Causal Discovery

Adapted from ${\it CAUSALITY}[1]$ chapter 2

Ofek Gila¹

¹University of California, Irvine

February 2022

Table of Contents

Motivation

2 Introduction

References

I would rather discover one cause than gain the kingdom of Persia.
—Democritus (460-370 B.C.)[2]

I would rather discover one cause than gain the kingdom of Persia.
—Democritus (460-370 B.C.)[2]

• Heavily sought after in 1700s

I would rather discover one cause than gain the kingdom of Persia.
—Democritus (460-370 B.C.)[2]

- Heavily sought after in 1700s
- Feasibly computable in mid-1980s

I would rather discover one cause than gain the kingdom of Persia.
—Democritus (460-370 B.C.)[2]

- Heavily sought after in 1700s
- Feasibly computable in mid-1980s

Why take so long?

I would rather discover one cause than gain the kingdom of Persia.
—Democritus (460-370 B.C.)[2]

- Heavily sought after in 1700s
- Feasibly computable in mid-1980s

Why take so long?

Statistical associations $\not\rightarrow$ Causation

- ullet Statistical associations $ot \rightarrow$ Causation
- Statistical associations suggest Causation?

- Statistical associations suggest Causation?
- What clues allow people perceive causal relationships from uncontrolled observations?

- Statistical associations suggest Causation?
- What clues allow people perceive causal relationships from uncontrolled observations?
- What assumptions would allow us to infer causal models from these clues?

- Statistical associations suggest Causation?
- What clues allow people perceive causal relationships from uncontrolled observations?
- What assumptions would allow us to infer causal models from these clues?
- Will the inferred models be useful?

Table of Contents

Motivation

2 Introduction

3 References

- Autonomous intelligent system
 - Requires workable environment model

- Autonomous intelligent system
 - Requires workable environment model
- Cannot be preprogrammed w/ all causal knowledge

- Autonomous intelligent system
 - Requires workable environment model
- Cannot be preprogrammed w/ all causal knowledge
- Must rely on direct observations

- Autonomous intelligent system
 - Requires workable environment model
- Cannot be preprogrammed w/ all causal knowledge
- Must rely on direct observations
- Is this possible?

- Autonomous intelligent system
 - Requires workable environment model
- Cannot be preprogrammed w/ all causal knowledge
- Must rely on direct observations
- Is this possible?

No?

Covariation → Causation

- Autonomous intelligent system
 - Requires workable environment model
- Cannot be preprogrammed w/ all causal knowledge
- Must rely on direct observations
- Is this possible?

No?

Covariation → Causation

Yes?

But humans do it!

• Temporal precedence?

- Temporal precedence?
- $t_{\text{cause}} < t_{\text{effect}}$

- Temporal precedence?
- $t_{\rm cause} < t_{\rm effect}$

Thought experiment

Let A and B be dependent. Let $t_A < t_B$. Does $A \rightarrow B$?

- Temporal precedence?
- $t_{\text{cause}} < t_{\text{effect}}$

Thought experiment

Let A and B be dependent. Let $t_A < t_B$. Does $A \rightarrow B$?

No!

- A is rooster crowing, B is sun going up
- A is barometer falling, B is it raining outside

• Patterns indicative of causal directionality?

Patterns indicative of causal directionality?

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

Patterns indicative of causal directionality?

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

A and B independently cause C, i.e., $A \rightarrow B \leftarrow C$

Patterns indicative of causal directionality?

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

A and B independently cause C, i.e., $A \rightarrow B \leftarrow C$

Can B cause A and C?

Patterns indicative of causal directionality?

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

A and B independently cause C, i.e., $A \rightarrow B \leftarrow C$

Can B cause A and C?

Yes but...

Patterns indicative of causal directionality?

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

A and B independently cause C, i.e., $A \rightarrow B \leftarrow C$

Can B cause A and C?

Yes but...

• Some patterns suggest causality

Framework

Definition

A causal structure of a set of variables V is a directed acyclic graph in which each node corresponds to a distinct element in V, and each link represents a direct functional relationship among the corresponding variables.

Framework

Definition

A causal structure of a set of variables V is a directed acyclic graph in which each node corresponds to a distinct element in V, and each link represents a direct functional relationship among the corresponding variables.

Definition

A causal model is a pair $M = \langle D, \Theta_D \rangle$ consisting of a causal structure D and a set of parameters Θ_D compatible with D. The parameters Θ_D assign a function $x_i = f_i(pa_i, u_i)$ for each X_i in D and where U_i is a random disturbance distributed according to $P(u_i)$ independently of all other u.

Unbounded number of models

- Unbounded number of models
- How to choose?

- Unbounded number of models
- How to choose? Occam's razor

- Unbounded number of models
- How to choose? Occam's razor
- Pick the simplest model

- Unbounded number of models
- How to choose? Occam's razor
- Pick the simplest model

Definition

A latent structure is a pair $L = \langle D, O \rangle$, where D is a causal structure over V and where $O \subseteq V$ is a set of observed variables.

Model Preference I

- Unbounded number of models
- How to choose? Occam's razor
- Pick the simplest model

Definition

A latent structure is a pair $L = \langle D, O \rangle$, where D is a causal structure over V and where $O \subseteq V$ is a set of observed variables.

Definition

One latent structure $L=\langle D,O\rangle$ is preferred to another $L'=\langle D',O\rangle$ $(L\preceq L')$ if and only if D' can mimic D over O. Two latent structures are equal $(L\equiv L')$ if and only if $L\preceq L'$ and $L\succeq L'$

Model Preference II

Definition

One latent structure $L=\langle D,O\rangle$ is preferred to another $L'=\langle D',O\rangle$ $(L\preceq L')$ if and only if D' can mimic D over O. Two latent structures are equal $(L\equiv L')$ if and only if $L\preceq L'$ and $L\succeq L'$

Model Preference II

Definition

One latent structure $L=\langle D,O\rangle$ is preferred to another $L'=\langle D',O\rangle$ $(L\preceq L')$ if and only if D' can mimic D over O. Two latent structures are equal $(L\equiv L')$ if and only if $L\preceq L'$ and $L\succeq L'$

Definition

A latent structure L is minimal with respect to a class \mathcal{L} of latent structures if and only if there is no member of \mathcal{L} that is strictly preferred to L.

Model Preference II

Definition

One latent structure $L=\langle D,O\rangle$ is preferred to another $L'=\langle D',O\rangle$ $(L\preceq L')$ if and only if D' can mimic D over O. Two latent structures are equal $(L\equiv L')$ if and only if $L\preceq L'$ and $L\succeq L'$

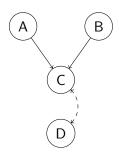
Definition

A latent structure L is minimal with respect to a class \mathcal{L} of latent structures if and only if there is no member of \mathcal{L} that is strictly preferred to L.

Definition

A variable A has a causal influence on variable B if and only if there exists a directed path from A to B om every consistent minimal latent structure.

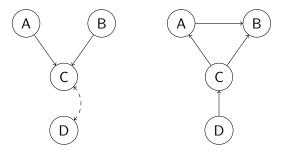
Example


Given the following observations over variables $\{A, B, C, D\}$:

- A is independent of B
- *D* is independent of {*A*, *B*} given *C*
- There is no other independence

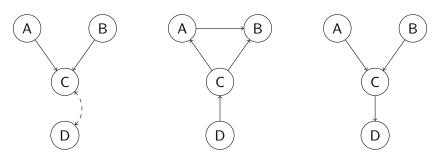
Example

Given the following observations over variables $\{A, B, C, D\}$:

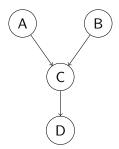

- A is independent of B
- D is independent of $\{A, B\}$ given C
- There is no other independence

Example

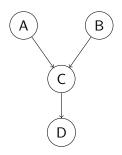
Given the following observations over variables $\{A, B, C, D\}$:

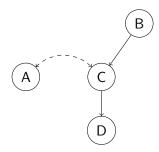

- A is independent of B
- D is independent of $\{A, B\}$ given C
- There is no other independence

Example


Given the following observations over variables $\{A, B, C, D\}$:

- A is independent of B
- D is independent of $\{A, B\}$ given C
- There is no other independence


Example


- A is independent of B
- D is independent of {A, B} given C
- There is no other independence
- Unique minimal structure?

Example

- A is independent of B
- D is independent of $\{A, B\}$ given C
- There is no other independence
- Unique minimal structure? No

Definition

Definition

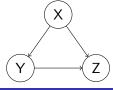
A causal model $M = \langle D, \Theta_D \rangle$ is stable if and only if no independence can be destroyed when varying Θ to a Θ' .

• What does this mean?

Definition

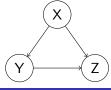
- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - 4 A stool
 - 2 Two stools positioned so that one hides the other

Definition

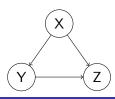

- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal

Definition

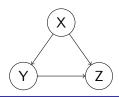
- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc


Definition

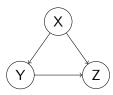
- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc


Definition

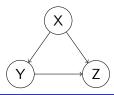
- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc
- What variables are independent?


Definition

- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc
- What variables are independent?
- Let: $z = \gamma x + u_1$, $y = \alpha x + \beta z + u_2$


Definition

- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc
- What variables are independent?
- Let: $z = \gamma x + u_1$, $y = \alpha x + \beta z + u_2$
- What if $\alpha = -\beta \gamma$?


Definition

- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc
- What variables are independent?
- Let: $z = \gamma x + u_1$, $y = \alpha x + \beta z + u_2$
- What if $\alpha = -\beta \gamma$?
- X and Y are independent?

Definition

- What does this mean?
- Suppose you see a stool in a photo. Is it:
 - A stool
 - 2 Two stools positioned so that one hides the other
- Option 1 is a subset of Option 2, minimal
- Option 2 is unstable to viewing angle, environmental conditions, etc
- What variables are independent?
- Let: $z = \gamma x + u_1$, $y = \alpha x + \beta z + u_2$
- What if $\alpha = -\beta \gamma$?
- X and Y are independent? unstable

Homework Problem

Recall:

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

A and B independently cause C, i.e., $A \rightarrow B \leftarrow C$

Can B cause A and C?

Yes but...

Homework Problem

Recall:

Another thought experiment

Let A and B be dependent, B and C be dependent, yet A and C be independent. What is the SCM?

A and B independently cause C, i.e., $A \rightarrow B \leftarrow C$

Can B cause A and C?

Yes but...

Homework

Provide a structural causal model with the above dependencies.

Describe why this model would not be assumed to be the structural causal model using the minimality and stability criteria.

Table of Contents

Motivation

Introduction

References

References I

J. Pearl, Causality.

Cambridge: Cambridge University Press, 2 ed., 2009.

K. Freeman, Ancilla to the Pre-Socratic Philosophers: A Complete Translation of the Fragments in Diels Fragmente Der Vorsokratiker. Forgotten Books, 1948.

Google-Books-ID: ASijgFryr5IC.