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Causal Discovery

Given a causal graph, we can do causal inference. What if we don’t
have the causal graph?

Goal of Causal Discovery: identify the causal graph from data. (Here
we only consider using observational data)
Example:

X : Drug Dose
Y : Treatment Effects
Z : Age
W : Income
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Causal Graph

Definition
Consider a set of random variables X = (X1, . . . ,Xp) with index set
V := {1, . . . , p}. A causal graph of X is a directed acyclic graph (DAG).
Each node corresponds to a single variable Xi , where i ∈ {1, . . . , p} and
each edge represents a direct causal relationship between variables.

Structural Equation Model (SEM)

Xj = fj (PAj ,Nj) , j = 1, . . . , p
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Definitions

Definition: d-separation
Two disjoint subsets of vertices A and B are d-separated by a third (also
disjoint) subset C if every path between nodes in A and B is blocked by C.

Definition: Markov
The joint distribution L(X) is said to be Markov with respect to the DAG
G if

A,B d-sep. by C⇒ A ⊥ B | C

Notation
We denote byM(G) the set of distributions that are Markov with respect
to G:

M(G) := {L(X) : L(X) is Markov w.r.t. G}

.
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Markov Equivalence Class (MEC)

Definition: Markov Equivalent
Two DAGs G1 and G2 are Markov equivalent ifM(G1) =M(G2).

This is the case if and only if G1 and G2 satisfy the same set of
d-separations, which means the Markov condition entails the same set of
(conditional) independence conditions.

Definition: Markov Equivalence Class (MEC)
If the set of DAGs are Markov equivalent to some DAG (e.g., encode the
same set of conditional independence conditions), then they are in the
Markov equivalence class (MEC).
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Example of MEC with 3 Nodes

From https://link.springer.com/article/10.1007/s41060-016-0038-6

Lemma
Two DAGs are Markov equivalent if and only if they have the same skeleton and
the same immoralities.
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Important Facts

Assumption: Faithfulness and Causal Sufficiency
Faithfulness: A,B d-sep. by C⇐ A ⊥ B | C
Causal Sufficiency: There are no unobserved confounders of any of the
variables in the graph.

Facts
Without loss of generality, given the above assumptions and no further
parametric or semi-parametric assumptions, we can only identify the DAG
up to its Markov equivalence class (MEC) from observational data,

But not all further assumptions are helpful. There are a few examples
Linear Gaussian: only identify MEC
Multinomial: only identify MEC
Nonlinear Additive Noise: can identify true DAG ...
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Motivation

While causal discovery for purely observational categorical data has
been extensively studied, the vast majority of existing methods have
exclusively focused on nominal (unordered) categorical variables.

However, many categorical data contain ordinal information.
Example:
psychologists often use questionnaires to measure latent traits such as
personality and depression. The responses to those questionnaires are
often categorical, say, with five levels (5-point Likert scale): “strongly
disagree”, “disagree”, “neutral”, “agree”, and “strongly agree”.
Utilizing ordinal information of categorical data in causal discovery
should be beneficial.
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Bivariate Method

Firstly, an Ordinal Causal Discovery (OCD) method for bivariate data
is introduced. Let (X ,Y ) ∈ {1, . . . ,S} × {1, . . . , L} denote a pair of
ordinal variables with S and L levels.

Model:
The bivariate OCD considers the following probability distribution for
causal model X → Y ,

pX→Y (X ,Y ) = p(X )p(Y | X ),

where p(X )is a multinomial/categorical distribution with probabilities
π = (π1, . . . , πS) with

∑S
s=1 πs = 1, and p(Y | X ) is defined by an

ordinal regression model:

Pr(Y ≤ ` | X = s) = F (γ` − βs) , ` = 1, . . . , L, s = 1, . . . ,S
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Bivariate Method

Above equation implies the conditional probability distribution:

Pr(Y = ` | X = s) = F (γ` − βs)− F (γ`−1 − βs) ,

where γ0 = −∞ and γL =∞.

Let β = (β1, . . . , βS) and γ = (γ2, . . . , γL−1).
We can denote the model pX→Y by pX→Y (X ,Y | π,β,γ)
Similarly, we denote the model pY→X by pY→X (Y ,X | ρ,α,η).
Method: given observations of (X ,Y ), we can get two maximal
likelihood estimates (MLE) p̂X→Y and p̂Y→X .
If p̂X→Y > p̂Y→X , then X → Y is deemed a more likely data
generating causal model.
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Identifiability

Does the joint distribution p(X ,Y ) tell us whether it has been induced by
X to Y or from Y to X? In other words, is the structure identifiable from
the joint distribution?

Definition: Distribution Equivalence
pX→Y (X ,Y | π,β,γ) and pY→X (Y ,X | ρ,α,η) are distribution
equivalent if for any values of (π,β,γ) there exist values of (ρ,α,η) such
that pX→Y (X ,Y | π,β,γ) = pY→X (Y ,X | ρ,α,η) for any X ,Y , and
vice versa.

Distribution equivalent causal models are clearly not distinguishable
from each other by examining their observational distributions.
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Identifiability

Example:
The multinomial causal Bayesian Networks are distribution equivalent.

As the example shows we can find a set of parameters, i.e., the
conditional p(X | Y ) and marginal p(Y ) probabilities of the reverse
causal model Y → X , which leads to the same joint distribution as
the causal model. Therefore, not identifiable.
However, if incorporating the ordinal information, we will show that
pX→Y (X ,Y | π,β,γ) and pY→X (Y ,X | ρ,α,η) are generally not
distribution equivalent and are, therefore, identifiable.
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Identifiability

Theorem (Identifiability of OCD)
Let X ∈ {1, . . . ,S} and Y ∈ {1, . . . , L} where S , L ≥ 2 and
max{S , L} ≥ 3. Suppose X → Y is the data generating causal model and
the observational probability distribution of (X ,Y ) is given by:

p(X ,Y ) = pX→Y (X ,Y | π,β,γ)

For almost all (π,β,γ) with respect to the Lebesgue measure, the
distribution cannot be equivalently represented by the reverse causal model,
i.e., there does not exist (ρ,α,η) such that,

p(X ,Y ) = pY→X (Y ,X | ρ,α,η),∀X ,Y
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Ordinal Bayesian Networks

Given a large enough dataset, in the causal direction, p̂X→Y (X ,Y )
can be arbitrarily close to the true p(X ,Y ). However, there does not
exist any set of parameter values in the reverse causal model
pY→X (Y ,X | ρ,α,η) that produces the conditional p(X | Y ) and
marginal p(Y ) probability such that p̂Y→X (X ,Y ) close p(X ,Y ).

Example: The ordinal causal Bayesian Networks

Therefore, pX→Y (X ,Y | π,β,γ) can be distinguished from
pY→X (Y ,X | ρ,α,η).
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Multivariate Ordinal Causal Discovery

Let X = (X1, . . . ,Xp) ∈ {1, . . . , L1} × · · · × {1, . . . , Lp} denote p ordinal
variables. Let G = (V ,E ) denote a causal BN with a set of nodes
V = {1, . . . , p} directed edges E . Let pa(j) = {k | k → j} ⊆ V denote the
set of parents of node j in G and let X pa(j) = {Xk | k ∈ pa(j)}. Given G ,
the joint distribution of X factorizes,

p(X | G ) =

p∏
j=1

p
(
Xj | X pa(j)

)
,

where each conditional distribution p
(
Xj | X pa(j)

)
is an ordinal regression

model of which the cumulative distribution is given by, for ` = 1, . . . , Lj

Pr
(
Xj ≤ ` | X pa(j)

)
= F

γj` − ∑
k∈pa(j)

βjkXk
− αj


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Multivariate Ordinal Causal Discovery

The implied conditional probability distribution

Pr
(
Xj = ` | X pa(j) = s

)
= F

γj` − ∑
k∈pa(j)

βjkhk − αj

− F

γj ,`−1 −
∑

k∈pa(j)

βjkhk − αj


where ` = 1, . . . , Lj and s ∈

∏
k∈pa(j) {1, . . . , Lk}.
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Causal Graph Structure Learning

A score-and-search learning algorithm is proposed to estimate the structure
of causal graphs.

Score. We score causal graphs by the Bayesian information criterion
(BIC). Let x = (x1, . . . , xn) denote n realizations of X . The score of
G (smaller is better) is given by

BIC(G | x) = −2
n∑

i=1

log p̂ (x i | G ) + K log(n)

Search. Exhaustive Search are utilized for small networks and Greedy
Search is used for moderate-sized networks.
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Greedy Search Algorithm
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Synthetic Data

Let n = 500 and the number of categories L = 5 for each node.
Low-Dimensional Multivariate Ordinal Data

High-Dimensional Multivariate Ordinal Data
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Real Data

Sachs’s Single-Cell Flow Cytometry Data
853 cells and 11 phosphorylated proteins

Single-Cell RNA-Sequencing Data
6701 pairs and 2 variables (transcription factor X and its target Y )
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Homework

1. Explain why identifiability doesn’t hold for Multinomial Bayesian
Networks (Hint: the example from the paper I show).
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Thank you!
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