing the exploratory nature of these algorithms is through the addition of
temporally-correlated noise, for example as done in bootstrapped DQN [[7]. Along the same lines, it
was shown that the addition of parameter noise leads to better exploration by obtaining a policy that
exhibits a larger variety of behaviors [[8,9]. We discuss these related approaches in greater detail in
Section[5] Their main limitation, however, is that they are either only proposed and evaluated for
the on-policy setting with relatively small and shallow function approximators [10]] or disregard all
temporal structure and gradient information [9, |11} [12].

This paper investigates how parameter space noise can be effectively combined with off-the-shelf
deep RL algorithms such as DQN [13]], DDPG [14], and TRPO [15] to improve their exploratory
behavior. Experiments show that this form of exploration is applicable to both high-dimensional
discrete environments and continuous control tasks, using on- and off-policy methods. Our results
indicate that parameter noise outperforms traditional action space noise-based baselines, especially in
tasks where the reward signal is extremely sparse. This demonstrates that a fertile middle ground
exists between evolutionary methods that discard temporal structure, and methods that rely entirely
on unstructured noise injection.

Correspondence to matthias@openai.com

2 Background

We consider the standard RL framework consisting of an agent interacting with an environment.
To simplify the exposition we assume that the environment is fully observable. An environment
is modeled as a Markov decision process (MDP) and is defined by a set of states S, a set of
actions .4, a distribution over initial states p(sg), a reward function r : S x A — R, transi-
tion probabilities p(s;4+1/s¢, at), a time horizon T', and a discount factor v € [0,1). We denote
by 7y a policy parametrized by 6, which can be either deterministic, 7 : S +— A, or stochas-
tic, m : S x A — [0,1]. The agent’s goal is to maximize the expected discounted return
n(me) = ET[ZtTZO ~ir(se, ag)], where 7 = (89, ag, - - -, sT) denotes a trajectory with so ~ p(so),
a; ~ mo(ag|st), and s¢p1 ~ p(st41]st, ar). Experimental evaluation is based on the undiscounted

return £, [EtT:O (s, az)]

2.1 Off-policy Methods

Off-policy RL methods allow learning based on data captured by arbitrary policies. This paper
considers two popular off-policy algorithms, namely Deep Q-Networks (DQN, [[13]]) and Deep
Deterministic Policy Gradients (DDPG, [14]).

Deep Q-Networks (DQN) DQN uses a deep neural network as a function approximator to estimate
the optimal (Q-value function, which conforms to the Bellman optimality equation:

Q(st,ar) = r(se,ar) + ymax Q(syr1,a).
a’eA

The policy is implicitly defined by @Q as m(s;) = argmax,, . 4Q(s¢,a’). Typically, a stochastic
e-greedy or Boltzmann policy [16] is derived from the Q-value function to encourage exploration,
which relies on sampling noise in the action space. The Q)-network predicts a)-value for each action
and is updated using off-policy data from a replay buffer.

Deep Deterministic Policy Gradients (DDPG) DDPG is an actor-critic algorithm, applicable to
continuous action spaces. Similar to DQN, the critic estimates the ()-value function using off-policy
data and the recursive Bellman equation:

Q(se,ai) = 1(st, ar) +7Q (Se41, To(Se41)),
where 7y is the actor or policy. The actor is trained to maximize the critic’s estimated ()-values by
back-propagating through both networks. For exploration, DDPG uses a stochastic policy of the
form 7y(s;) = mg(s:) + w, where w is either w ~ N(0,02%I) (uncorrelated) or w ~ OU(0, 0?)
(correlated)E] Again, exploration is realized through action space noise.

2.2 On-policy Methods

In contrast to off-policy algorithms, on-policy methods require updating function approximators
according to the currently followed policy. In particular, we will consider Trust Region Policy
Optimization (TRPO, [18]]), an extension of traditional policy gradient methods [19] using the natural
gradient direction [20} [21].

Trust Region Policy Optimization (TRPO) TRPO improves upon REINFORCE [19] by com-
puting an ascent direction that ensures a small change in the policy distribution. More specifically,
TRPO solves the following constrained optimization problem:

) A s.a)

my(als)

s.t. Espy [Dxi(mer (+]5)[Imo (-|5))] < ok

where pg = pr, is the discounted state-visitation frequencies induced by 7y, A(s,a) denotes the
advantage function estimated by the empirical return minus the baseline, and ki is a step size
parameter which controls how much the policy is allowed to change per iteration.

maximizes Esnp, anmy

'If t = T, we write r(st, ar) to denote the terminal reward, even though it has has no dependence on ar,
to simplify notation.
20U(-, -) denotes the Ornstein-Uhlenbeck process [[17].

3 Parameter Space Noise for Exploration

This work considers policies that are realized as parameterized functions, which we denote as my,
with 0 being the parameter vector. We represent policies as neural networks but our technique can
be applied to arbitrary parametric models. To achieve structured exploration, we sample from a
set of policies by applying additive Gaussian noise to the parameter vector of the current policy:

0=0+N (0,0%I). Importantly, the perturbed policy is sampled at the beginning of each episode
and kept fixed for the entire rollout. For convenience and readability, we denote this perturbed policy
as 7 := 7 and analogously define 7 := 7.

State-dependent exploration As pointed out by [10], there is a crucial difference between ac-
tion space noise and parameter space noise. Consider the continuous action space case. When
using Gaussian action noise, actions are sampled according to some stochastic policy, generating
a; = 7(s¢) + N(0,021). Therefore, even for a fixed state s, we will almost certainly obtain a differ-
ent action whenever that state is sampled again in the rollout, since action space noise is completely
independent of the current state s; (notice that this is equally true for correlated action space noise).
In contrast, if the parameters of the policy are perturbed at the beginning of each episode, we get
a; = 7(s¢). In this case, the same action will be taken every time the same state s; is sampled in the
rollout. This ensures consistency in actions, and directly introduces a dependence between the state
and the exploratory action taken.

Perturbing deep neural networks It is not immediately obvious that deep neural networks, with
potentially millions of parameters and complicated nonlinear interactions, can be perturbed in
meaningful ways by applying spherical Gaussian noise. However, as recently shown by [9], a
simple reparameterization of the network achieves exactly this. More concretely, we use layer
normalization [22] between perturbed layersE] Due to this normalizing across activations within a
layer, the same perturbation scale can be used across all layers, even though different layers may
exhibit different sensitivities to noise.

Adaptive noise scaling Parameter space noise requires us to pick a suitable scale ¢. This can be
problematic since the scale will strongly depend on the specific network architecture, and is likely to
vary over time as parameters become more sensitive to noise as learning progresses. Additionally,
while it is easy to intuitively grasp the scale of action space noise, it is far harder to understand the
scale in parameter space. We propose a simple solution that resolves all aforementioned limitations
in an easy and straightforward way. This is achieved by adapting the scale of the parameter space
noise over time and relating it to the variance in action space that it induces. More concretely, we can
define a distance measure between perturbed and non-perturbed policy in action space and adaptively
increase or decrease the parameter space noise depending on whether it is below or above a certain

threshold:
aoy, ifd(m,m) <6,
Ok+1 = { r (m,) < (D

where « € R is a scaling factor and 6 € R+ a threshold value. The concrete realization of d(-, -)
depends on the algorithm at hand and we describe appropriate distance measures for DQN, DDPG,

and TRPO in|Appendix C

Parameter space noise for off-policy methods In the off-policy case, parameter space noise can
be applied straightforwardly since, by definition, data that was collected off-policy can be used. More
concretely, we only perturb the policy for exploration and train the non-perturbed network on this
data by replaying it.

Lo), otherwise,

Parameter space noise for on-policy methods Parameter noise can be incorporated in an on-
policy setting, using an adapted policy gradient, as set forth by [23]]. Policy gradient methods
optimize () [R(7)]. Given a stochastic policy mg(a|s) with § ~ N (¢, ¥), the expected return
can be expanded using likelihood ratios and the re-parametrization trick [24] as
T—1
1 — i
Vs sE-[R(T)] = N Z Z Vs logm(ag|se; ¢ + €' X2)Re(7) 2)

ei,ri Lt=0

3This is in contrast to [9], who use virtual batch normalization, which we found to perform less consistently

for N samples e/ ~ N(0,1) and 7% ~ (7r¢+6i2% , D) (see|Appendix B|for a full derivation). Rather

than updating ¥ according to the previously derived policy gradient, we fix its value to 021 and scale

it adaptively as described in

4 Experiments

This section answers the following questions:

(i) Do existing state-of-the-art RL algorithms benefit from incorporating parameter space noise?
(i) Does parameter space noise aid in exploring sparse reward environments more effectively?

(iii)) How does parameter space noise exploration compare against evolution strategies with
respect to sample efficiency?

4.1 Comparing Parameter Space Noise to Action Space Noise

The added value of parameter space noise over action space noise is measured on both high-
dimensional discrete-action environments and continuous control tasks. For the discrete environments,
comparisons are made using DQN, while DDPG and TRPO are used on the continuous control tasks.

Discrete-action environments For discrete-action environments, we use the Arcade Learning
Environment (ALE, [25]]) benchmark along with a standard DQN implementation. We compare a
baseline DQN agent with e-greedy action noise against a version of DQN with parameter noise. We
linearly anneal € from 1.0 to 0.1 over the first 1 million timesteps. For parameter noise, we adapt
the scale using a simple heuristic that increases the scale if the KL divergence between perturbed
and non-perturbed policy is less than the KL divergence between greedy and e-greedy policy and
decreases it otherwise (see for details). By using this approach, we achieve a fair
comparison between action space noise and parameter space noise since the magnitude of the noise is
similar and also avoid the introduction of an additional hyperparameter.

For parameter perturbation, we found it useful to reparametrize the network in terms of an explicit
policy that represents the greedy policy 7 implied by the QQ-values, rather than perturbing the Q-
function directly. To represent the policy 7(als), we add a single fully connected layer after the
convolutional part of the network, followed by a softmax output layer. Thus, 7 predicts a discrete
probability distribution over actions, given a state. We find that perturbing 7 instead of () results
in more meaningful changes since we now define an explicit behavioral policy. In this setting, the
@-network is trained according to standard DQN practices. The policy 7 is trained by maximizing
the probability of outputting the greedy action accordingly to the current Q-network. Essentially, the
policy is trained to exhibit the same behavior as running greedy DQN. To rule out this double-headed
version of DQN alone exhibits significantly different behavior, we always compare our parameter
space noise approach against two baselines, regular DQN and two-headed DQN, both with e-greedy
exploration.

We furthermore randomly sample actions for the first 50 thousand timesteps in all cases to fill the
replay buffer before starting training. Moreover, we found that parameter space noise performs better
if it is combined with a bit of action space noise (we use a e-greedy behavioral policy with e = 0.01
for the parameter space noise experiments). Full experimental details are described in[Section A.T]

We chose 21 games of varying complexity, according to the taxonomy presented by [26]]. The learning
curves are shown in [Figure T|for a selection of games (see [Appendix D] for full results). Each agent is
trained for 40 M frames. The overall performance is estimated by running each configuration with
three different random seeds, and we plot the median return (line) as well as the interquartile range
(shaded area). Note that performance is evaluated on the exploratory policy since we are interested in
its behavior especially.

Overall, our results show that parameter space noise often outperforms action space noise, especially
on games that require consistency (e.g. Enduro, Freeway) and performs comparably on the remaining
ones. Additionally, learning progress usually starts much sooner when using parameter space noise.
Finally, we also compare against a double-headed version of DQN with e-greedy exploration to
ensure that this change in architecture is not responsible for improved exploration, which our results

confirm. Full results are available in|Appendix D

—— parameter noise, separate policy head —— e-greedy, separate policy head —— e-greedy

Alien Amidar BankHeist BeamRider Breakout
400 10000

1500 2 600 300
300 7500

1000 ; 200 400 5000

retun

o0 100 200 2500 10

Enduro Freeway Frostbite Pong Qbert
30 1000 20

1500 6000

20

1000 4000

10
500 -
250 /&&:ﬂ@ 10 2000
0 0 -20

Tutankham WizardOfWor Zaxxon steps te7 steps 1e7

retun

o
~
w
s
o
~
w
IS

8000
150 2000 6000
£
5 /
g1 4000
1000
50 2000

o
~
w
s
°
w
o

4 2 3 4
steps 1e7 steps 1e7 steps. le7

Figure 1: Median DQN returns for several ALE environment plotted over training steps.

On a final note, proposed improvements to DQN like double DQN [27], prioritized experience
replay [28]], and dueling networks are orthogonal to our improvements and would therefore
likely improve results further. We leave the experimental validation of this theory to future work.

Continuous control environments We now compare parameter noise with action noise on the
continuous control environments implemented in OpenAI Gym [30]. We use DDPG as the RL
algorithm for all environments with similar hyperparameters as outlined in the original paper except
for the fact that layer normalization [22] is applied after each layer before the nonlinearity, which we
found to be useful in either case and especially important for parameter space noise.

We compare the performance of the following configurations: (a) no noise at all, (b) uncorrelated
additive Gaussian action space noise (¢ = 0.2), (c) correlated additive Gaussian action space noise
(Ornstein—Uhlenbeck process with 0 = 0.2), and (d) adaptive parameter space noise. In the case
of parameter space noise, we adapt the scale so that the resulting change in action space is comparable
to our baselines with uncorrelated Gaussian action space noise (see for full details).

—— adaptive parameter noise —— correlated action noise —— uncorrelated action noise —— no noise

HalfCheetah Hopper Walker2d
1500
5000 2500
1250
4000

2000
1000

£ 3000
g 2000 750 100
1000 500 1000
0 250 500
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
epoch epoch epoch

Figure 2: Median DDPG returns for continuous control environments plotted over epochs.

We evaluate the performance on several continuous control tasks. depicts the results for
three exemplary environments. Each agent is trained for 1 M timesteps, where 1 epoch consists of
10 thousand timesteps. In order to make results comparable between configurations, we evaluate the
performance of the agent every 10 thousand steps by using no noise for 20 episodes.

On HalfCheetah, parameter space noise achieves significantly higher returns than all other configura-
tions. We find that, in this environment, all other exploration schemes quickly converge to a local
optimum (in which the agent learns to flip on its back and then “wiggles” its way forward). Parameter
space noise behaves similarly initially but still explores other options and quickly learns to break out
of this sub-optimal behavior. Also notice that parameter space noise vastly outperforms correlated
action space noise on this environment, clearly indicating that there is a significant difference between
the two. On the remaining two environments, parameter space noise performs on par with other

exploration strategies. Notice, however, that even if no noise is present, DDPG is capable of learning
good policies. We find that this is representative for the remaining environments (see for
full results), which indicates that these environments do not require a lot of exploration to begin with
due to their well-shaped reward function.

—— TRPO with parameter noise (o = 0.01) —— TRPO with parameter noise (0 = 0.1) —— TRPO with parameter noise (o = 1.0) —— TRPO

HalfCheetah Hopper Walker2D

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
epoch epoch epoch

Figure 3: Median TRPO returns for continuous control environments plotted over epochs.

The results for TRPO are depicted in Interestingly, in the Walker2D environment, we see
that adding parameter noise decreases the performance variance between seeds. This indicates that
parameter noise aids in escaping local optima.

4.2 Does Parameter Space Noise Explore Efficiently?

The environments in the previous section required relatively little exploration. In this section, we
evaluate whether parameter noise enables existing RL algorithms to learn on environments with very
sparse rewards, where uncorrelated action noise generally fails [4,[7].

A scalable toy example We first evaluate parameter noise on a well-known toy problem, following
the setup described by [7] as closely as possible. The environment consists of a chain of V states and
the agent always starts in state so, from where it can either move left or right. In state s;, the agent
receives a small reward of » = 0.001 and a larger reward r = 1 in state s;. Obviously, it is much
easier to discover the small reward in s; than the large reward in s, with increasing difficulty as N

grows. The environment is described in greater detail in[Section A.

Parameter space noise DQN Bootstrapped DQN e-greedy DQN

2000 . . -
1500

1000

St P A TR

I e . PSSR SR R oo

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
chain length chain length chain length

number of episodes

@
3
3

Figure 4: Median number of episodes before considered solved for DQN with different exploration
strategies. Green indicates that the problem was solved whereas blue indicates that no solution was
found within 2 K episodes. Note that less number of episodes before solved is better.

We compare adaptive parameter space noise DQN, bootstrapped DQN, and e-greedy DQN. The
chain length N is varied and for each N three different seeds are trained and evaluated. After each
episode, we evaluate the performance of the current policy by performing a rollout with all noise
disabled (in the case of bootstrapped DQN, we perform majority voting over all heads). The problem
is considered solved if one hundred subsequent rollouts achieve the optimal return. We plot the
median number of episodes before the problem is considered solved (we abort if the problem is still
unsolved after 2 thousand episodes). Full experimental details are available in

shows that parameter space noise clearly outperforms action space noise (which completely
fails for moderately large V) and even outperforms the more computational expensive bootstrapped
DQN.

Continuous control with sparse rewards We now make the continuous control environments
more challenging for exploration. Instead of providing a reward at every timestep, we use environ-
ments that only yield a non-zero reward after significant progress towards a goal. More concretely,
we consider the following environments from rllalﬂ [31]], modified according to [3]: (a) Spar-
seCartpoleSwingup, which only yields a reward if the paddle is raised above a given threshold,
(b) SparseDoublePendulum, which only yields a reward if the agent reaches the upright position, and
(c) SparseHalfCheetah, which only yields a reward if the agent crosses a target distance, (d) Sparse-
MountainCar, which only yields a reward if the agent drives up the hill, (e) SwimmerGather, yields a
positive or negative reward upon reaching targets. For all tasks, we use a time horizon of T' = 500
steps before resetting.

—— adaptive parameter noise =~ —— correlated action noise = uncorrelated action noise —— no noise
SparseCartpoleSwingup SparseDoublePendulum SparseHalfCheetah

0.6
300

04
200

return

0.2
100

0 0.0

20 40 60 80 100
epoch
SparseMountainCar SparseSwimmerGather

20 40 60 80 100 20 40 60 80 100
epoch epoch

Figure 5: Median DDPG returns for environments with sparse rewards plotted over epochs.
We consider both DDPG and TRPO to solve these environments (the exact experimental setup is
described in|Section A.2)). [Figure 5[shows the performance of DDPG, while the results for TRPO have
been moved erall performance is estimated by running each configuration with
five different random seeds, after which we plot the median return (line) as well as the interquartile
range (shaded area).

For DDPG, SparseDoublePendulum seems to be easy to solve in general, with even no noise finding a
successful policy relatively quickly. The results for SparseCartpoleSwingup and SparseMountainCar
are more interesting: Here, only parameter space noise is capable of learning successful policies
since all other forms of noise, including correlated action space noise, never find states with non-
zero rewards. For SparseHalfCheetah, DDPG at least finds the non-zero reward but never learns a
successful policy from that signal. On the challenging SwimmerGather task, all configurations of
DDPG fail.

Our results clearly show that parameter space noise can be used to improve the exploration behavior
of these off-the-shelf algorithms.

4.3 Is RL with Parameter Space Noise more Sample-efficient than ES?

Evolution strategies (ES) are closely related to our approach since both explore by introducing noise
in the parameter space, which can lead to improved exploration behavior [9]. However, ES disregards
temporal information and uses black-box optimization to train the neural network. By combining
parameter space noise with traditional RL algorithms, we can include temporal information as well
rely on gradients computed by back-propagation for optimization while still benefiting from improved
exploratory behavior. We now compare ES and traditional RL with parameter space noise directly.

We compare performance on the 21 ALE games that were used in The performance is
estimated by running 10 episodes for each seed using the final policy with exploration disabled and

*https://github.com/openai/rllab

https://github.com/openai/rllab

computing the median returns. For ES, we use the results obtained by [9]], which were obtained after
training on 1 000 M frames. For DQN, we use the same parameter space noise for exploration that
was previously described and train on 40 M frames. Even though DQN with parameter space noise
has been exposed to 25 times less data, it outperforms ES on 15 out of 21 Atari games (full results
are available in[Appendix D). Combined with the previously described results, this demonstrates that
parameter space noise combines the desirable exploration properties of ES with the sample efficiency
of traditional RL.

5 Related Work

The problem of exploration in reinforcement has been studied extensively. A range of algorithms [32-
34]] have been proposed that guarantee near-optimal solutions after a number of steps that are
polynomial in the number of states, number of actions, and the horizon time. However, in many
real-world reinforcements learning problems both the state and action space are continuous and high
dimensional so that, even with discretization, these algorithms become impractical. In the context of
deep reinforcement learning, a large variety of techniques have been proposed to improve exploration
(1131150 (74135 [36]. However, all are non-trivial to implement and are often computational expensive.

The idea of perturbing the parameters of a policy has been proposed by [10] for policy gradient
methods. The authors show that this form of perturbation generally outperforms random exploration
and evaluate their exploration strategy with the REINFORCE [37]] and Natural Actor-Critic [20]
algorithms. However, their policies are relatively low-dimensional compared to modern deep archi-
tectures, they use environments with low-dimensional state spaces, and their contribution is strictly
limited to the policy gradient case. In contrast, our method is applied and evaluated for both on and
off-policy setting, we use high-dimensional policies, and environments with large state spaces.

Our work is also closely related to evolution strategies (ES, [38,39]), and especially neural evolution
strategies (NES, [8| |40-44]). In the context of policy optimization, our work is closely related to [[11]]
and [12]. More recently, [9] showed that ES can work for high-dimensional environments like Atari
and OpenAl Gym continuous control problems. However, ES generally disregards any temporal
structure that may be present in trajectories and typically suffers from sample inefficiency.

Bootstrapped DQN [[7] has been proposed to aid with more directed and consistent exploration
by using a network with multiple heads, where one specific head is selected at the beginning
of each episode. In contrast, our approach perturbs the parameters of the network directly, thus
achieving similar yet simpler (and as shown in [Section 4.2} sometimes superior) exploration behavior.
Concurrently to our work, [45] have proposed a similar approach that utilizes parameter perturbations
for more efficient exploration.

6 Conclusion

On the one hand, evolutionary methods discard temporal structure, which makes credit assignment
more difficult and results in worse sample-efficiency. On the other hand, traditional RL methods often
rely solely on unstructured action noise. This work shows that combining parameter perturbations
with contemporary on- and off-policy deep RL algorithms such as DQN, DDPG, and TRPO allows
for structured exploration while maintaining the properties of sample efficiency and exploitation of
temporal structure that traditional RL approaches enjoy. We show that parameter noise can be applied
to these off-the-shelf algorithms and often results in improved performance compared to action noise.
Experimental results further demonstrate that using parameter noise allows solving environments
with very sparse rewards, in which action noise is unlikely to succeed. Results also indicate that RL
with parameter noise exploration learns more efficiently than both RL and evolutionary strategies
individually.

References

[1] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel, “#Exploration: A study of count-based exploration for deep reinforcement learning,”
arXiv preprint arXiv:1611.04717, 2016.

(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos, “Count-based exploration
with neural density models,” arXiv preprint arXiv:1703.01310, 2017. [Online]. Available:
http://arxiv.org/abs/1703.01310,

R. Houthooft, X. Chen, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel, “VIME:
Variational information maximizing exploration,” in Advances in Neural Information Process-
ing Systems 29 (NIPS), 2016, pp. 1109-1117. [Online]. Available: http://papers.nips,
cc/paper/6591-vime-variational-information-maximizing-exploration,

J. Achiam and S. Sastry, “Surprise-based intrinsic motivation for deep reinforcement learning,”
arXiv preprint arXiv:1703.01732, 2017.

B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement learning
with deep predictive models,” arXiv preprint arXiv:1507.00814, 2015. [Online]. Available:
http://arxiv.org/abs/1507.00814,

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by self-
supervised prediction,” in ICML, 2017.

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy, “Deep exploration via bootstrapped DQN,”
in Advances in Neural Information Processing Systems 29 (NIPS), 2016, pp. 4026—4034.
[Online]. Available: http://papers.nips.cc/paper/6501-deep-exploration-via-
bootstrapped-dqgn.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber, “Efficient natural evolution strategies,” in
Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal,
Québec, Canada, July 8-12, 2009, 2009, pp. 539-546. DOI: |10.1145/1569901 . 1569976.
[Online]. Available: http://doi.acm.org/10.1145/1569901.1569976,

T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies as a scalable alternative to
reinforcement learning,” arXiv preprint arXiv:1703.03864, 2017. [Online]. Available: http:
//arxiv.org/abs/1703.03864.

T. Riickstie3, M. Felder, and J. Schmidhuber, “State-dependent exploration for policy gradient
methods,” in Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases ECML/PKDD, 2008, pp. 234-249. DOI: |10 . 1007 /978 - 3 - 540 -
87481-2_16| [Online]. Available: http://dx.doi.org/10.1007/978-3-540-87481-
2_16.

J. Kober and J. Peters, “Policy search for motor primitives in robotics,” in Advances in
Neural Information Processing Systems 21 (NIPS), 2008, pp. 849—856. [Online]. Available:
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-
in-roboticsl

F. Sehnke, C. Osendorfer, T. RiickstieB, A. Graves, J. Peters, and J. Schmidhuber, “Parameter-
exploring policy gradients,” Neural Networks, vol. 23, no. 4, pp. 551-559, 2010. DOTI: |10,
1016/j.neunet.2009.12.004. [Online]. Available: http://dx.doi.org/10.1016/j!
neunet.2009.12.004.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015. DO1:(10. 1038/
nature14236. [Online]. Available: http://dx.doi.org/10.1038/nature14236.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” CoRR, vol. abs/1509.02971, 2015.
[Online]. Available: http://arxiv.org/abs/1509.02971.

J. Schulman, S. Levine, P. Abbeel, M. 1. Jordan, and P. Moritz, “Trust region policy op-
timization,” in Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, 2015, pp. 1889—1897. [Online]. Available: http:
//jmlr.org/proceedings/papers/v37/schulmanl5.htmll

R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT Press Cambridge,
1998, vol. 135.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Physical review,
vol. 36, no. 5, p. 823, 1930.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”
in Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2015,
pp. 1889-1897.

http://arxiv.org/abs/1703.01310
http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration
http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration
http://arxiv.org/abs/1507.00814
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn
https://doi.org/10.1145/1569901.1569976
http://doi.acm.org/10.1145/1569901.1569976
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://doi.org/10.1007/978-3-540-87481-2_16
https://doi.org/10.1007/978-3-540-87481-2_16
http://dx.doi.org/10.1007/978-3-540-87481-2_16
http://dx.doi.org/10.1007/978-3-540-87481-2_16
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics
https://doi.org/10.1016/j.neunet.2009.12.004
https://doi.org/10.1016/j.neunet.2009.12.004
http://dx.doi.org/10.1016/j.neunet.2009.12.004
http://dx.doi.org/10.1016/j.neunet.2009.12.004
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1509.02971
http://jmlr.org/proceedings/papers/v37/schulman15.html
http://jmlr.org/proceedings/papers/v37/schulman15.html

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Machine learning, vol. §, no. 3-4, pp. 229-256, 1992.

J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71, no. 7-9, pp. 1180-1190,
2008. DOI:110.1016/j .neucom.2007.11.026. [Online]. Available: http://dx.doi.org/
10.1016/j .neucom.2007.11.026.

S. Kakade, “A natural policy gradient,” Advances in neural information processing systems,
vol. 14, pp. 1531-1538, 2001.

L. J. Ba, R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol. abs/1607.06450, 2016.
[Online]. Available: http://arxiv.org/abs/1607.06450.

T. Riickstie3, M. Felder, and J. Schmidhuber, “State-dependent exploration for policy gradient
methods,” Machine Learning and Knowledge Discovery in Databases, pp. 234-249, 2008.
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114,2013.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environment:
An evaluation platform for general agents,” Journal of Artificial Intelligence Research, vol. 47,
pp- 253-279, 2013. DOI:(10.1613/jair.3912. [Online]. Available: http://dx.doi.org/
10.1613/jair.3912,

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos, “Uni-
fying count-based exploration and intrinsic motivation,” in Advances in Neural Information
Processing Systems 29 (NIPS), 2016, pp. 1471-1479.

H. V. Hasselt, “Double Q-learning,” in Advances in Neural Information Processing Systems 23
(NIPS), 2010, pp. 2613-2621.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv preprint
arXiv:1511.05952, 2015.

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling
network architectures for deep reinforcement learning,” arXiv preprint arXiv:1511.06581,
2015.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“OpenAl gym,” arXiv preprint arXiv:1606.01540, 2016. [Online]. Available: http://arxiv|
org/abs/1606.01540.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforce-
ment learning for continous control,” in Proceedings of the 33rd International Conference on
Machine Learning (ICML), 2016, pp. 1329-1338.

M. J. Kearns and S. P. Singh, “Near-optimal reinforcement learning in polynomial time,”
Machine Learning, vol. 49, no. 2-3, pp. 209-232, 2002. DOI:/10.1023/A:1017984413808.
[Online]. Available: http://dx.doi.org/10.1023/A:1017984413808|

R. I. Brafman and M. Tennenholtz, “R-MAX - A general polynomial time algorithm for near-
optimal reinforcement learning,” Journal of Machine Learning Research, vol. 3, pp. 213-231,
2002. [Online]. Available: http://www. jmlr.org/papers/v3/brafman02a.html,

P. Auer, T. Jaksch, and R. Ortner, “Near-optimal regret bounds for reinforcement learning,” in
Advances in Neural Information Processing Systems 21 (NIPS), 2008, pp. 89-96. [Online].
Available: http://papers.nips.cc/paper/3401-near-optimal - regret - bounds -
for-reinforcement-learning.

S. Sukhbaatar, I. Kostrikov, A. Szlam, and R. Fergus, “Intrinsic motivation and automatic cur-
ricula via asymmetric self-play,” arXiv preprint arXiv:1703.05407, 2017. [Online]. Available:
http://arxiv.org/abs/1703.05407,

I. Osband, B. V. Roy, and Z. Wen, “Generalization and exploration via randomized value
functions,” in Proceedings of the 33nd International Conference on Machine Learning, ICML,
2016, pp. 2377-2386. [Online]. Available: http:// jmlr. org/proceedings/papers/
v48/osband16.html.

R.J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Machine Learning, vol. 8, pp. 229-256, 1992. DO1:/10. 1007 /BF00992696.
[Online]. Available: http://dx.doi.org/10.1007/BF00992696.

I. Rechenberg and M. Eigen, Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologishen Evolution. Frommann-Holzboog Stuttgart, 1973.

10

https://doi.org/10.1016/j.neucom.2007.11.026
http://dx.doi.org/10.1016/j.neucom.2007.11.026
http://dx.doi.org/10.1016/j.neucom.2007.11.026
http://arxiv.org/abs/1607.06450
https://doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1023/A:1017984413808
http://dx.doi.org/10.1023/A:1017984413808
http://www.jmlr.org/papers/v3/brafman02a.html
http://papers.nips.cc/paper/3401-near-optimal-regret-bounds-for-reinforcement-learning
http://papers.nips.cc/paper/3401-near-optimal-regret-bounds-for-reinforcement-learning
http://arxiv.org/abs/1703.05407
http://jmlr.org/proceedings/papers/v48/osband16.html
http://jmlr.org/proceedings/papers/v48/osband16.html
https://doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

H.-P. Schwefel, Numerische Optimierung von Computermodellen mittels der Evolutionsstrate-
gie. Birkhiuser, Basel Switzerland, 1977, vol. 1.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber, “Stochastic search using the natural
gradient,” in Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, 2009, pp. 1161-1168. DOI: 10|
1145/1553374.1553522, [Online]. Available: http://doi.acm.org/10.1145/15563374
1553522,

T. Glasmachers, T. Schaul, and J. Schmidhuber, “A natural evolution strategy for multi-
objective optimization,” in Parallel Problem Solving from Nature - PPSN X1, 11th International
Conference, Krakow, Poland, September 11-15, 2010, Proceedings, Part I, 2010, pp. 627-636.
DOI: |10.1007/978-3-642-15844-5_63. [Online]. Available: https://doi.org/10|
1007/978-3-642-15844-5_63.

T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber, “Exponential natural
evolution strategies,” in Genetic and Evolutionary Computation Conference, GECCO 2010,
Proceedings, Portland, Oregon, USA, July 7-11, 2010, 2010, pp. 393-400. DOI: 10.1145/
1830483 . 1830557, [Online]. Available: http://doi.acm.org/10.1145/1830483 |
1830557.

T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and heavy tails for natural
evolution strategies,” in 13th Annual Genetic and Evolutionary Computation Conference,
GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011, 2011, pp. 845-852. DOTI:
10.1145/2001576 . 2001692, [Online]. Available: http://doi.acm.org/10.1145/
2001576.2001692.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, ‘“Natural
evolution strategies,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 949-980,
2014. [Online]. Available: http://dl.acm.org/citation.cfm?id=2638566,

M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D. Has-
sabis, O. Pietquin, et al., “Noisy networks for exploration,” arXiv preprint arXiv:1706.10295,
2017.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

A. Ranganathan, “The Levenberg-Marquardt algorithm,” Tutoral on LM algorithm, pp. 1-5,
2004.

11

https://doi.org/10.1145/1553374.1553522
https://doi.org/10.1145/1553374.1553522
http://doi.acm.org/10.1145/1553374.1553522
http://doi.acm.org/10.1145/1553374.1553522
https://doi.org/10.1007/978-3-642-15844-5_63
https://doi.org/10.1007/978-3-642-15844-5_63
https://doi.org/10.1007/978-3-642-15844-5_63
https://doi.org/10.1145/1830483.1830557
https://doi.org/10.1145/1830483.1830557
http://doi.acm.org/10.1145/1830483.1830557
http://doi.acm.org/10.1145/1830483.1830557
https://doi.org/10.1145/2001576.2001692
http://doi.acm.org/10.1145/2001576.2001692
http://doi.acm.org/10.1145/2001576.2001692
http://dl.acm.org/citation.cfm?id=2638566

A Experimental Setup

A.1 Arcade Learning Environment (ALE)

For ALE [25]], the network architecture as described in [[13]] is used. This consists of 3 convolutional
layers (32 filters of size 8 x 8 and stride 4, 64 filters of size 4 x 4 and stride 2, 64 filters of size 3 x 3
and stride 1) followed by 1 hidden layer with 512 units followed by a linear output layer with one
unit for each action. ReL.Us are used in each layer, while layer normalization [22]] is used in the
fully connected part of the network. For parameter space noise, we also include a second head after
the convolutional stack of layers. This head determines a policy network with the same architecture
as the Q-value network, except for a softmax output layer. The target networks are updated every
10 K timesteps. The @)-value network is trained using the Adam optimizer [46] with a learning rate
of 10~* and a batch size of 32. The replay buffer can hold 1 M state transitions. For the e-greedy
baseline, we linearly anneal € from 1 to 0.1 over the first 1 M timesteps. For parameter space noise,
we adaptively scale the noise to have a similar effect in action space (see for details),
effectively ensuring that the maximum KL divergence between perturbed and non-perturbed 7 is
softly enforced. The policy is perturbed at the beginning of each episode and the standard deviation
is adapted as described in[Appendix C|every 50 timesteps. Notice that we only perturb the policy
head after the convolutional part of the network (i.e. the fully connected part, which is also why
we only include layer normalization in this part of the network). To avoid getting stuck (which can
potentially happen for a perturbed policy), we also use e-greedy action selection with e = 0.01. In all
cases, we perform 50 K random actions to collect initial data for the replay buffer before training
starts. We set v = 0.99, clip rewards to be in [—1, 1], and clip gradients for the output layer of @
to be within [—1, 1]. For observations, each frame is down-sampled to 84 x 84 pixels, after which
it is converted to grayscale. The actual observation to the network consists of a concatenation of 4
subsequent frames. Additionally, we use up to 30 noop actions at the beginning of the episode. This
setup is identical to what is described by [/13]].

A.2 Continuous Control

For DDPG, we use a similar network architecture as described by [14]: both the actor and critic use
2 hidden layers with 64 ReLLU units each. For the critic, actions are not included until the second
hidden layer. Layer normalization [22] is applied to all layers. The target networks are soft-updated
with 7 = 0.001. The critic is trained with a learning rate of 10~3 while the actor uses a learning
rate of 10~%. Both actor and critic are updated using the Adam optimizer [46] with batch sizes of
128. The critic is regularized using an L2 penalty with 10~2. The replay buffer holds 100 K state
transitions and v = 0.99 is used. Each observation dimension is normalized by an online estimate of
the mean and variance. For parameter space noise with DDPG, we adaptively scale the noise to be
comparable to the respective action space noise (see[Section C.2). For dense environments, we use
action space noise with o = 0.2 (and a comparable adaptive noise scale). Sparse environments use
an action space noise with o = 0.6 (and a comparable adaptive noise scale).

TRPO uses a step size of dx;, = 0.01, a policy network of 2 hidden layers with 32 tanh units for the
nonlocomotion tasks, and 2 hidden layers of 64 tanh units for the locomotion tasks. The Hessian
calculation is subsampled with a factor of 0.1, v = 0.99, and the batch size per epoch is set to
5 K timesteps. The baseline is a learned linear transformation of the observations.

The following environments from OpenAl Gyrrﬂ [30] are used:

o HalfCheetah (S C R'", A C RY),

e Hopper (S C R, A C R?),

o InvertedDoublePendulum (S C R, A C R),
o InvertedPendulum (S C R*, A C R),

e Reacher (S C R, A C R?),

o Swimmer (S C R®, A C R?), and

o Walker2D (S C R'7, A C RY).

https://github.com/openai/gym

12

https://github.com/openai/gym

For the sparse tasks, we use the following environments from rllatﬂ [31]], modified as described by
[31:

o SparseCartpoleSwingup (S C R*, A C R), which only yields a reward if the paddle is
raised above a given threshold,

e SparseHalfCheetah (S C R'7, A C RY), which only yields a reward if the agent crosses a
distance threshold,

e SparseMountainCar (S C R?, A C R), which only yields a reward if the agent drives up
the hill,

e SparseDoublePendulum (S C R®, A C R), which only yields a reward if the agent reaches
the upright position, and

o SwimmerGather (S C R33, A C R?), which yields a positive or negative reward upon
reaching targets.

A.3 Chain Environment

We follow the state encoding proposed by [7] and use ¢(s;) = (1{z < s:}) as the observation,
where 1 denotes the indicator function. DQN is used with a very simple network to approximate the
(2-value function that consists of 2 hidden layers with 16 ReL.U units. Layer normalization [22] is
used for all hidden layers before applying the nonlinearity. Each agent is then trained for up to 2K
episodes. The chain length NV is varied and for each /V three different seeds are trained and evaluated.
After each episode, the performance of the current policy is evaluated by sampling a trajectory with
noise disabled (in the case of bootstrapped DQN, majority voting over all heads is performed). The
problem is considered solved if one hundred subsequent trajectories achieve the optimal episode

return. depicts the environment.

Y
. o . SN ’:1

Figure 6: Simple and scalable environment to test for exploratory behavior [7]].

We compare adaptive parameter space noise DQN, bootstrapped DQN [7] (with K = 20 heads and
Bernoulli masking with p = 0.5), and e-greedy DQN (with € linearly annealed from 1.0 to 0.1 over
the first one hundred episodes). For adaptive parameter space noise, we only use a single head and
perturb () directly, which works well in this setting. Parameter space noise is adaptively scaled so
that 6 ~ 0.05. In all cases, v = 0.999, the replay buffer holds 100 K state transitions, learning starts
after 5 initial episodes, the target network is updated every 100 timesteps, and the network is trained
using the Adam optimizer [46] with a learning rate of 10~3 and a batch size of 32.

B Parameter Space Noise for On-policy Methods

Policy gradient methods optimize E, () [R(7)]. Given a stochastic policy my(als) with 6 ~

N(¢,X), the expected return can be expanded using likelihood ratios and the reparametrization
trick [24] as

Vg sE[R(T)] = Vg sEon(o,x) lz p(T0)R(T) 3)
=Ecn0nVox | Y p(T]é+eSH)R(7) @)

T—1
= Een0,1),7 Z Vg xlogm(as|ss; ¢+ €X2)Ry(T))

=0

Shttps://github.com/openai/rllab

13

https://github.com/openai/rllab

T-1

Z Vs logm(as|se; ¢ + €i2%)Rt(Ti)
pary

1
zﬁz

€, T

(6)

for N samples ¢! ~ N(0,1) and 7¢ ~ (7r¢+6izé,p), with R(7%) = S,,_, 4" ~*ri,. This also

allows us to subtract a variance-reducing baseline b, leading to

N
t=0

i 1
€, T

T-1
Vo sE-[R(T)] ~ i Z [Z Vs logm(as]se; ¢ + €N (Ry(r') — bi)l : (7

In our case, we set X := ¢2] and use our proposed adaption method to re-scale as appropriate.

C Adaptive Scaling

Parameter space noise requires us to pick a suitable scale o. This can be problematic since the scale
will highly depend on the specific network architecture, and is likely to vary over time as parameters
become more sensitive as learning progresses. Additionally, while it is easy to intuitively grasp the
scale of action space noise, it is far harder to understand the scale in parameter space.

We propose a simple solution that resolves all aforementioned limitations in an easy and straight-
forward way. This is achieved by adapting the scale of the parameter space noise over time, thus
using a time-varying scale oy. Furthermore, oy, is related to the action space variance that it induces,
and updated accordingly. Concretely, we use the following simple heuristic to update o, every K
timesteps:

®)

1

S o ifd(m,7) < ¢
k1 =0k, otherwise,

where d(-, -) denotes some distance between the non-perturbed and perturbed policy (thus measuring
in action space), a € R+ is used to rescale oy, and § € R~ denotes some threshold value. This idea
is based on the Levenberg-Marquardt heuristic [47]]. The concrete distance measure and appropriate
choice of § depends on the policy representation. In the following sections, we outline our choice
of d(+, -) for methods that do (DDPG and TRPO) and do not (DQN) use behavioral policies. In our
experiments, we always use a = 1.01.

C.1 A Distance Measure for DQN

For DQN, the policy is defined implicitly by the ()-value function. Unfortunately, this means that a

naive distance measure between) and () has pitfalls. For example, assume that the perturbed policy
has only changed the bias of the final layer, thus adding a constant value to each action’s)-value. In
this case, a naive distance measure like the norm ||Q — Q||» would be nonzero, although the policies
7 and 7 (implied by) and @, respectively) are exactly equal. This equally applies to the case where
DQN as two heads, one for) and one for 7.

We therefore use a probabilistic formulatimﬂ for both the non-perturbed and perturbed
policies: 7,7 :S x A+ [0,1] by applying the softmax function over predicted @) values:
7(s) = expQi(s)/>_,; exp Q;(s), where Q;(-) denotes the Q-value of the i-th action. 7 is defined

analogously but uses the perturbed () instead (or the perturbed head for 7). Using this probabilistic
formulation of the policies, we can now measure the distance in action space:

d(m, 7) = Dxv(r || 7),)

where Dk (- || -) denotes the Kullback-Leibler (KL) divergence. This formulation effectively
normalizes the Q-values and therefore does not suffer from the problem previously outlined.

We can further relate this distance measure to e-greedy action space noise, which allows us to fairly
compare the two approaches and also avoids the need to pick an additional hyperparameter §. More

"It is important to note that we use this probabilistic formulation only for the sake of defining a well-behaved
distance measure. The actual policy used for rollouts is still deterministic.

14

concretely, the KL divergence between a greedy policy 7(s,a) = 1 for a = argmax,,, Q(s,a’) and
7(s,a) = 0 otherwise and an e-greedy policy 7(s,a) =1 — e+ ra fora = argmax,,, Q(s,a’) and
m(s,a) = ra otherwise is Dy (m || 7) = —log (1 —e+ ﬁ) where |A| denotes the number of
actions (this follows immediately from the definition of the KL divergence for discrete probability
distributions). We can use this distance measure to relate action space noise and parameter space
noise to have similar distances, by adaptively scaling ¢ so that it matches the KL divergence between
greedy and e-greedy policy, thus setting 6 := —log (1 — ¢ + ‘Tfl)

C.2 A Distance Measure for DDPG

For DDPG, we relate noise induced by parameter space perturbations to noise induced by additive
Gaussian noise. To do so, we use the following distance measure between the non-perturbed and
perturbed policy:

1 N
d(m,®) = \| 7 2 Es [(ﬂ(s)if%(s)i)ﬂ, (10)

where E,[] is estimated from a batch of states from the replay buffer and N denotes the dimension of
the action space (i.e. A C RY). Itis easy to show that d(7, 7 + N(0,021)) = o. Setting § := o as
the adaptive parameter space threshold thus results in effective action space noise that has the same
standard deviation as regular Gaussian action space noise.

C.3 A Distance Measure for TRPO

In order to scale the noise for TRPO, we adapt the sampled noise vectors eo by computing a natural
step H'eo. We essentially compute a trust region around the noise direction to ensure that the
perturbed policy 7 remains sufficiently close to the non-perturbed version via

Esnps [Dx(mg(-|8)[ma(-]5))] < k.

Concretely, this is computed through the conjugate gradient algorithm, combined with a line search
along the noise direction to ensure constraint conformation, as described in Appendix C of [|15].

D Additional Results on ALE

provide the learning curves for all 21 Atari games.

Table I|compares the final performance of ES after 1 000 M frames to the final performance of DQN
with e-greedy exploration and parameter space noise exploration after 40 M frames. In all cases, the
performance is estimated by running 10 episodes with exploration disabled. We use the numbers
reported by [9] for ES and report the median return across three seeds for DQN.

15

—— parameter noise, separate policy head ~ —— e-greedy, separate policy head ~ —— e-greedy

Alien Amidar BankHeist BeamRider Breakout
400 10000
1500 8 a0 600 7500 300
€
3 1000 200 400 5000 200
200 100
500 100 2500
0 0 0 0
Enduro Freeway Frostbite Gravitar MontezumaRevenge
30 1000 300
1500 260 06
20 750
g 1000 200 04
e 50 150
500 o 02
’ 250 100
0 0 0o
Pitfall Pong PrivateEye Qbert Seaquest
0 20 10000
6000
200 10 1000 7500
€
g 4000
] 0 5000
@ -400 500
-10 0 2000 2500
-600
20 0 0
Solaris Spacelnvaders Tutankham Venture
2500 200
30
2000 .
150 2000 2/
£ 1500
2 100 4
£ 1000
500 A Ut 1000 ~
50 o il 1
500 ™
s)
o 0
1 2 3 4 0 1 2 3 4 0 1 2 3 4
XX steps. 1e7 steps 1e7 e steps 1e7
8000
6000
€
5
£ 4000

2000

Figure 7: Median DQN returns for all ALE environment plotted over training steps.

Table 1: Performance comparison between Evolution Strategies (ES) as reported by [9], DQN with
e-greedy, and DQN with parameter space noise (this paper). ES was trained on 1 000 M, while DQN
was trained on only 40 M frames.

Game ES DOQN w/ e-greedy DQN w/ param noise
Alien 994.0 1535.0 2070.0
Amidar 112.0 281.0 403.5
BankHeist 225.0 510.0 805.0
BeamRider 744.0 8184.0 7884.0
Breakout 9.5 406.0 390.5
Enduro 95.0 1094 1672.5
Freeway 31.0 32.0 31.5
Frostbite 370.0 250.0 1310.0
Gravitar 805.0 300.0 250.0
MontezumaRevenge 0.0 0.0 0.0
Pitfall 0.0 -73.0 -100.0
Pong 21.0 21.0 20.0
PrivateEye 100.0 133.0 100.0
Qbert 147.5 7625.0 7525.0
Seaquest 1390.0 8335.0 8920.0
Solaris 2090.0 720.0 400.0
Spacelnvaders 678.5 1000.0 1205.0
Tutankham 130.3 109.5 181.0
Venture 760.0 0 0
WizardOfWor 3480.0 2350.0 1850.0
Zaxxon 6380.0 8100.0 8050.0

16

E Additional Results on Continuous Control with Shaped Rewards

For completeness, we provide the plots for all evaluated environments with dense rewards. The

results are depicted in[Figure 8]

—— adaptive parameter noise ~ —— correlated action noise —— uncorrelated action noise —— no noise

HalfCheetah Hopper InvertedDoublePendulum

5000 1400

4000 1200
1000

£ 3000

El 800

2 2000 500

1000 400

InvertedPendulum Reacher Swimmer

1000
800

600

return

400

20 40 60 80 100

Walker2d

2500

2000

1500

return

1000

500

20 40 60 80 100

Figure 8: Median DDPG returns for all evaluated environments with dense rewards plotted over
epochs.

The results for InvertedPendulum and InvertedDoublePendulum are very noisy due to the fact
that a small change in policy can easily degrade performance significantly, and thus hard to read.
Interestingly, adaptive parameter space noise achieves the most stable performance on Inverted-
DoublePendulum. Overall, performance is comparable to other exploration approaches. Again, no
noise in either the action nor the parameter space achieves comparable results, indicating that these
environments combined with DDPG are not well-suited to test for exploration.

F Additional Results on Continuous Control with Sparse Rewards

The performance of TRPO with noise scaled according to the parameter curvature, as defined in
Section [C.3]is shown in [Fig 9 The TRPO baseline uses only action noise by using a policy
network that outputs the mean of a Gaussian distribution, while the variance is learned. These results
show that adding parameter space noise aids in either learning much more consistently on these
challenging sparse environments.

17

—— TRPO with adaptive parameter noise (5=0.01) = TRPO with adaptive parameter noise (5=0.1) = TRPO with adaptive parameter noise (5= 1.0) ~—— TRPO

SparseCartPoleSwingup SparseDoublePendulum SparseHallCheetah SparseMountainCar
005 10
004 08
003 06
|
0.02 04
001 02
0.00 00
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
epoch epoch epoch

Figure 9: Median TRPO returns with three different environments with sparse rewards plotted over
epochs.

18

	Introduction
	Background
	Off-policy Methods
	On-policy Methods

	Parameter Space Noise for Exploration
	Experiments
	Comparing Parameter Space Noise to Action Space Noise
	Does Parameter Space Noise Explore Efficiently?
	Is RL with Parameter Space Noise more Sample-efficient than ES?

	Related Work
	Conclusion
	Experimental Setup
	Arcade Learning Environment (ALE)
	Continuous Control
	Chain Environment

	Parameter Space Noise for On-policy Methods
	Adaptive Scaling
	A Distance Measure for DQN
	A Distance Measure for DDPG
	A Distance Measure for TRPO

	Additional Results on ALE
	Additional Results on Continuous Control with Shaped Rewards
	Additional Results on Continuous Control with Sparse Rewards

