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SUMMARY

The primary aim of this paper is to show how graphical models can be used as a
mathematical language for integrating statistical and subject-matter information. In par-
ticular, the paper develops a principled, nonparametric framework for causal inference, in
which diagrams are queried to determine if the assumptions available are sufficient for
identifying causal effects from nonexperimental data. If so the diagrams can be queried
to produce mathematical expressions for causal effects in terms of observed distributions;
otherwise, the diagrams can be queried to suggest additional observations or auxiliary
experiments from which the desired inferences can be obtained.

Some key words: Causal inference; Graph model; Structural equations; Treatment effect.

1. INTRODUCTION

The tools introduced in this paper are aimed at helping researchers communicate quali-
tative assumptions about cause-effect relationships, elucidate the ramifications of such
assumptions, and derive causal inferences from a combination of assumptions, experi-
ments, and data.

The basic philosophy of the proposed method can best be illustrated through the classi-
cal example due to Cochran (Wainer, 1989). Consider an experiment in which soil fumi-
gants, X, are used to increase oat crop yields, Y, by controlling the eelworm population,
Z, but may also have direct effects, both beneficial and adverse, on yields beside the control
of eelworms. We wish to assess the total effect of the fumigants on yields when this study
is complicated by several factors. First, controlled randomised experiments are infeasible:
farmers insist on deciding for themselves which plots are to be fumigated. Secondly,
farmers' choice of treatment depends on last year's eelworm population, Zo, an unknown
quantity strongly correlated with this year's population. Thus we have a classical case of
confounding bias, which interferes with the assessment of treatment effects, regardless
of sample size. Fortunately, through laboratory analysis of soil samples, we can determine
the eelworm populations before and after the treatment and, furthermore, because the
fumigants are known to be active for a short period only, we can safely assume that they
do not affect the growth of eelworms surviving the treatment. Instead, eelworm growth
depends on the population of birds and other predators, which is correlated, in turn, with
last year's eelworm population and hence with the treatment itself.

The method proposed in this paper permits the investigator to translate complex con-
siderations of this sort into a formal language, thus facilitating the following tasks,

(i) Explicate the assumptions underlying the model.
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670 JUDEA PEARL

(ii) Decide whether the assumptions are sufficient for obtaining consistent estimates of
the target quantity: the total effect of the fumigants on yields.

(iii) If the answer to (ii) is affirmative, provide a closed-form expression for the target
quantity, in terms of distributions of observed quantities.

(iv) If the answer to (ii) is negative, suggest a set of observations and experiments which,
if performed, would render a consistent estimate feasible.

The first step in this analysis is to construct a causal diagram such as the one given in
Fig. 1, which represents the investigator's understanding of the major causal influences
among measurable quantities in the domain. The quantities ZUZ2 and Z3 denote, respect-
ively, the eelworm population, both size and type, before treatment, after treatment, and
at the end of the season. Quantity Zo represents last year's eelworm population; because
it is an unknown quantity, it is represented by a hollow circle, as is B, the population of
birds and other predators. Links in the diagram are of two kinds: those that connect
unmeasured quantities are designated by dashed arrows, those connecting measured quan-
tities by solid arrows. The substantive assumptions embodied in the diagram are negative
causal assertions, which are conveyed through the links missing from the diagram. For
example, the missing arrow between Zx and Y signifies the investigator's understanding
that pre-treatment eelworms cannot affect oat plants directly; their entire influence on oat
yields is mediated by post-treatment conditions, namely Z2 and Z3. The purpose of the
paper is not to validate or repudiate such domain-specific assumptions but, rather, to test
whether a given set of assumptions is sufficient for quantifying causal effects from non-
experimental data, for example, estimating the total effect of fumigants on yields.

Fig. 1. A causal diagram representing the effect of
fumigants, X, on yields, Y.

The proposed method allows an investigator to inspect the diagram of Fig. 1 and
conclude immediately the following.

(a) The total effect of X on Y can be estimated consistently from the observed distri-
bution of X, Zlt Z2, Z3 and Y.

(b) The total effect of X on Y, assuming discrete variables throughout, is given by the
formula

pr{y\x)= Z E E pr(y|22. Z3> *) prfeUi.x)EP r(zalzi> Z2, *0 pr(zi> *')> (1)
'I *2 *3 x<

where the symbol x, read 'x check', denotes that the treatment is set to level X = x
by external intervention.
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Causal diagrams for empirical research 671

(c) Consistent estimation of the total effect of X on Y would not be feasible if Y were
confounded with Z3; however, confounding Z2 and Y will not invalidate the formula
for pr(yjx).

These conclusions can be obtained either by analysing the graphical properties of the
diagram, or by performing a sequence of symbolic derivations, governed by the diagram,
which gives rise to causal effect formulae such as (1).

The formal semantics of the causal diagrams used in this paper will be defined in § 2,
following a review of directed acyclic graphs as a language for communicating conditional
independence assumptions. Section 2-2 introduces a causal interpretation of directed
graphs based on nonparametric structural equations and demonstrates their use in pre-
dicting the effect of interventions. Section 3 demonstrates the use of causal diagrams to
control confounding bias in observational studies. We establish two graphical conditions
ensuring that causal effects can be estimated consistently from nonexperimental data. The
first condition, named the back-door criterion, is equivalent to the ignorability condition
of Rosenbaum & Rubin (1983). The second condition, named the front-door criterion,
involves covariates that are affected by the treatment, and thus introduces new opportunit-
ies for causal inference. In § 4, we introduce a symbolic calculus that permits the stepwise
derivation of causal effect formulae of the type shown in (1). Using this calculus, §5
characterises the class of graphs that permit the quantification of causal effects from
nonexperimental data, or from surrogate experimental designs.

2. GRAPHICAL MODELS AND THE MANIPULATIVE ACCOUNT OF CAUSATION

2 1 . Graphs and conditional independence
The usefulness of directed acyclic graphs as economical schemes for representing con-

ditional independence assumptions is well evidenced in the literature (Pearl, 1988;
Whittaker, 1990). It stems from the existence of graphical methods for identifying the
conditional independence relationships implied by recursive product decompositions

n (2)
where pat stands for the realisation of some subset of the variables that precede X{ in the
order (Xt, X2,..., Xn). If we construct a directed acyclic graph in which the variables
corresponding to pat are represented as the parents of Xh also called adjacent predecessors
or direct influences of Xh then the independencies implied by the decomposition (2) can
be read off the graph using the following test.

DEFINITION 1 (d-separation). Let X, Y and Z be three disjoint subsets of nodes in a
directed acyclic graph G, and let p be any path between a node in X and a node in Y, where
by 'path' we mean any succession of arcs, regardless of their directions. Then Z is said to
block p if there is a node w on p satisfying one of the following two conditions: (i) w has
converging arrows along p, and neither w nor any of its descendants are in Z, or, (ii) w does
not have converging arrows along p, and w is in Z. Further, Z is said to d-separate X from
Y, in G, written (XAL Y\Z)G, if and only if Z blocks every path from a node in X to a node
in Y.

It can be shown that there is a one-to-one correspondence between the set of conditional
independencies XALY\Z (Dawid, 1979) implied by the recursive decomposition (2), and
the set of triples (X, Z, Y) that satisfy the d-separation criterion in G (Geiger, Verma &
Pearl, 1990).
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672 JUDEA PEARL

An alternative test for d-separation has been given by Lauritzen et al. (1990). To test
for (XALY\Z)G, delete from G all nodes except those in XUYUZ and their ancestors,
connect by an edge every pair of nodes that share a common child, and remove all arrows
from the arcs. Then (X1LY\Z)G holds if and only if Z is a cut-set of the resulting undirected
graph, separating nodes of X from those of Y. Additional properties of directed acyclic
graphs and their applications to evidential reasoning in expert systems are discussed by
Pearl (1988), Lauritzen & Spiegelhalter (1988), Spiegelhalter et al. (1993) and Pearl
(1993a).

2-2. Graphs as models of interventions
The use of directed acyclic graphs as carriers of independence assumptions has also

been instrumental in predicting the effect of interventions when these graphs are given a
causal interpretation (Spirtes, Glymour & Schemes, 1993, p. 78; Pearl, 1993b). Pearl
(1993b), for example, treated interventions as variables in an augmented probability space,
and their effects were obtained by ordinary conditioning.

In this paper we pursue a different, though equivalent, causal interpretation of directed
graphs, based on nonparametric structural equations, which owes its roots to early works
in econometrics (Frisch, 1938; Haavelmo, 1943; Simon, 1953). In this account, assertions
about causal influences, such as those specified by the links in Fig. 1, stand for autonomous
physical mechanisms among the corresponding quantities, and these mechanisms are rep-
resented as functional relationships perturbed by random disturbances. In other words,
each child-parent family in a directed graph G represents a deterministic function

* « = / i ( p a * , £ i ) (i = l , . . . , n ) , ( 3 )

where pa( denote the parents of variable Xt in G, and et (1 < i ̂  n) are mutually indepen-
dent, arbitrarily distributed random disturbances (Pearl & Verma, 1991). These disturb-
ance terms represent exogenous factors that the investigator chooses not to include in the
analysis. If any of these factors is judged to be influencing two or more variables, thus
violating the independence assumption, then that factor must enter the analysis as an
unmeasured, or latent, variable, to be represented in the graph by a hollow node, such as
Zo or B in Fig. 1. For example, the causal assumptions conveyed by the model in Fig. 1
correspond to the following set of equations:

Z2=f2(X,Z1,e2), B = fB(Z0,eB), Z3=f3(B,Z2,e3),

x), Y = fY(X,Z2,Z3,eY), X = fx(Z0,ex).

The equational model (3) is the nonparametric analogue of a structural equations model
(Wright, 1921; Goldberger, 1972), with one exception: the functional form of the equations,
as well as the distribution of the disturbance terms, will remain unspecified. The equality
signs in such equations convey the asymmetrical counterfactual relation 'is determined
by', forming a clear correspondence between causal diagrams and Rubin's model of poten-
tial outcome (Rubin, 1974; Holland, 1988; Pratt & Schlaifer, 1988; Rubin, 1990). For
example, the equation for Y states that, regardless of what we currently observe about Y,
and regardless of any changes that might occur in other equations, if (X, Z2,Z3, eY) were
to assume the values (x, z2,z3, ey), respectively, Y would take on the value dictated by the
function fY. Thus, the corresponding potential response variable in Rubin's model Y(x),
the value that Y would take if X were x, becomes a deterministic function of Z2, Z3 and
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Causal diagrams for empirical research 673

eY, whose distribution is thus determined by those of Z2 , Z3 and eY. The relation between
graphical and counterfactual models is further analysed by Pearl (1994a).

Characterising each child-parent relationship as a deterministic function, instead of by
the usual conditional probability pr(X(|pa,), imposes equivalent independence constraints
on the resulting distributions, and leads to the same recursive decomposition (2) that
characterises directed acyclic graph models. This occurs because each e, is independent of
all nondescendants of A",. However, the functional characterisation Xi=fi(pai,ei) also
provides a convenient language for specifying how the resulting distribution would change
in response to external interventions. This is accomplished by encoding each intervention
as an alteration to a selected subset of functions, while keeping the others intact. Once
we know the identity of the mechanisms altered by the intervention, and the nature of
the alteration, the overall effect can be predicted by modifying the corresponding equations
in the model, and using the modified model to compute a new probability function.

The simplest type of external intervention is one in which a single variable, say Xh is
forced to take on some fixed value x,. Such an intervention, which we call atomic, amounts
to lifting Xt from the influence of the old functional mechanism X, = fi(pau e,) and placing
it under the influence of a new mechanism that sets its value to xt while keeping all
other mechanisms unperturbed. Formally, this atomic intervention, which we denote by
set(Xi = xi), or set(x,) for short, amounts to removing the equation Xi = fi(pai,ei) from
the model, and substituting x, for Xt in the remaining equations. The model thus created
represents the system's behaviour under the intervention set(X( = x() and, when solved for
the distribution of Xj, yields the causal effect of Xt on Xj, denoted by pr(x^|x,). More
generally, when an intervention forces a subset X of variables to fixed values x, a subset
of equations is to be pruned from the model given in (3), one for each member of X, thus
defining a new distribution over the remaining variables, which completely characterises
the effect of the intervention. We thus introduce the following.

DEFINITION 2 (causal effect). Given two disjoint sets of variables, X and Y, the causal
effect ofX on Y, denoted pr(_y|x), is a function from X to the space of probability distributions
on Y. For each realisation x of X, pr(_y|x) gives the probability of Y = y induced on deleting
from the model (3) all equations corresponding to variables in X and substituting x for X
in the remainder.

An explicit translation of intervention into 'wiping out' equations from the model was
first proposed by Strotz & Wold (1960), and used by Fisher (1970) and Sobel (1990).
Graphical ramifications were explicated by Spirtes et al. (1993) and Pearl (1993b). A
related mathematical model using event trees has been introduced by Robins (1986,
pp. 1422-5).

Regardless of whether we represent interventions as a modification of an existing model
as in Definition 2, or as a conditionalisation in an augmented model (Pearl, 1993b), the
result is a well-defined transformation between the pre-intervention and the post-inter-
vention distributions. In the case of an atomic intervention set(X, = x,'), this transformation
can be expressed in a simple algebraic formula that follows immediately from (3) and
Definition 2:

pT[X1,...,XH\Xi)— [0

This formula reflects the removal of the terms pr(x,|pa,) from the product in (2), since pat

no longer influence Xt. Graphically, this is equivalent to removing the links between pat
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674 JUDEA PEARL

and Xi while keeping the rest of the network intact. Equation (5) can also be obtained
from the G-computation formula of Robins (1986, p. 1423) and the Manipulation Theorem
of Spirtes et al. (1993), who state that this formula was 'independently conjectured by
Fienberg in a seminar in 1991'. Clearly, an intervention set(Xj) can affect only the descend-
ants of Xi in G. Additional properties of the transformation defined in (5) are given by
Pearl (1993b).

The immediate implication of (5) is that, given a causal diagram in which all parents
of manipulated variables are observable, one can infer post-intervention distributions from
pre-intervention distributions; hence, under such assumptions we can estimate the effects
of interventions from passive, i.e. nonexperimental observations. The aim of this paper,
however, is to derive causal effects in situations such as Fig. 1, where some members of
pa{ may be unobservable, thus preventing estimation of pr(x,|pa,). The next two sections
provide simple graphical tests for deciding when pr(xJ|x1) is estimable in a given model.

3. CONTROLLING CONFOUNDING BIAS

31. The back-door criterion
Assume we are given a causal diagram G together with nonexperimental data on a

subset Vo of observed variables in G, and we wish to estimate what effect the intervention
set(Xi = xt) would have on some response variable Xj. In other words, we seek to estimate
pr(Xj|X() from a sample estimate of pr(>o)-

The variables in V0\{Xh Xj}, are commonly known as concomitants (Cox, 1958, p. 48).
In observational studies, concomitants are used to reduce confounding bias due to spurious
correlations between treatment and response. The condition that renders a set Z of con-
comitants sufficient for identifying causal effect, also known as ignorability, has been given
a variety of formulations, all requiring conditional independence judgments involving
counterfactual variables (Rosenbaum & Rubin, 1983; Pratt & Schlaifer, 1988). Pearl
(1993b) shows that such judgments are equivalent to a simple graphical test, named the
'back-door criterion', which can be applied directly to the causal diagram.

DEFINITION 3 (Back-door criterion). A set of variables Z satisfies the back-door criterion
relative to an ordered pair of variables (X{, Xj) in a directed acyclic graph G if: (i) no node
in Z is a descendant of Xh and (ii) Z blocks every path between Xt and Xj which contains
an arrow into Xt. If X and Y are two disjoint sets of nodes in G, Z is said to satisfy the
back-door criterion relative to (X, Y) if it satisfies it relative to any pair (Xh Xj) such that
XteX and Xj e Y.

The name 'back-door' echoes condition (ii), which requires that only paths with arrows
pointing at Xt be blocked; these paths can be viewed as entering Xt through the back door.
In Fig. 2, for example, the sets Z t = {X3, X4} and Z2 = {X4,X5} meet the back-
door criterion, but Z 3 = {X4} does not, because X4 does not block the path
(Xi, X3, Xu X4, X2, X5, Xj). An equivalent, though more complicated, graphical criterion
is given in Theorem 7.1 of Spirtes et al. (1993). An alternative criterion using a single
d-separation test will be established in § 4-4.

We summarise this finding in a theorem, after formally defining 'identifiability'.

DEFINITION 4 (Identifiability). The causal effect ofX on Y is said to be identifiable if the
quantity pr(y\x) can be computed uniquely from any positive distribution of the observed
variables that is compatible with G.
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Causal diagrams for empirical research 675

Fig. 2. A diagram representing the back-door criterion;
adjusting for variables {X3,X4} or {XA,Xt} yields a

consistent estimate of pr(xj|;c,).

Identifiability means that pr(y\x) can be estimated consistently from an arbitrarily large
sample randomly drawn from the joint distribution. To prove nonidentifiability, it is
sufficient to present two sets of structural equations, both complying with (3), that induce
identical distributions over observed variables but different causal effects.

THEOREM 1. If a set of variables Z satisfies the back-door criterion relative to (X, Y),
then the causal effect of X on Y is identifiable and is given by the formula

pr{y | x) = £ pr(y | x, z) pr(z). (6)
z

Equation (6) represents the standard adjustment for concomitants Z when X is con-
ditionally ignorable given Z (Rosenbaum & Rubin, 1983). Reducing ignorability con-
ditions to the graphical criterion of Definition 3 replaces judgments about counterfactual
dependencies with systematic procedures that can be applied to causal diagrams of any
size and shape. The graphical criterion also enables the analyst to search for an optimal
set of concomitants, to minimise measurement cost or sampling variability.

3 2. The front-door criteria
An alternative criterion, 'the front-door criterion', may be applied in cases where we

cannot find observed covariates Z satisfying the back-door conditions. Consider the dia-
gram in Fig. 3. Although Z does not satisfy any of the back-door conditions, measurements
of Z nevertheless enable consistent estimation of pr(y\x). This can be shown by reducing
the expression for pr(y|x) to formulae computable from the observed distribution function
pr(x, y, z).

•
X

Fig. 3. A diagram

z
representing

(Unobserved)

the front-door criterion.
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676 JUDEA PEARL

The joint distribution associated with Fig. 3 can be decomposed into

pr(x, y, z, u) = pr(u) pr(x|u) pr(z|x) pr(y\z, u) (7)

and, from (5), the causal effect of AT on Y is given by

. (8)

Using the conditional independence assumptions implied by the decomposition (7), we
can eliminate u from (8) to obtain

pr(y|x) = £ pr(z|x) £ pr(y|x', z) pr(x'). (9)
I X

We summarise this result by a theorem.

THEOREM 2. Suppose a set of variables Z satisfies the following conditions relative to an
ordered pair of variables (X, Y): (i) Z intercepts all directed paths from X to Y, (ii) there is
no back-door path between X and Z, and (Hi) every back-door path between Z and Y is
blocked by X. Then the causal effect of X on Y is identifiable and is given by (9).

The graphical criterion of Theroem 2 uncovers many new structures that permit the
identification of causal effects from measurements of variables that are affected by treat-
ments: see § 5-2. The relevance of such structures in practical situations can be seen, for
instance, if we identify X with smoking, Y with lung cancer, Z with the amount of tar
deposited in a subject's lungs, and U with an unobserved carcinogenic genotype that,
according to some, also induces an inborn craving for nicotine. In this case, (9) would
provide us with the means to quantify, from nonexperimental data, the causal effect of
smoking on cancer, assuming, of course, that pr(x, y, z) is available and that we believe
that smoking does not have any direct effect on lung cancer except that mediated by tar
deposits.

4. A CALCULUS OF INTERVENTION

4 1 . General
This section establishes a set of inference rules by which probabilistic sentences involving

interventions and observations can be transformed into other such sentences, thus provid-
ing a syntactic method of deriving or verifying claims about interventions. We shall assume
that we are given the structure of a causal diagram G in which some of the nodes are
observable while the others remain unobserved. Our main problem will be to facilitate
the syntactic derivation of causal effect expressions of the form pr(_y|x), where X and Y
denote sets of observed variables. By derivation we mean step-wise reduction of the
expression pr(_y | x) to an equivalent expression involving standard probabilities of observed
quantities. Whenever such reduction is feasible, the causal effect of AT on Y is identifiable:
see Definition 4.

4-2. Preliminary notation
Let X, Y and Z be arbitrary disjoint sets of nodes in a directed acyclic graph G. We

denote by G% the graph obtained by deleting from G all arrows pointing to nodes in X.
Likewise, we denote by GK the graph obtained by deleting from G all arrows emerging
from nodes in X. To represent the deletion of both incoming and outgoing arrows, we
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Causal diagrams for empirical research 677

(Unobserved)

X Z Y

G? — Gv

Fig. 4. Subgraphs of G used in the derivation of causal effects.

use the notation G^. see Fig. 4 for illustration. Finally, px(y\x, z)>=pr(_y, z|x)/pr(z|x)
denotes the probability of Y = y given that Z = z is observed and X is held constant at x.

4-3. Inference rules
The following theroem states the three basic inference rules of the proposed calculus.

Proofs are provided in the Appendix.

THEOREM 3. Let G be the directed graph associated with a causal model as defined in
(3), and let pr(.) stand for the probability distribution induced by that model. For any disjoint
subsets of variables X, Y, Z and W we have the following.

Rule 1 (insertion/deletion of observations):

pr(v|*,z,w) = pr();|x)w) if (YlLZ\X,W)Gs. (10)

Rule 2 (action/observation exchange):

pT(y\x,f,w) = pT(y\x,z,w) if(YALZ\X, W)G^. • (11)

Rule 3 (insertion/deletion of actions):

pr(y\x,Z,w) = pT(y\x,w) if(YALZ\X, W)^^, (12)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G%.

Each of the inference rules above follows from the basic interpretation of the 'x' operator
as a replacement of the causal mechanism that connects X to its pre-intervention parents
by a new mechanism X = x introduced by intervening force. The result is a submodel
characterised by the subgraph G%, called the 'manipulated graph' by Spirtes et al. (1993),
which supports all three rules.

Rule 1 reaffirms d-separation as a valid test for conditional independence in the distri-
bution resulting from the intervention s e t ^ = x), hence the graph G%- This rule follows
from the fact that deleting equations from the system does not introduce any dependencies
among the remaining disturbance terms: see (3).

Rule 2 provides a condition for an external intervention set(Z = z) to have the same
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effect on Y as the passive observation Z = z. The condition amounts to X\JW blocking
all back-door paths from Z to Y in Gx, since G*z retains all, and only, such paths.

Rule 3 provides conditions for introducing or deleting an external intervention
set(Z = z) without affecting the probability of Y=y. The validity of this rule stems,
again, from simulating the intervention set(Z = z) by the deletion of all equations corres-
ponding to the variables in Z.

COROLLARY 1. A causal effect q = p r ( y 1 , . . . , yk\xu ..., xm) is identifiable in a model
characterised by a graph G if there exists a finite sequence of transformations, each con-
forming to one of the inference rules in Theorem 3, which reduces q into a standard, i.e.
check-free, probability expression involving observed quantities.

Whether the three rules above are sufficient for deriving all identifiable causal effects
remains an open question. However, the task of finding a sequence of transformations, if
such exists, for reducing an arbitrary causal effect expression can be systematised and
executed by efficient algorithms as described by Galles & Pearl (1995). As § 4-4 illustrates,
symbolic derivations using the check notation are much more convenient than algebraic
derivations that aim at eliminating latent variables from standard probability expressions,
as in § 3-2.

4-4. Symbolic derivation of causal effects: An example
We now demonstrate how Rules 1-3 can be used to derive causal effect estimands in

the structure of Fig. 3 above. Figure 4 displays the subgraphs that will be needed for the
derivations that follow.

Task 1: compute pr(z|x). This task can be accomplished in one step, since G satisfies
the applicability condition for Rule 2, namely, XALZ in Gz, because the path
X<-U-* Y<- Z is blocked by the converging arrows at Y, and we can write

pr(z|x) = pr(z|x). (13)

Task 2: compute pr(_y|£). Here we cannot apply Rule 2 to exchange i with z because
Gz contains a back-door path from Z t o Y:Z+-X<-U-*Y. Naturally, we would like to
block this path by measuring variables, such as X, that reside on that path. This involves
conditioning and summing over all values of X:

prO>|f) = £pr(y|x,f)pr(x|f). (14)
X

We now have to deal with two expressions involving i, pr(y|x, 2) and pr(x|£). The
latter can be readily computed by applying Rule 3 for action deletion:

pr(x|£) = pr(x) if(ZU_X)G2, (15)

since X and Z are d-separated in Gz- Intuitively, manipulating Z should have no effect
on X, because Z is a descendant of X in G. To reduce pr(y|x, £), we consult Rule 2:

pr(y|x,£) = pr(y|x,z) if (Z1L Y|X)G,, (16)

noting that X d-separates Z from Y in Gz. This allows us to write (14) as

,z), (17)
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Causal diagrams for empirical research 679

which is a special case of the back-door formula (6). The legitimising condition,
(Z1L Y\X)Gz, offers yet another graphical test for the ignorability condition of Rosenbaum

& Rubin (1983).

Task 3: compute pr(y|x). Writing

Z x ) , (18)

we see that the term pr(z|x) was reduced in (13) but that no rule can be applied to
eliminate the 'check' symbol from the term pr(y|z, x). However, we can add a 'check'
symbol to this term via Rule 2:

pr(y|z,x) = pr(y|z,x), (19)

since the applicability condition (YlLZ\X)Glz, holds true. We can now delete the action
x from pr(y|f, x) using Rule 3, since Y1LX\Z holds in Gxz- Thus, we have

pr(y|z,x) = prO;|f), (20)

which was calculated in (17). Substituting (17), (20) and (13) back into (18) finally
yields

pr(ylx-) = Z pr(z|x) £ pr(y|x', z) pr(x'), (21)
z x'

which is identical to the front-door formula (9).

The reader may verify that all other causal effects, for example, pr(y, z | x) and pr(x, z| y),
can likewise be derived through the rules of Theorem 3. Note that in all the derivations
the graph G provides both the license for applying the inference rules and the guidance
for choosing the right rule to apply.

4-5. Causal inference by surrogate experiments
Suppose we wish to learn the causal effect of X on Y when pr(y|x) is not identifiable

and, for practical reasons of cost or ethics, we cannot control X by randomised experiment.
The question arises whether pr(_y|x) can be identified by randomising a surrogate variable
Z, which is easier to control than X. For example, if we are interested in assessing the
effect of cholesterol levels X on heart disease, Y, a reasonable experiment to conduct
would be to control subjects' diet, Z, rather than exercising direct control over cholesterol
levels in subjects' blood.

Formally, this problem amounts to transforming pr(y|x) into expressions in which only
members of Z carry the check symbol. Using Theorem 3 it can be shown that the following
conditions are sufficient for admitting a surrogate variable Z: (i) X intercepts all directed
paths from Z to Y, and (ii) pr(y|x) is identifiable in G .̂ Indeed, if condition (i) holds, we
can write pr(y|x) = pr(}>|x, 2), because (YALZ\X)Gji. But pr(_y|x, f) stands for the causal
effect of A" on Y in a model governed by Gz which, by condition (ii), is identifiable. Figures
7(e) and 7(h) below illustrate models in which both conditions hold. Translated to our
cholesterol example, these conditions require that there be no direct effect of diet on heart
conditions and no confounding effect between cholesterol levels and heart disease, unless
we can measure an intermediate variable between the two.
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5. GRAPHICAL TESTS OF IDENTIFIABILITY

51. General
Figure 5 shows simple diagrams in which pr(y|x) cannot be identified due to the pres-

ence of a bow pattern, i.e. a confounding arc, shown dashed, embracing a causal link
between X and Y. A confounding arc represents the existence in the diagram of a back-
door path that contains only unobserved variables and has no converging arrows. For
example, the path X, Zo, B, Z3 in Fig. 1 can be represented as a confounding arc between
X and Z3. A bow-pattern represents an equation Y = fY(X, U, eY), where U is unobserved
and dependent on X. Such an equation does not permit the identification of causal effects
since any portion of the observed dependence between X and Y may always be attributed
to spurious dependencies mediated by U.

The presence of a bow-pattern prevents the identification of pr(y|x) even when it is
found in the context of a larger graph, as in Fig. 5(b). This is in contrast to linear models,
where the addition of an arc to a bow-pattern can render pr(y|x) identifiable. For example,
if 7 is related to X via a linear relation Y = bX + U, where U is an unobserved disturbance
possibly correlated with X, then b = dE(Y\x)/dx is not identifiable. However, adding an
arc Z -> X to the structure, that is, finding a variable Z that is correlated with X but not
with U, would facilitate the computation of E(Y\x) via the instrumental-variable formula
(Bowden & Turkington, 1984, p. 12; Angrist, Imbens & Rubin, 1995):

( 2 2 )
dx E{X\z) R

XI
In nonparametric models, adding an instrumental variable Z to a bow-pattern, see
Fig. 5(b), does not permit the identification of pr(y|x). This is a familiar problem in the
analysis of clinical trials in which treatment assignment, Z, is randomised, hence no link
enters Z, but compliance is imperfect. The confounding arc between X and Y in Fig. 5(b)
represents unmeasurable factors which influence both subjects' choice of treatment, X,
and response to treatment, Y. In such trials, it is not possible to obtain an unbiased
estimate of the treatment effect pr(y\x) without making additional assumptions on the
nature of the interactions between compliance and response (Imbens & Angrist, 1994), as
is done, for example, in the approach to instrumental variables developed by Angrist et al.
(1995). While the added arc Z - > I permits us to calculate bounds on pr(y\x) (Robins,
1989, § lg; Manski, 1990), and while the upper and lower bounds may even coincide for

(a) (b) (c)

-g

^
— " \

• •

Y Y

Fig. 5. (a) A bow-pattern: a confounding arc embracing a causal
link X-*Y, thus preventing the identification of pr(y|x) even in the
presence of an instrumental variable Z, as in (b). (c) A bow-less

graph still prohibiting the identification of pr(y|x).
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Causal diagrams for empirical research 681

certain types of distributions pr(x, y, z) (Balke & Pearl, 1994), there is no way of computing
pr(_y|x) for every positive distribution pr(x, y, z), as required by Definition 4.

In general, the addition of arcs to a causal diagram can impede, but never assist, the
identification of causal effects in nonparametric models. This is because such addition
reduces the set of d-separation conditions carried by the diagram and, hence, if a causal
effect derivation fails in the original diagram, it is bound to fail in the augmented diagram
as well. Conversely, any causal effect derivation that succeeds in the augmented diagram,
by a sequence of symbolic transformations, as in Corollary 1, would succeed in the original
diagram.

Our ability to compute pr(_y|x) for pairs (x, y) of singleton variables does not ensure
our ability to compute joint distributions, such as pr(y1, y2\x)- Figure 5(c), for example,
shows a causal diagram where both pr(z1|x) and pr(z2|x) are computable, but pr(zl5 z2|x)
is not. Consequently, we cannot compute pr(y|x). This diagram is the smallest graph that
does not contain a bow-pattern and still presents an uncomputable causal effect.

5-2. Identifying models
Figure 6 shows simple diagrams in which the causal effect of X on Y is identifiable.

Such models are called identifying because their structures communicate a sufficient
number of assumptions to permit the identification of the target quantity pr(y |x). Latent
variables are not shown explicitly in these diagrams; rather, such variables are implicit in
the confounding arcs, shown dashed. Every causal diagram with latent variables can be
converted to an equivalent diagram involving measured variables interconnected by
arrows and confounding arcs. This conversion corresponds to substituting out all latent
variables from the structural equations of (3) and then constructing a new diagram by

(c)

(a) (b)

(f) (g)

(e)

Fig. 6. Typical models in which the effect of X on Y is identifiable. Dashed arcs
represent confounding paths, and Z represents observed covariates.
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connecting any two variables Xt and Xi by (i) an arrow from Xj to X( whenever Xi appears
in the equation for Xt, and (ii) a confounding arc whenever the same s term appears in
both fi and fj. The result is a diagram in which all unmeasured variables are exogenous
and mutually independent. Several features should be noted from examining the diagrams
in Fig. 6.

(i) Since the removal of any arc or arrow from a causal diagram can only assist the
identifiability of causal effects, pr(y|x) will still be identified in any edge-subgraph of the
diagrams shown in Fig. 6. Likewise, the introduction of mediating observed variables onto
any edge in a causal graph can assist, but never impede, the identifiability of any causal
effect. Therefore, pr(y|x) will still be identified from any graph obtained by adding
mediating nodes to the diagrams shown in Fig. 6.

(ii) The diagrams in Fig. 6 are maximal, in the sense that the introduction of any
additional arc or arrow onto an existing pair of nodes would render pr(y|x) no longer
identifiable.

(iii) Although most of the diagrams in Fig. 6 contain bow-patterns, none of these pat-
terns emanates from X as is the case in Fig. 7 (a) and (b) below. In general, a necessary
condition for the identifiability of pr(y|x) is the absence of a confounding arc between X
and any child of X that is an ancestor of Y.

(iv) Figures 6(a) and (b) contain no back-door paths between X and Y, and thus
represent experimental designs in which there is no confounding bias between the treat-
ment, X, and the response, Y; that is, X is strongly ignorable relative to Y (Rosenbaum
& Rubin, 1983); hence, pr(y|x) = pr(y|x). Likewise, Figs 6(c) and (d) represent designs in
which observed covariates, Z, block every back-door path between X and Y; that is X is
conditionally ignorable given Z (Rosenbaum & Rubin, 1983); hence, pr(y|x) is obtained
by standard adjustment for Z, as in (6):

(v) For each of the diagrams in Fig. 6, we can readily obtain a formula for pr(y|x),
using symbolic derivations patterned after those in § 4-4. The derivation is often guided
by the graph topology. For example, Fig. 6(f) dictates the following derivation. Writing

pr(y|*) = £ pr(y|z1,z2,x)pr(z1)z2|x),

we see that the subgraph containing {X, Z1,Z2} is identical in structure to that of Fig. 6(e),
with Zlt Z2 replacing Z, Y, respectively. Thus, pr(zx, z2|x) can be obtained from (14) and
(21). Likewise, the term pr(j|z1, z2, x) can be reduced to pr(y|z1, z2, x) by Rule 2, since
(YJlXIZj, Z2)Gx. Thus, we have

pr(y\X)= £ pr(y|z1,z2,x)pr(z1|x)X;pr(z2|z1,x')pr(x'). (23)

Applying a similar derivation to Fig. 6(g) yields

pr(y\x) = £ Z £ Prtvlzi. z2. *') Pr(*') pr(zi|z2, x) pr(z2). (24)

Note that the variable Z3 does not appear in the expression above, which means that Z3

need not be measured if all one wants to learn is the causal effect of X on Y.
(vi) In Figs 6(e), (f) and (g), the identifiability of pr(y|x) is rendered feasible through

observed covariates, Z, that are affected by the treatment X, that is descendants of X.
This stands contrary to the warning, repeated in most of the literature on statistical
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Causal diagrams for empirical research 683

experimentation, to refrain from adjusting for concomitant observations that are affected
by the treatment (Cox, 1958, p. 48; Rosenbaum, 1984; Pratt & Schlaifer, 1988; Wainer,
1989). It is commonly believed that, if a concomitant Z is affected by the treatment, then
it must be excluded from the analysis of the total effect of the treatment (Pratt & Schlaifer,
1988). The reasons given for the exclusion is that the calculation of total effects amounts
to integrating out Z, which is functionally equivalent to omitting Z to begin with.
Figures 6(e), (f) and (g) show cases where one wants to learn the total effects of X and,
still, the measurement of concomitants that are affected by X, for example Z or Zu is
necessary. However, the adjustment needed for such concomitants is nonstandard, involv-
ing two or more stages of the standard adjustment of (6): see (9), (23) and (24).

(vii) In Figs 6(b), (c) and (f), Y has a parent whose effect on Y is not identifiable, yet
the effect of X on Y is identifiable. This demonstrates that local identifiability is not a
necessary condition for global identifiability. In other words, to identify the effect of X
on Y we need not insist on identifying each and every link along the paths from X to Y.

5-3. Nonidentifying models
Figure 7 presents typical diagrams in which the total effect of X on Y, pr(_y|x), is not

identifiable. Noteworthy features of these diagrams are as follows.
(i) All graphs in Fig. 7 contain unblockable back-door paths between X and Y, that is,

paths ending with arrows pointing to X which cannot be blocked by observed nondescend-
ants of X. The presence of such a path in a graph is, indeed, a necessary test for nonidentifi-
ability. It is not a sufficient test, though, as is demonstrated by Fig. 6(e), in which the
back-door path (dashed) is unblockable, yet pr(y|x) is identifiable.

(ii) A sufficient condition for the nonidentifiability of pr(y|x) is the existence of a
confounding path between X and any of its children on a path from X to Y, as shown in
Figs 7(b) and (c). A stronger sufficient condition is that the graph contain any of the
patterns shown in Fig. 7 as an edge-subgraph.

(c)

(a) (b)

X
(e)

(f)

Fig. 7. Typical models in which pr(y|x) is not identifiable.
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(iii) Figure 7(g) demonstrates that local identifiability is not sufficient for global identi-
fiability. For example, we can identify pr^lx) , pr(z2|x), p r ^ l ^ ) and pr(_y|f2), but not
pr(_y|x). This is one of the main differences between nonparametric and linear models; in
the latter, all causal effects can be determined from the structural coefficients, each
coefficient representing the causal effect of one variable on its immediate successor.

6. DISCUSSION

The basic Limitation of the methods proposed in this paper is that the results must rest
on the causal assumptions shown in the graph, and that these cannot usually be tested in
observational studies. In related papers (Pearl, 1994a, 1995) we show that some of the
assumptions, most notably those associated with instrumental variables, see Fig. 5(b), are
subject to falsification tests. Additionally, considering that any causal inferences from
observational studies must ultimately rely on some kind of causal assumptions, the
methods described in this paper offer an effective language for making those assumptions
precise and explicit, so they can be isolated for deliberation or experimentation and, once
validated, integrated with statistical data.

A second limitation concerns an assumption inherent in identification analysis, namely,
that the sample size is so large that sampling variability may be ignored. The mathematical
derivation of causal-effect estimands should therefore be considered a first step toward
supplementing estimates of these with confidence intervals and significance levels, as in
traditional analysis of controlled experiments. Having nonparametric estimates for causal
effects does not imply that one should refrain from using parametric forms in the estimation
phase of the study. For example, if the assumptions of Gaussian, zero-mean disturbances
and linearity are deemed reasonable, then the estimand in (9) can be replaced by E(Y\ x) =
Rxzfi2y.xx, where fizy.x is the standardised regression coefficient, and the estimation prob-
lem reduces to that of estimating coefficients. More sophisticated estimation techniques
are given by Rubin (1978), Robins (1989, § 17), and Robins et al. (1992, pp. 331-3).

Several extensions of the methods proposed in this paper are possible. First, the analysis
of atomic interventions can be generalised to complex policies in which a set X of treatment
variables is made to respond in a specified way to some set Z of covariates, say through
a functional relationship X = g{Z) or through a stochastic relationship whereby X is set
to x with probability P*(x\z). Pearl (1994b) shows that computing the effect of such
policies is equivalent to computing the expression pr(y|x, z).

A second extension concerns the use of the intervention calculus of Theorem 3 in
nonrecursive models, that is, in causal diagrams involving directed cycles or feedback
loops. The basic definition of causal effects in terms of 'wiping out' equations from the
model (Definition 2) still carries over to nonrecursive systems (Strotz & Wold, I960; Sobel,
1990), but then two issues must be addressed. First, the analysis of identification must
ensure the stability of the remaining submodels (Fisher, 1970). Secondly, the d-separation
criterion for directed acyclic graphs must be extended to cover cyclic graphs as well. The
validity of d-separation has been established for nonrecursive linear models and extended,
using an augmented graph, to any arbitrary set of stable equations (Spirtes, 1995).
However, the computation of causal effect estimands will be harder in cyclic networks,
because symbolic reduction of pr(y|x) to check-free expressions may require the solution
of nonlinear equations.

Finally, a few comments regarding the notation introduced in this paper. There have
been three approaches to expressing causal assumptions in mathematical form. The most
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common approach in the statistical literature invokes Rubin's model (Rubin, 1974),
in which probability functions are defined over an augmented space of observable and
counterfactual variables. In this model, causal assumptions are expressed as independence
constraints over the augmented probability function, as exemplified by Rosenbaum &
Rubin's (1983) definitions of ignorability conditions. An alternative but related approach,
still using the standard language of probability, is to define augmented probability func-
tions over variables representing hypothetical interventions (Pearl, 1993b).

The language of structural models, which includes path diagrams (Wright, 1921) and
structural equations (Goldberger, 1972) represents a drastic departure from these two
approaches, because it invokes new primitives, such as arrows, disturbance terms, or plain
causal statements, which have no parallels in the language of probability. This language
has been very popular in the social sciences and econometrics, because it closely echoes
statements made in ordinary scientific discourse and thus provides a natural way for
scientists to communicate knowledge and experience, especially in situations involving
many variables.

Statisticians, however, have generally found structural models suspect, because the
empirical content of basic notions in these models appears to escape conventional methods
of explication. For example, analysts have found it hard to conceive of experiments, how-
ever hypothetical, whose outcomes would be constrained by a given structural equation.
Standard probability calculus cannot express the empirical content of the coefficient b in
the structural equation Y = bX + eY even if one is prepared to assume that eY, an unob-
served quantity, is uncorrelated with X. Nor can any probabilistic meaning be attached
to the analyst's excluding from this equation certain variables that are highly correlated
with X or Y. As a consequence, the whole enterprise of structural equation modelling has
become the object of serious controversy and misunderstanding among researchers
(Freedman, 1987; Wermuth, 1992; Whittaker, 1990, p. 302; Cox & Wermuth, 1993).

To a large extent, this history of controversy stems not from faults in the structural
modelling approach but rather from a basic limitation of standard probability theory:
when viewed as a mathematical language, it is too weak to describe the precise experimen-
tal conditions that prevail in a given study. For example, standard probabilistic notation
cannot distinguish between an experiment in which variable X is observed to take on
value x and one in which variable X is set to value x by some external control. The need
for this distinction was recognised by several researchers, most notably Pratt & Schlaifer
(1988) and Cox (1992), but has not led to a more refined and manageable mathematical
notation capable of reflecting this distinction.

The 'check' notation developed in this paper permits one to specify precisely what is
being held constant and what is merely measured in a given study and, using this specifica-
tion, the basic notions of structural models can be given clear empirical interpretation.
For example, the meaning of b in the equation Y = bX + eY is simply dE(Y\x)/dx, namely,
the rate of change, in x, of the expectation of Y in an experiment where X is held at x by
external control. This interpretation holds regardless of whether eY and X are correlated,
for example, via another equation: X = aY + ex. Moreover, the notion of randomisation
need not be invoked. Likewise, the analyst's decision as to which variables should be
included in a given equation is based on a hypothetical controlled experiment: a variable
Z is excluded from the equation for Y if it has no influence on Y when all other variables,
SYZ, are held constant, that is, pr(y\£, SYZ) — pr(y\SYZ). In other words, variables that are
excluded from the equation Y = bX + sY are not conditionally independent of Y given
measurements of X, but rather conditionally independent of Y given settings of X. The
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operational meaning of the so-called 'disturbance term', eY, is likewise demystified: eY is
defined as the difference Y— E(Y\SY); two disturbance terms, ex and eY, are correlated if
pr(y\x, §XY)±pr(y\x, SXY); and so on.

The distinctions provided by the 'check' notation clarify the empirical basis of structural
equations and should make causal models more acceptable to empirical researchers.
Moreover, since most scientific knowledge is organised around the operation of 'holding
X fixed', rather than 'conditioning on X\ the notation and calculus developed in this
paper should provide an effective means for scientists to communicate subject-matter
information, and to infer its logical consequences when combined with statistical data.
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APPENDIX

Proof of Theorem 3

(i) Rule 1 follows from the fact that deleting equations from the model in (8) results, again, in
a recursive set of equations in which all e terms are mutually independent The d-separation
condition is valid for any recursive model, hence it is valid for the submodel resulting from del-
eting the equations for X. Finally, since the graph characterising this submodel is given by
Gj, (YALZ\X, W)Gx implies the conditional independence pr(y|x, z, w) = pr(y|x, w) in the post-
intervention distribution.

(ii) The graph G^z differs from Gx only in lacking the arrows emanating from Z, hence it retains
all the back-door paths from Z to Y that can be found in Gs. The condition (YALZ\X, W)Gjtz

ensures that all back-door paths from Z to Y in Gj are blocked by {X, W). Under such conditions,
setting Z = z or conditioning on Z = z has the same effect on Y. This can best be seen from the
augmented diagram G'x, to which the intervention arcs FZ->Z were added, where F, stands for
the functions that determine Z in the structural equations (Pearl, 1993b). If all back-door paths
from Fz to Y are blocked, the remaining paths from Fz to Y must go through the children of Z,
hence these paths will be blocked by Z. The implication is that Y is independent of Fz given Z,
which means that the observation Z = z cannot be distinguished from the intervention Fz = set(z).

(iii) The following argument was developed by D. Galles. Consider the augmented diagram
G'x to which the intervention arcs FZ->Z are added. If (FZALY\ W, X)Gl, then pr(y|x,z,w) =
pr(y|x, w). If (YALZ\X, W)GYzW) and {FZ)£Y\ W, X)Gi, there must be an unblocked path from a
member Fz- of Fz to Y that passes either through a head-to-tail junction at Z', or a head-to-head
junction at Z'. If there is such a path, let P be the shortest such path. We will show that P will
violate some premise, or there exists a shorter path, either of which leads to a contradiction.

If the junction is head-to-tail, that means that (YJlZ'\W,X)Gl but (YMZ'\W,X)G^^,. So,
there must be an unblocked path from Y to Z' that passes through some member Z" of Z(W) in
either a head-to-head or a tail-to-head junction. This is impossible. If the junction is head-to-head,
then some descendant of Z" must be in W for the path to be unblocked, but then Z" would not
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be in Z{W). If the junction is tail-to-head, there are two options: either the path from Z' to Z"
ends in an arrow pointing to Z", or in an arrow pointing away from Z". If it ends in an arrow
pointing away from Z", then there must be a head-to-head junction along the path from Z' to Z".
In that case, for the path to be unblocked, W must be a descendant of Z", but then Z" would not
be in Z(W). If it ends in an arrow pointing to Z", then there must be an unblocked path from Z"
to Y in Gj that is blocked in Gyjiw)- ^ tn^s ' s true> t n e n t n e r e is a n unblocked path from Fz" to
Y that is shorter than P, the shortest path.

If the junction through Z' is head-to-head, then either Z' is in Z(W), in which case that junction
would be blocked, or there is an unblocked path from Z' to Y in Gx^w) t n a t is blocked in Gy.
Above, we proved that this could not occur. So (YALZ\X, W)GXZ(W) implies (Fz-^-Y\ W, X)Gt, and
thus pi(y\x,2,w) = pr(y\x,w).
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AND NANNY WERMUTH
Psychologisches Institut, Johannes Gutenberg-Universitdt Mainz, Staudingerweg 9,

D-55099 Mainz, Germany

Judea Pearl has provided a general formulation for uncovering, under very explicit assumptions,
what he calls the causal effect on y of 'setting' a variable x at a specified level, pr(_y| x), as assessed in
a system of dependencies that can be represented by a directed acyclic graph. His Theorem 3 then
provides a powerful computational scheme.

The back-door criterion requires there to be no unobserved 'common cause' for x and y that is
not blocked out by observed variables, that is at least one of the intermediate variables between x
and y or the common cause is to be observed. It is precisely doubt about such assumptions that
makes epidemiologists, for example, wisely in our view, so cautious in distinguishing risk factors
from causal effects. The front-door criterion requires, first, that there be an observed variable z such
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