Estimating Identifiable Causal Effects through Double Machine Learning

Yonghan Jung, Jin Tian, Elias Bareinboim

CS295 Presentation by: Chase Overcash (covercas@uci.edu)

Estimating Causal Effects

- Causal Effect P(y|do(x))
 - \circ The effects of doing Action X = x, on Y
- Desire: Compute Causal Effects from non experimental data
- Reason: Experiments can be:
 - Costly
 - Unethical
 - Technically Infeasible
- Two scenarios:
 - Graph-based
 - Causal Graph, G
 - Observational Data, D
 - Data-driven
 - Observational Data, D
 - Learns the Markovian equivalence to causal graphs

Causal Effect Identification

 Given a causal graph - a directed acyclic graph (DAG) with bi-directed edges representing unmeasured confounders

Is P(y|do(x)) uniquely identifiable given G & an observational distribution, P(V)

$$P(y|do(x)) = \frac{\sum_{w} P(x,y|r,w)P(w)}{\sum_{w} P(x|r,w)P(w)}$$
 Plug- in estimator:
$$P(y|do(x)) = \frac{\sum_{w} \hat{P}(x,y|r,w)\hat{P}(w)}{\sum_{w} \hat{P}(x|r,w)\hat{P}(w)}$$

Backdoor (BD) Estimators

Backdoor Criterion:

$$Q = \sum_{z} P(y|x,z)P(z)$$

Backdoor graph				
	Inverse Probability Weight	Regression		
Estimand ($oldsymbol{Q}$)	$\mathbb{E}\left[\frac{I_{x}(X)}{P(X Z)}I_{y}(Y)\right]$	$\mathbb{E}_{\mathbf{z}}[P(y x,Z)]$		
Estimator (Q)	$\frac{1}{N} \sum_{i=1}^{N} \frac{I_{x}(X_{(i)})}{P(X_{(i)} Z_{(i)})} I_{y}(Y_{(i)})$	$\frac{1}{N} \sum_{i=1}^{N} \hat{P}(y x, Z_{(i)})$		
For correct estimation	Nuisance functional should be correctly estimated .			

For \sqrt{N} -consistency

Estimates for nuisances converge at $o_P(N^{-1/2})$.

Risk of Classic Estimators

- Model misspecification => Incorrect Estimation
 - Complicated Data Generation
- Slow convergence => Not Sqrt(N) consistent
 - Machine Learning Models
- Standard Plug-in estimator for the general causal functional estimates suffer from same problems

Double/Debiased Machine Learning (DML) Estimator

Goal: For a given causal graph, develop DML style estimators for any identifiable causal effects

Assumptions: Discreteness, Positivity

Estimand Representation of Q	$\mathbb{E}\left[\frac{I_x(X)}{P(X Z)}\left(I_y(Y) - P(y x,Z)\right) + P(y x,Z)\right]$		
Estimators Estimator Q	$\frac{1}{N} \sum_{i=1}^{N} \frac{I_{x}(X_{(i)})}{P(X_{(i)} Z_{(i)})} (I_{y}$	$P(y x,Z_{(i)}) + P(y x,Z_{(i)})$	where training of <i>P</i> and estimator evaluation are done with two distinct sets of samples (" <i>Cross fitting</i> ")
For correct estimation	("Doubly robustness")	Either one of two nuisances should be correctly estimated.	
For \sqrt{N} -consistency	("Debiasedness")	Estimates for nuisance co	nverges at $o_P(N^{-1/4})$.

DML Recipe (Chernozukov 2016)

DML estimator

- 1. Based on a **Neyman orthogonal score** of the target estimand ψ ; and
- 2. (Cross-fitting) training and evaluating nuisances $\hat{\eta}$ is done with two distinct sets of samples.

Construction of the DML estimator

- Let $\{D_0, D_1\}$ denote the randomly split halves of the dataset D. Let $\widehat{\eta}_k$ denote the estimate of η from D_k for $k \in \{0,1\}$.
- Let T^k denote the solution satisfying $\mathbb{E}_{D_k}\left[\phi(\mathbb{V};\,\widehat{\eta}_{\,1-k},T^k)
 ight]=o_P(N^{1/2})$ where $N\equiv |D|$, and \mathbb{E}_{D_k} denote the empirical expectation over D_k .
- $T \equiv (T^0 + T^1)/2$ is a DML estimator.

Neyman orthogonal score (NOS) ϕ

For the target estimand ψ (e.g., $\psi = P(y|do(x))$) and nuisances η (e.g., $\eta = \{P(y|x,z), P(x|z)\}$), a function $\phi(\mathbf{V}; \eta, \psi)$ is called a **Neyman orthogonal** score if

- 1. (Moment condition) $\mathbb{E}_P[\phi(\mathbf{V}; \psi, \eta_0)] = 0$ where η_0 is the true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_{P}[\phi(\mathbf{V};\psi,\eta)]|_{\eta=\eta_{0}}=0$.

Debiasedness

A DML estimator is \sqrt{N} -consistent whenever η converges to true nuisance at $N^{-1/4}$ rate.

Multi-outcome Sequential BD Criterion (mSBD)

mSBD Criterion (informally): A sequential of Z variables satisfies the mSBD criterion relative to $\{X,Y\}$ if a non-causal path between X_i in X and Y_i in Y are blocked by Z_i conditioned on the previous ones, $\{X^{i-1}, Y^{i-1}, Z^{i-1}\}$

mSBD adjustment (Jung et al 2020): If $\mathbf{Z} = \{Z_1, \cdots, Z_n\}$ satisfies the mSBD criterion relative to (\mathbf{X}, \mathbf{Y}) , $P(\mathbf{y}|do(\mathbf{x})) = \sum_{\mathbf{z}, Y_i \in \mathbf{Y}} P(y_i|\mathbf{x}^{(i)}, \mathbf{z}^{(i)}, \mathbf{y}^{(i-1)}) \prod_{Z_i \in \mathbf{Z}} P(z_i|\mathbf{x}^{(i-1)}, \mathbf{z}^{(i-1)}, \mathbf{y}^{(i-1)}) \equiv M[\mathbf{y}|\mathbf{x}; \mathbf{z}]$

 $\{Z_1, Z_2\}$ satisfies mSBD criterion relative to $\{X_1, X_2\}, \{Y_1, Y_2\}$

$$P(y_1, y_2 | do(x_1, x_2)) = \sum_{z_1, z_2} [P(z_1)P(y_1 | x_1 z_1)P(z_2 | z_1 x_1 y_1)P(y_2 | z_1, x_1, y_1, z_2, x_2)$$

mSBD - Question

$$Z = ?$$

$$P(y, do(x)) = ?$$

mSBD Criterion (informally): A sequential of Z variables satisfies the mSBD criterion relative to $\{X,Y\}$ if a non-causal path between X_i in X and Y_i in Y are blocked by Z_i conditioned on the previous ones, $\{X^{i-1}, Y^{i-1}, Z^{i-1}\}$

Result 1: mSBD Estimator

Neyman orthogonal score for mSBD

$$\phi(\mathbf{V}; \psi, \eta) = \sum_{i=1}^{n} W_i (H_{i+1} - H_i),$$
where

$$H_i = P_{\mathbf{x}}(\mathbf{y}^{\geq i-1}|\mathbf{Z}^{(i-1)},\mathbf{y}^{(i-2)})$$
 and

$$W_{i} = \prod_{p=1}^{i} \frac{I_{x_{p}}(X_{p})}{P(x_{p}|\mathbf{Z}^{(p)}, \mathbf{x}^{(p-1)}, \mathbf{y}^{(p-1)})}$$

DML estimator for mSBD

- (Doubly robust) consistent whenever nuisances in H_i or W_i are correctly estimated; and
- (**Debiased**) \sqrt{N} -consistent whenever nuisances in H_i and W_i converges at $N^{-1/4}$ rate.

$$P_{\mathbf{x}}(\mathbf{y}^{\geq i-1}|\mathbf{Z}^{(i-1)},\mathbf{y}^{(i-2)})I_{y^{(i-2)}}(Y^{(i-2)}) = I_{y^{(i-2)}}(Y^{(i-2)}) \sum_{z^{\geq i+1}} \prod_{k=i-1}^n P(y_k|x^{(k)},y^{(k-1)},z^{(k)}) P(z_k|x^{(k-1)},y^{(k-1)},z^{(k-1)})$$

Revisit ID Algorithm

- C-componet: A set of variables connected by a bi-directed path, for example: $\{V_1, V_3, V_5\}$ and $\{V_2, V_4\}$ from the graph above.
- C-factor: Q[C]: the distribution of C under the intervention, i.e. Q[C] = P(C|do(V\C))
- The distribution can be factorized w.r.t. C-factors:
 - $\hspace{1cm} \circ \hspace{1cm} \mathsf{P}(\mathsf{v}) = \mathsf{Q}[\mathsf{V}_2,\mathsf{V}_4](\mathsf{v}_2,\mathsf{v}_4,\mathsf{v}_1,\mathsf{v}_3) \mathsf{Q}\big[\mathsf{V}_1,\mathsf{V}_3,\mathsf{V}_5\big](\mathsf{v}_1,\mathsf{v}_3,\mathsf{v}_5,\mathsf{v}_2,\mathsf{v}_4) \\$

Revisit ID Algorithm

- 1. Let S_1, S_2, \dots be the C-components of G.
- 2. Let $Q[S_i] = \prod_{V_k \in S_i} P(v_k | v^{(k-1)})$.
- 3. Let $\mathbf{D}_1, \mathbf{D}_2, \dots$ be C-components of $G(\mathbf{D})$ where $\mathbf{D} = An(\mathbf{Y})_{G(\mathbf{V}\setminus\mathbf{X})}$.
- 4. Identify $Q[\mathbf{D}_i]$ from $Q[\mathbf{S}]$ by recursively applying C-factor operations
- 5. $P_{\mathbf{x}}(\mathbf{y}) = \sum_{\mathbf{d} \setminus \mathbf{y}} \prod_{j} Q[\mathbf{D}_{j}]$ if all $Q[\mathbf{D}_{j}]$ is identified, FAIL otherwise.

Revisit ID algorithm cont.

Q = P(y|do(x))

ID algorithm

Q = A(Q[C₁],Q[C₂],...)

C-factors

ID algo.

Q =
$$\frac{\sum_{w}Q[w,X,Y]}{\sum_{w,y}Q[w,X,Y]} = \frac{\sum_{w}P(x,y|r,w)P(w)}{\sum_{w}P(x|r,w)P(w)}$$

Result 2 - DML-ID

Mechanism (C-factors are given by mSBD adjustment):

Derivation of Nevman Orthogonal Score (NOS)

A recursive algorithm for derivation of NOS Given representation of $\mathbf{Q} = \mathbf{A}(M[\mathbf{C}_1], M[\mathbf{C}_2], ..., M[\mathbf{C}_d])$, a Neyman orthogonal score is given as $\sum_{i=1}^d \phi_{M_i} \frac{\partial}{\partial M_i} A(M[\mathbf{C}_1], \cdots, M[\mathbf{C}_d])$ Neyman orthogonal score for the

Result 2 - DML Estimator

Construction of the DML estimator

- Let {D₀, D₁} denote the randomly split halves of the dataset D. Let η̂ k denote the estimate of η from D_k for k ∈ {0,1}.
- Let T^k denote the solution satisfying $\mathbb{E}_{D_k}\left[\phi(\mathbb{V};\,\widehat{\eta}_{1-k},T^k)\right]=o_P(N^{1/2})$ where $N\equiv |D|$, and \mathbb{E}_{D_k} denote the empirical expectation over D_k .
- $T \equiv (T^0 + T^1)/2$ is a DML estimator.

Properties

The proposed estimator is

- robust against model misspecification (doubly robust) and slow convergence (debiased); and
- working for any identifiable causal functional.
 (Complete)

DML Example

$$P(y|do(x)) = \frac{\sum_{w} P(x,y|r,w)P(w)}{\sum_{w} P(x|r,w)P(w)}$$

W is BD admissible w.r.t. $(R, \{X, Y\})$; $M_1 \equiv M[(x, y) | r; w]$

W is BD admissible w.r.t. (R, X) $M_2 \equiv M[x \,|\, r; w]$

$$=A(M_1,M_2)=\frac{M_1}{M_2}$$

Example: NOS

NOS ϕ_{M_i} for M_i , i = 1, 2 are given as

$$\bullet \ \phi_{M_i} \equiv h_{M_i} - \mu_{M_i}$$

•
$$\mu_{M_i} \equiv E[h_{M_i}]$$

$$\bullet \ \mu_{M_i} \equiv E[n_{M_i}]$$

$$h_{M_1} \equiv \frac{I_r(R)}{P(R|W)} (I_{x,y}(X,Y) - P(x,y|R,W)) + P(x,y|r,W)$$

$$h_{M_2} \equiv \frac{I_r(R)}{P(R|W)} (I_x(X) - P(x|R,W)) + P(x|r,W)$$

• NOS
$$\phi(V; \eta, \psi)$$
 for P(y|do(x))

$$\frac{1}{\mu_{M_2}} \left(\phi_{M_1} - \phi_{M_2} \frac{\mu_{M_1}}{\mu_{M_2}} \right)$$

$$\phi(\mathbf{V};\eta,\psi) = \mathcal{V}(\mathbf{V};\eta) - \psi$$
 where

$$\mathcal{V}(\mathbf{V};\eta) \equiv \frac{1}{\mu_{M_2}} \left(h_{M_1} - \phi_{M_2} \frac{\mu_{M_1}}{\mu_{M_2}} \right)$$

Example Empirical Evaluation

(X) (Y)

 $P(y|do(x)) = \frac{\sum_{w} P(x,y|r,w)P(w)}{\sum_{w} P(x|r,w)P(w)}$

DML estimator:

- **Doubly robustness** Correctly estimate P(y|do(x)) if $\eta_1 = P(x,y|r,w)$ or $\eta_2 = P(r|w)$ are correctly estimated.
 - **Debiasedness** \sqrt{N} -consistent if P(x,y|r,w) and P(r|w) converges at $N^{-1/4}$ rate.

Empirical Evaluation

Conclusion

DML estimators are developed for identifiable causal effects that appreciate
the doubly robustness in the case of model misspecification as well as
de-biasedness against biases in nuisance function estimation.

Graph-based

Data-driven

$$Q = P(y|do(x))$$

$$PAG \mathcal{P} \longrightarrow DML - IDP \longrightarrow DML \text{ estimator } Q$$

mSBD - Question covercas@uci.edu

mSBD Criterion (informally): A sequential of Z variables satisfies the mSBD criterion relative to $\{X,Y\}$ if a non-causal path between X_i in X and Y_i in Y are blocked by Z_i conditioned on the previous ones, $\{X^{i-1}, Y^{i-1}, Z^{i-1}\}$

$$P(y, do(x)) = ?$$