Supervised Whole DAG Causal Discovery

Hebi Li, Qi Xiao, Jin Tian Iowa State University

Presented By:
Nitish Nagesh and Kushagra Pandey
University of California, Irvine
Mar 7, 2023

Outline

- Motivation and Problem Setting
- 2. Methodology
 - 2.1. Featurization
 - 2.2. Baseline Models
 - 2.3. Permutation Equivariant Models
 - 2.4. Training and Inference
- 3. Empirical Results
 - 3.1. Evaluation Setup
 - 3.2. Comparison with literature
 - 3.3. Transferability and Ensemble Training
 - 3.4. Real Data Experiment
- 4. Our Perspective

Motivation and Problem Setting

Causal Discovery

 Central Assumption: A Causal Graph is given for Causal Inference (Interventions, Counterfactuals etc)

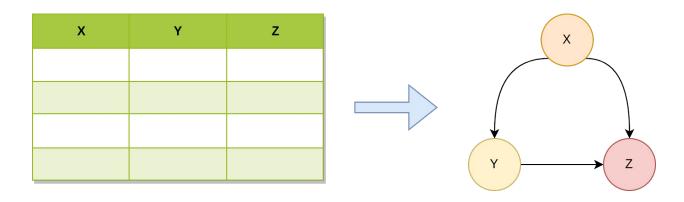
Causal Discovery

- Central Assumption: A Causal Graph is given for Causal Inference (Interventions, Counterfactuals etc)
- However, acquiring a Causal Graph can be expensive! (Can require a lot of domain specific experts, poor scalability)

Causal Discovery

 Central Assumption: A Causal Graph is given for Causal Inference (Interventions, Counterfactuals etc)

Can we learn the structure of the causal graph directly from observational data?



```
Algorithm 1 Greedy Search
  Input: data \boldsymbol{x}, initial graph G
  Compute BIC(G|x) and set BIC<sub>*</sub>=BIC(G|x).
  repeat
    Initialize Improvement = false.
                                                                          Remember this?
    for all graphs G' reachable from G do
                                                                       Ordinal Causal Discovery
      Compute BIC(G'|x).
      if BIC(G'|x) < BIC_{\star} then
         Set G = G' and BIC_{\star} = BIC(G'|x)
         Set Improvement = true.
      end if
    end for
  until Improvement is false
  Output: graph G
```

```
Algorithm 1 Greedy Search
  Input: data \boldsymbol{x}, initial graph G
  Compute BIC(G|x) and set BIC<sub>*</sub>=BIC(G|x).
  repeat
     Initialize Improvement = false.
                                                                               Iterative Inference
    for all graphs G' reachable from G do
       Compute BIC(G'|x).
       if \mathrm{BIC}(G'|\boldsymbol{x}) < \mathrm{BIC}_{\star} then
          Set G = G' and BIC_{\star} = BIC(G'|x)
         Set Improvement = true.
       end if
    end for
  until Improvement is false
  Output: graph G
```

```
Algorithm 1 Greedy Search
  Input: data \boldsymbol{x}, initial graph G
  Compute BIC(G|x) and set BIC<sub>*</sub>=BIC(G|x).
  repeat
    Initialize Improvement = false.
                                                                            Iterative Inference
    for all graphs G' reachable from G do
       Compute BIC(G'|x).
       if \mathrm{BIC}(G'|x) < \mathrm{BIC}_{\star} then
                                                                 Search sensitive to the choice of "score"
         Set G = G' and BIC_{\star} = BIC(G'|x)
         Set Improvement = true.
       end if
    end for
  until Improvement is false
  Output: graph G
```

Existing Methods are expensive during inference and scale poorly

```
Algorithm 1 Greedy Search
  Input: data \boldsymbol{x}, initial graph G
  Compute BIC(G|x) and set BIC<sub>*</sub>=BIC(G|x).
  repeat
    Initialize Improvement = false.
    for all graphs G' reachable from G do
       Compute BIC(G'|x).
       if \mathrm{BIC}(G'|x) < \mathrm{BIC}_{\star} then
         Set G = G' and BIC_{\star} = BIC(G'|x)
         Set Improvement = true.
       end if
    end for
  until Improvement is false
  Output: graph G
```

Score-Based Methods:

- Use a predefined score-function, such as AIC, BIC scores.
- Search in the space of all valid DAGs for the highest possible score via search algorithms.

Existing Methods are expensive during inference and scale poorly

```
Algorithm 1 Greedy Search
  Input: data \boldsymbol{x}, initial graph G
  Compute BIC(G|x) and set BIC_{\star}=BIC(G|x).
  repeat
    Initialize Improvement = false.
    for all graphs G' reachable from G do
      Compute BIC(G'|x).
      if \mathrm{BIC}(G'|x) < \mathrm{BIC}_{\star} then
         Set G = G' and BIC_{\star} = BIC(G'|x)
         Set Improvement = true.
      end if
    end for
  until Improvement is false
  Output: graph G
```

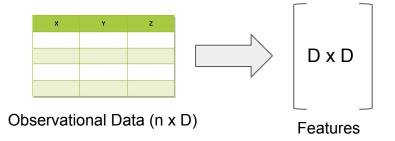
Pairwise Methods:

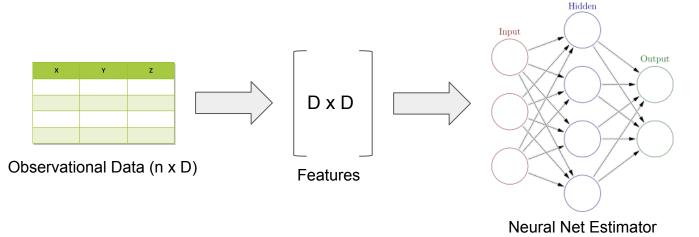
- Infer causal relationships between a pair of variables at a time
- Lack Global context!

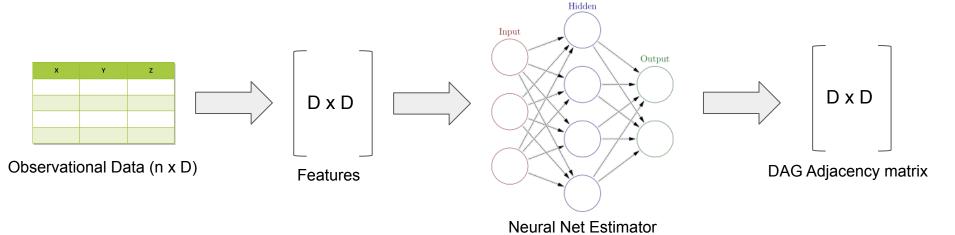
Existing Methods are expensive during inference and scale poorly

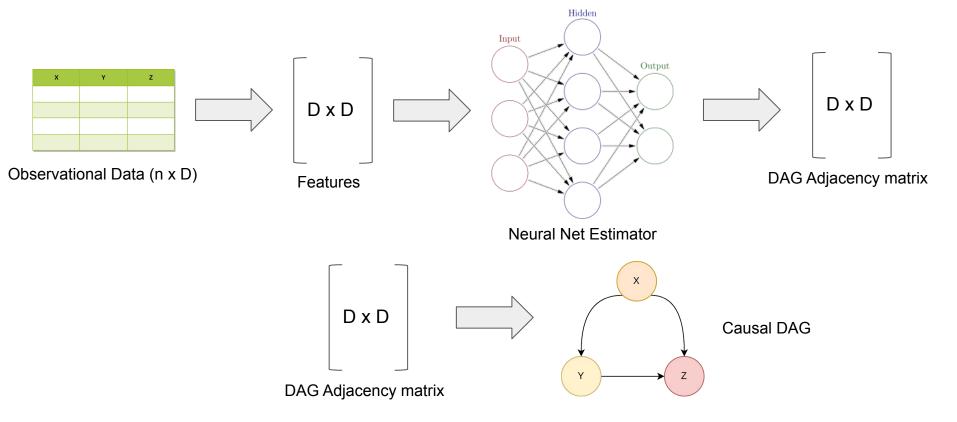
```
Algorithm 1 Greedy Search
  Input: data \boldsymbol{x}, initial graph G
  Compute BIC(G|x) and set BIC<sub>*</sub>=BIC(G|x).
  repeat
    Initialize Improvement = false.
    for all graphs G' reachable from G do
       Compute BIC(G'|x).
       if \mathrm{BIC}(G'|x) < \mathrm{BIC}_{\star} then
         Set G = G' and BIC_{\star} = BIC(G'|x)
         Set Improvement = true.
       end if
    end for
  until Improvement is false
  Output: graph G
```

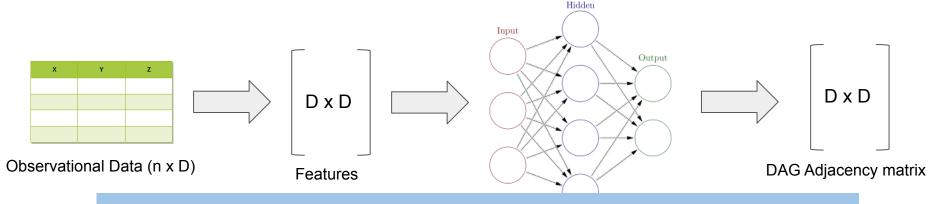
Need Causal Discovery methods which are scalable and in-expensive during inference



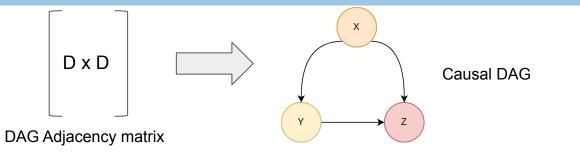








DAG output can be obtained in only a single forward pass from the neural network predictor. This is both in-expensive and scalable during inference.



Formal Problem Setup

For a set of random variables $\{X_1, X_2, \dots X_d\}$ where d is the number of variables, a functional causal model consists of a set of equations of the form:

$$X_i = f_i(pa_i,\epsilon_i)$$

where pa_i are the parents of X_i and ϵ_i is the contribution due to unobserved factors. We further assume the functions f_i to be linear, hence we consider Linear SCM's

Formal Problem Setup

For a set of random variables $\{X_1, X_2, \dots X_d\}$ where d is the number of variables, a functional causal model consists of a set of equations of the form:

$$X_i = f_i(pa_i,\epsilon_i)$$

where pa_i are the parents of X_i and ϵ_i is the contribution due to unobserved factors. We further assume the functions f_i to be linear, hence we consider Linear SCM's

$$X_j = \sum_{i
eq j} c_{ji} X_i + \epsilon_j, \qquad j = 1, \dots d$$
 $c_{ji} = 0 \; ext{ for } \; i < j$

Formal Problem Setup

For a set of random variables $\{X_1, X_2, \dots X_d\}$ where d is the number of variables, a functional causal model consists of a set of equations of the form:

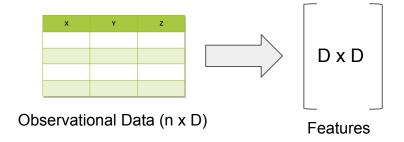
$$X_i = f_i(pa_i,\epsilon_i)$$

where pa_i are the parents of X_i and ϵ_i is the contribution due to unobserved factors. We further assume the functions f_i to be linear, hence we consider Linear SCM's

$$X_j = \sum_{i
eq j} c_{ji} X_i + \epsilon_j, \qquad j = 1, \ldots d$$
 $c_{ji} = 0 \; ext{ for } \; i < j$

Essentially states that we are dealing with DAGs!

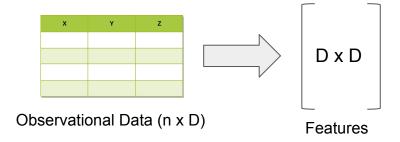
Methodology



Given a set of N observations, compute the Pearson Correlation coefficients between D variables.

$$ho_{X_i,X_j} = rac{\operatorname{cov}(X_i,X_j)}{\sigma_{X_i}\sigma_{X_j}}$$

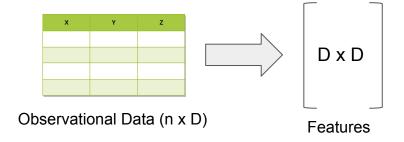
Proposed: Given a set of observations, compute the Pearson Correlation coefficients between the variables. This results in a D x D matrix which can be used as features for model training



Given a set of N observations, compute the Pearson Correlation coefficients between D variables.

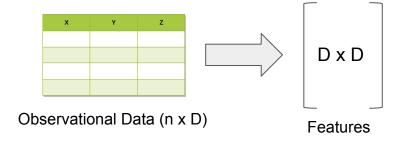
$$ho_{X_i,X_j} = rac{ \overline{\operatorname{cov}(X_i,X_j)} }{ \overline{\sigma_{X_i}\sigma_{X_j}} }$$

Using the covariance matrix alone is not a good proposal since cov(X,Y) is susceptible to the observed covariate values and thus can differ between different observed datasets. This limits transfer learning (More on this later!)



Given a set of N observations, compute the Pearson Correlation coefficients between D variables.

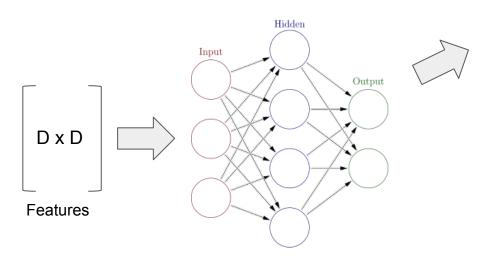
$$ho_{X_i,X_j}=rac{ ext{cov}(X_i,X_j)}{\sigma_{X_i}\sigma_{X_j}}$$
 Normalizes $ext{cov}(\mathsf{X},\mathsf{Y})$ and keeps the features between [-1, 1]



Given a set of n observations, compute the Pearson Correlation coefficients between D variables.

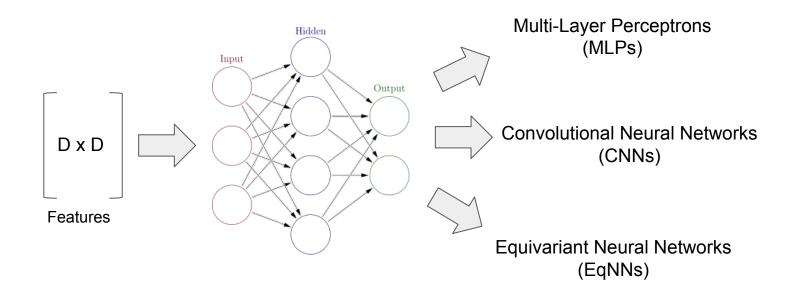
$$ho_{X_i,X_j} = rac{\operatorname{cov}(X_i,X_j)}{\sigma_{X_i}\sigma_{X_j}} \Longrightarrow rac{\operatorname{Overall: From \ th}}{\operatorname{we \ get \ D \ x \ D \ dir}}$$

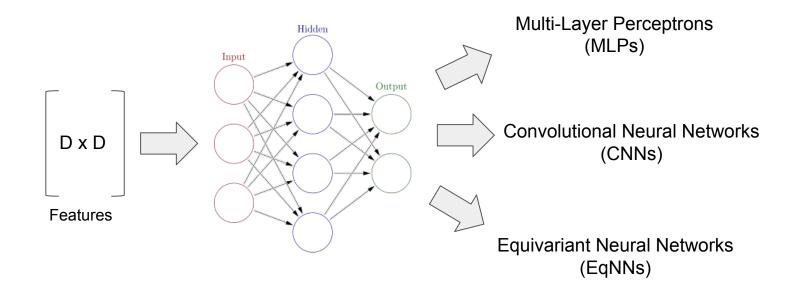
Overall: From the n x D dimensional observed data we get D x D dimensional features.



Multi-Layer Perceptrons (MLPs)

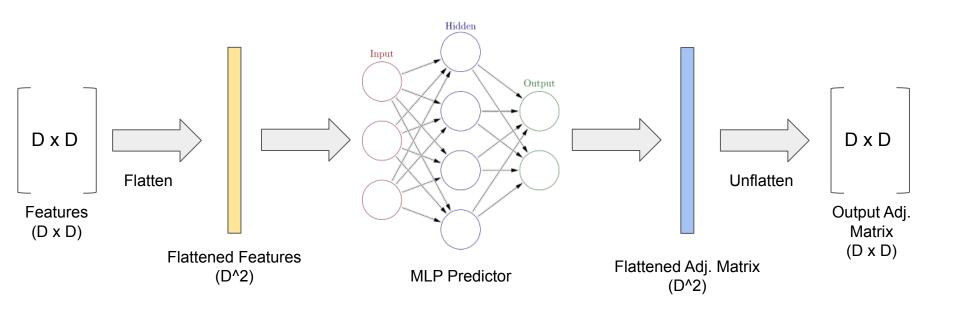




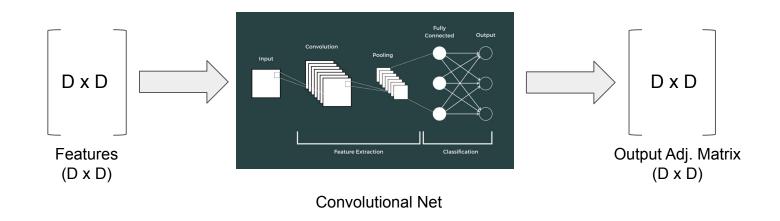


The choice of the neural network architecture impacts performance crucially! (More on this later when discussing results)

Methodology - Proposal-1 - Using MLPs



Methodology - Proposal-2 - Use CNNs

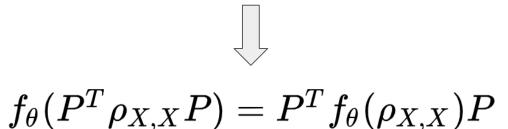


Directly takes the feature matrix as input and outputs a corresponding Adj. Matrix

Image credits: https://www.theclickreader.com/building-a-convolutional-neural-network/

Key Observation: When the input variable order is permuted, the output adjacency matrix should change accordingly with the same permutation applied

Key Observation: When the input variable order is permuted, the output adjacency matrix should change accordingly with the same permutation applied



Key Observation: When the input variable order is permuted, the output adjacency matrix should change accordingly with the same permutation applied

$$f_{ heta}(P^T
ho_{X,X}P)=P^Tf_{ heta}(
ho_{X,X})P$$

Permutation matrix

Key Observation: When the input variable order is permuted, the output adjacency matrix should change accordingly with the same permutation applied

$$f_{ heta}(P^T
ho_{X,X}P)=P^Tf_{ heta}(
ho_{X,X})P$$

How to design the neural network layer so that it is permutation equivariant?

Theorem 3.2 Hartford et al. (2018) Let $f = \sigma(Wvec(X))$. f is an exchangeable matrix layer iff the elements of the parameter matrix W are tied together such that the resulting fully connected layer simplifies to

$$Y = \sigma(w_1 X + w_2 \mathbf{1} \mathbf{1}^T X + w_3 X \mathbf{1} \mathbf{1}^T + w_4 \mathbf{1} \mathbf{1}^T X \mathbf{1} \mathbf{1}^T + b)$$
(8)

where $\mathbf{1} = [1, \dots, 1]^T$ and $w_1, \dots, w_4, b \in \mathbb{R}$

Theorem 3.2 Hartford et al. (2018) Let $f = \sigma(Wvec(X))$. f is an exchangeable matrix layer iff the elements of the parameter matrix W are tied together such that the resulting fully connected layer simplifies to

$$Y = \sigma(w_1 X + w_2 \mathbf{1} \mathbf{1}^T X + w_3 X \mathbf{1} \mathbf{1}^T + w_4 \mathbf{1} \mathbf{1}^T X \mathbf{1} \mathbf{1}^T + b)$$
 (8)

where $\mathbf{1} = [1, \dots, 1]^T$ and $w_1, \dots, w_4, b \in \mathbb{R}$

All these components are Permutation Equivariant. Therefore so is their sum!

Theorem 3.2 Hartford et al. (2018) Let $f = \sigma(Wvec(X))$. f is an exchangeable matrix layer iff the elements of the parameter matrix W are tied together such that the resulting fully connected layer simplifies to

$$Y = \sigma(w_1 X + w_2 \mathbf{1} \mathbf{1}^T X + w_3 X \mathbf{1} \mathbf{1}^T + w_4 \mathbf{1} \mathbf{1}^T X \mathbf{1} \mathbf{1}^T + b)$$
 (8)

where $\mathbf{1} = [1, \dots, 1]^T$ and $w_1, \dots, w_4, b \in \mathbb{R}$

This gives us a roadmap to design full neural networks which are Permutation Equivariant!

Theorem 3.2 Hartford et al. (2018) Let $f = \sigma(Wvec(X))$. f is an exchangeable matrix layer iff the elements of the parameter matrix W are tied together such that the resulting fully connected layer simplifies to

$$Y = \sigma(w_1 X + w_2 \mathbf{1} \mathbf{1}^T X + w_3 X \mathbf{1} \mathbf{1}^T + w_4 \mathbf{1} \mathbf{1}^T X \mathbf{1} \mathbf{1}^T + b)$$
 (8)

where $\mathbf{1} = [1, \dots, 1]^T$ and $w_1, \dots, w_4, b \in \mathbb{R}$

This gives us a roadmap to design full neural networks which are Permutation Equivariant!

Can introduce Permutation Equivariant channels analogous to CNNs

$$L = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{d} \sum_{i=1}^{d} \left[Y_{i,j}^{n} \cdot \log(\widehat{Y}_{i,j}^{n}) + (1 - Y_{i,j}^{n}) \cdot \log(1 - \widehat{Y}_{i,j}^{n}) \right]$$

N Training graphs

$$L = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \sum_{i=1}^{d} \left[Y_{i,j}^{n} \cdot \log(\widehat{Y}_{i,j}^{n}) + (1 - Y_{i,j}^{n}) \cdot \log(1 - \widehat{Y}_{i,j}^{n}) \right]$$

D x D output edges

$$L = -\frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{d} \sum_{i=1}^{d} \left[Y_{i,j}^{n} \cdot \log(\widehat{Y}_{i,j}^{n}) + (1 - Y_{i,j}^{n}) \cdot \log(1 - \widehat{Y}_{i,j}^{n}) \right]$$

Binary Cross Entropy loss for each edge

$$L = -\frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{a} \sum_{i=1}^{a} \left[Y_{i,j}^{n} \cdot \log(\widehat{Y}_{i,j}^{n}) + (1 - Y_{i,j}^{n}) \cdot \log(1 - \widehat{Y}_{i,j}^{n}) \right]$$

Simple Binary Cross-entropy loss applied to all the edges independently

Empirical Results

Evaluation Platform

Programming Language: Julia

Neural Network Library: Flux (Graph Neural Networks)

Source code and pre-trained models: https://github.com/lihebi/DAG-EQ

Desktop specs: Ryzen 3600 6-core 12-thread processors

Graphics card: Nvidia RTX2060-Super

4.1 Evaluation Setup

Evaluation Metrics

$$\begin{array}{cccc} & |\widehat{E} \cap E| & & \widehat{E} & \text{set of} \\ & |\widehat{E}| & & & \widehat{E} & \text{predicted} \\ & & & \text{edges} & & \\ & & |\widehat{E} \cap E| & & & E & \text{set of true} \\ & & |E| & & & \text{edges} & & \\ \end{array}$$

Structural Hamming Distance (SHJD) - smallest number of edge additions, deletions and reversals to convert estimated graph into the true DAG

Synthetic Data Generation

Scale Free (SF) and Erdos-Renyi (ER) Graphs Generate causal graphs close to reality

Number of edges = Number of nodes

Variable settings d = {10, 20, 50, 100}

Sample 1000 random DAGs 80% training, 20% testing

For each DAG, 1000 data points generated based on linear causal model Linear causal model by generating coefficient matrix C_{ij}

$$C_{ij} = \begin{cases} \text{uniformly from}[-0.5-k, -0.5] \cup [0.5, 0.5+k] & \text{if } E_{i \to j} = \text{true} \\ 0 & \text{otherwise} \end{cases}$$

k = hyperparameter that controls scale of the weight matrix

Y_ij = binary adjacency matrix; 0 → edge not present, 1 → edge present

Model Details

Baseline Model:

- DAG-FC
 - 6 fully connected layers
 - Hidden layer size 1024
 - ReLU non-linear activation after each layer

Baseline Model:

- DAG-CNN
 - 6 CNN layers
 - 3x3 kernels with padding size 1
 - Hidden layer size 1024
 - ReLU non-linear
 activation and batch
 normalization after each
 convolutional layer

Proposed Model:

- DAG-EQ
 - 6 equivariant layers of hidden layer 300 channels
 - Leaky ReLU after each layer
 - Sigmoid activation at final layer for output in range [0,1]

Existing methods in comparison

Pairwise supervised models:

RCC = Randomized Causation Coefficient

- RCC-RF = RCC with Random Forest Classifier
- 2. RCC-NN = RCC with fully Neural Network Classifier

Structural learning methods:

- 3. PC = constraint-based PC algorithm
- 4. GES = score-based Greedy Equivalence Score
- 5. CAM = Causal Additive Models

State-of-the-art continuous optimization methods:

- 6. NOTEARS = Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning
- 7. DAG-GNN = Generative Models + Graph Neural Network
- 8. RL-BIC2 = Reinforcement Learning for graph search

4.2 Comparison with literature

DAG-EQ vs DAG-FC & DAG-CNN

Table 1: Comparison with literature, shown scale-free (SF) graph of size d=10,20,50,100

model	d	prec	recall	shd	d	prec	recall	shd
DAG-EQ	10	93.0	94.7	1.1	20	92.3	89.2	3.5
DAG-FC	10	81.7	79.8	3.4	20	49.0	41.6	19.3
DAG-CNN	10	88.7	87.7	2.1	20	82.0	78.4	7.4
RCC-RF	10	17.0	96.7	44.4	20	9.4	97.9	192.6
RCC-NN	10	18.6	68.9	33.2	20	11.9	75.3	122.5
PC	10	26.9	35.6	14.3	20	33.9	47.9	26.9
GES	10	19.5	30.0	15.6	20	19.1	26.3	34.3
CAM	10	7.5	25.6	35.5	20	6.6	30.5	94.3
NOTEARS	10	100.0	100.0	0.0	20	92.8	94.7	2.5
DAG-GNN	10	92.3	88.9	1.7	20	84.8	92.1	5.0
RL-BIC2	10	23.3	50.0	15.5	20	12.5	6.6	19.25
DAG-EQ	50	91.1	67.0	19.4	100	82.3	58.4	53.7
DAG-CNN	50	50.0	43.4	49.0	100	51.3	28.4	97.6
RCC-RF	50 50	3.5	78.8	1113.9	100	2.4	69.5	2800.8
RCC-NN		5.6	63.7	554.1	100	3.1	67.1	2130.8
PC	50	33.8	43.3	68.2	100	34.8	45.5	138.0
GES	50	10.7	15.9	104.6	100	6.9	10.9	233.2
CAM	50	7.6	36.7	249.8	100	7.2	34.3	509.0
NOTEARS	50 50	94.6	97.3	4.2	100	70.6	89.5	49.8
DAG-GNN		82.1	91.2	16.0	100	79.3	87.7	37.8

DAG-EQ better especially for larger sample size compared to DAG-FC and DAG-CNN

DAG-EQ vs Pairwise supervised models

Table 1: Comparison with literature, shown scale-free (SF) graph of size d=10,20,50,100

	model	d	prec	recall	shd		d	prec	recall	shd
	DAG-EQ	10	93.0	94.7	1.1		20	92.3	89.2	3.5
_	DAG-FC DAG-CNN	10 10	81.7 88.7	79.8 87.7	3.4 2.1		20 20	49.0 82.0	41.6 78.4	19.3 7.4
	RCC-RF RCC-NN	10 10	17.0 18.6	96.7 68.9	44.4 33.2		20 20	9.4 11.9	97.9 75.3	192.6 122.5
	PC GES CAM	10 10 10	26.9 19.5 7.5	35.6 30.0 25.6	14.3 15.6 35.5		20 20 20	33.9 19.1 6.6	47.9 26.3 30.5	26.9 34.3 94.3
	NOTEARS DAG-GNN RL-BIC2	10 10 10	100.0 92.3 23.3	100.0 88.9 50.0	0.0 1.7 15.5		20 20 20	92.8 84.8 12.5	94.7 92.1 6.6	2.5 5.0 19.25
	DAG-EQ	50	91.1	67.0	19.4	Ш	100	82.3	58.4	53.7
	DAG-CNN	50	50.0	43.4	49.0		100	51.3	28.4	97.6
	RCC-RF RCC-NN	50 50	3.5 5.6	78.8 63.7	1113.9 554.1		100 100	2.4 3.1	69.5 67.1	2800.8 2130.8
	PC GES CAM	50 50 50	33.8 10.7 7.6	43.3 15.9 36.7	68.2 104.6 249.8		100 100 100	34.8 6.9 7.2	45.5 10.9 34.3	138.0 233.2 509.0
	NOTEARS DAG-GNN	50 50	94.6 82.1	97.3 91.2	4.2 16.0		100 100	70.6 79.3	89.5 87.7	49.8 37.8

RCC-RF and RCC-NN not suited for predicting whole DAG – lack of distinction between direct and indirect effects

DAG-EQ vs Structural Learning Models

Table 1: Comparison with literature, shown scale-free (SF) graph of size d=10,20,50,100

 model	d	prec	recall	shd		d	prec	recall	shd	
DAG-EQ	10	93.0	94.7	1.1		20	92.3	89.2	3.5	
DAG-FC DAG-CNN	10 10	81.7 88.7	79.8 87.7	3.4 2.1		20 20	49.0 82.0	41.6 78.4	19.3 7.4	
RCC-RF RCC-NN	10 10	17.0 18.6	96.7 68.9	44.4 33.2		20 20	9.4 11.9	97.9 75.3	192.6 122.5	
PC GES CAM	10 10 10	26.9 19.5 7.5	35.6 30.0 25.6	14.3 15.6 35.5		20 20 20	33.9 19.1 6.6	47.9 26.3 30.5	26.9 34.3 94.3	
NOTEARS DAG-GNN RL-BIC2	10 10 10	100.0 92.3 23.3	100.0 88.9 50.0	0.0 1.7 15.5		20 20 20	92.8 84.8 12.5	94.7 92.1 6.6	2.5 5.0 19.25	
DAG-EQ	50	91.1	67.0	19.4	П	100	82.3	58.4	53.7	
DAG-CNN	50	50.0	43.4	49.0		100	51.3	28.4	97.6	
RCC-RF RCC-NN	50 50	3.5 5.6	78.8 63.7	1113.9 554.1		100 100	2.4 3.1	69.5 67.1	2800.8 2130.8	_
PC GES CAM	50 50 50	33.8 10.7 7.6	43.3 15.9 36.7	68.2 104.6 249.8		100 100 100	34.8 6.9 7.2	45.5 10.9 34.3	138.0 233.2 509.0	
NOTEARS DAG-GNN	50 50	94.6 82.1	97.3 91.2	4.2 16.0		100 100	70.6 79.3	89.5 87.7	49.8 37.8	

Poor performance of constraint-based methods in large graphs

DAG-EQ vs STOA optimization methods

Table 1: Comparison with literature, shown scale-free (SF) graph of size d=10,20,50,100

_	model	d	prec	recall	shd		d	prec	recall	shd
	DAG-EQ	10	93.0	94.7	1.1		20	92.3	89.2	3.5
	DAG-FC DAG-CNN	10 10	81.7 88.7	79.8 87.7	3.4 2.1		20 20	49.0 82.0	41.6 78.4	19.3 7.4
	RCC-RF RCC-NN	10 10	17.0 18.6	96.7 68.9	44.4 33.2		20 20	9.4 11.9	97.9 75.3	192.6 122.5
	PC GES CAM	10 10 10	26.9 19.5 7.5	35.6 30.0 25.6	14.3 15.6 35.5		20 20 20	33.9 19.1 6.6	47.9 26.3 30.5	26.9 34.3 94.3
	NOTEARS DAG-GNN RL-BIC2	10 10 10	100.0 92.3 23.3	100.0 88.9 50.0	0.0 1.7 15.5		20 20 20	92.8 84.8 12.5	94.7 92.1 6.6	2.5 5.0 19.25
	DAG-EQ	50	91.1	67.0	19.4	Ш	100	82.3	58.4	53.7
	DAG-CNN	50	50.0	43.4	49.0		100	51.3	28.4	97.6
	RCC-RF RCC-NN	50 50	3.5 5.6	78.8 63.7	1113.9 554.1		100 100	2.4 3.1	69.5 67.1	2800.8 2130.8
	PC GES CAM	50 50 50	33.8 10.7 7.6	43.3 15.9 36.7	68.2 104.6 249.8		100 100 100	34.8 6.9 7.2	45.5 10.9 34.3	138.0 233.2 509.0
L	NOTEARS DAG-GNN	50 50	94.6 82.1	97.3 91.2	4.2 16.0		100 100	70.6 79.3	89.5 87.7	49.8 37.8

DAG-EQ performance below SOTA NOTEARS for large d = 100

4.3 Transferability with Ensemble Learning

DAG-EQ trained on different noise models

Transferability: Applying results from one domain to another domain

model	train_noise	test_noise	d	prec	recall	shd	d	prec	recall	shd
DAG-EQ	Gaussian	Gaussian	10	87.2	96.9	1.6	20	86.4	93.9	4.0
	Gaussian									
DAG-EQ	Gaussian	Gumbel	10	92.1	94.4	1.2	20	92.4	87.6	3.7
DAG-EQ	Gaussian	Poisson	10	92.3	94.9	1.2	20	92.4	87.4	3.8

Good performance while testing across different Gaussian and non-Gaussian models

Transferability between causal strengths

								-		
model	rain/k	test/k	d	prec	recall	shd	d	prec	recall	shd
DAG-EQ DAG-EQ DAG-EQ	1	1	10	87.2	96.9	1.6	20	86.4	93.9	4.0
DAG-EQ	1		10	79.4	91.2	2.9	20	75.2	80.9	8.7
DAG-EQ	1	4	10	64.7	72.3	6.1	20	57.9	61.5	15.8
3										

Causal coefficient weight distribution range [-0.5-k, -0.5] U [0.5, 0.5+k] Limited transferability compared to noise level Imperfect alignment between training and test distribution

Transferability between different types of graphs

comparable performance

model	train_gtype	test_gtype	d	prec	recali	shd	d	prec	recall	shd
DAG-EQ	SF	SF	10	87.2	96.9	1.6	20	86.4	93.9	4.0
DAG-EQ	ER	ER	10	72.5	84.1	4.5	20	72.1	80.3	9.9
DAG-EQ	ER	SF	10	82.0	95.4	2.3	20	80.9	84.7	6.7
DAG-EQ	SF	ER	10	69.0	70.9	5.8	20	72.7	62.1	11.9

Transferring to very large graphs

model	d	Pred	TP	prec	recall	shd d	Pred	TP	prec	recall	shd
DAG-EQ GES						53.7 200 242 200	404 431	152 19	37.5 4.4	75.5 9.5	302.17 592
DAG-EQ GES	300	1211 742	232 19	19.1 3.7	75.5 9.2	1058.7 400 980.8 400	2984 1148	330 28	11.1 4.1	73.5 11.6	2796.3 1443.2

Training on d=100, testing on d = 200, 300, 400

As sample size increases, DAG-EQ maintains good precision and recall. For d=400, recall is high but precision is low due to higher number of positive predictions

Overall, GES – lower precision and recall For d=300 and d=400, GES lower SHD; smaller number of edges predicted compared to DAG-EQ.

Ensemble training

model	test_d	test_gtype	prec	recall	shd	test_gtype	prec	recall	shd
DAG-EQ-Ensemble DAG-EQ-Ensemble DAG-EQ-Ensemble	10 15 20	SF SF SF	89.1 88.2 84.8	95.3 95.7 94.7	1.5 2.4 4.2	ER ER ER	72.1 74.3 72.0	66.9 67.5 66.0	5.6 8.1 11.6
DAG-EQ-Ensemble DAG-EQ-Ensemble DAG-EQ-Ensemble	30 50 80	SF SF SF	75.1 58.8 43.4	93.3 90.4 88.6	10.9 35.9 100.2	ER ER ER	68.1 56.0 44.5	68.9 73.3 79.1	18.7 41.8 95.3
DAG-EQ-Ensemble	50	SF	58.8	90.4	35.9	ER	50	5.0	5.0 73.3

Ensemble training on SF graphs with d = 10, 15, 20 Testing on SF & ER graphs with d = 10, 15, 20, 30, 50, 80 Model trained on small graphs works well while tested on larger graphs

4.4 Real Data Experiment

Protein Signal Network [Sachs et al. 2005]

High level dataset overview:

- 853 samples
- ground truth graph 11 nodes and 17 edges
- Ensemble trained DAG-EQ applied

model	predicted edges	correct edges	SHD
DAG-EQ	10	5	16
NOTEARS	20	6	19
RL-BIC2	10	7	11
CAM	10	6	12
DAG-GNN	15	6	16

5. Our Perspective

Summary

- Supervised DAG-EQ scales well to large sample size by training on smaller size
 - faster compute time
 - higher efficiency
 - storage savings
- Novel transferability with mechanism with ensemble learning for synthetic data
 - scalable
 - aids in validation
- DAG-EQ has slightly lower performance compared to state-of-the-art NOTEARS but better than pairwise supervised models like RCC-RF & RCC-NN
 - model fine tuning
 - exploring graph neural networks
- More extensive performance metric evaluation on real-world dataset
 - precision, recall and SHD analysis
- Transitioning from linear causal models to non-linear causal models

Question for the audience

How do you envision integrating supervised learning and causal discovery for real-world datasets and/or your research?

Reach us

Nitish Nagesh <u>nnagesh1@uci.edu</u> Kushagra Pandey <u>pandeyk1@uci.edu</u>