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Causal machine learning (CML) has experienced increasing
popularity in healthcare. Beyond the inherent capabilities of
adding domain knowledge into learning systems, CML
provides a complete toolset for investigating how a system
would react to an intervention (e.g. outcome given a treatment).
Quantifying effects of interventions allows actionable decisions
to be made while maintaining robustness in the presence of
confounders. Here, we explore how causal inference can be
incorporated into different aspects of clinical decision support
systems by using recent advances in machine learning.
Throughout this paper, we use Alzheimer’s disease to create
examples for illustrating how CML can be advantageous
in clinical scenarios. Furthermore, we discuss important
challenges present in healthcare applications such as processing
high-dimensional and unstructured data, generalization to
out-of-distribution samples and temporal relationships, that
despite the great effort from the research community remain
to be solved. Finally, we review lines of research within
causal representation learning, causal discovery and causal
reasoning which offer the potential towards addressing the
aforementioned challenges.
1. Introduction
Considerable progress has been made in predictive systems for
healthcare following the advent of powerful machine learning
(ML) approaches such as deep learning [1]. In healthcare,
clinical decision support (CDS) tools make predictions for
tasks such as detection, classification and/or segmentation from
electronic health record (EHR) data such as medical images,
clinical free-text notes, blood tests and genetic data. These
systems are usually trained with supervised learning techniques.
However, most CDS systems powered by ML techniques learn
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Figure 1. CML in healthcare helps understanding biases and formalizing reasoning about the effect of interventions. We illustrated,
with a hypothetical example, that high-level features (causal representations) can be extracted from low-level data (e.g. I1 might
correspond to the brain volume derived from a medical image) into a graph corresponding to the data generation process. CML can
be used to discover which relationships between variables are spurious and which are causal, illustrated with lines dashed and solid
lines respectively. Finally, CML offers tools for reasoning about the effect of interventions (shown with the do() operator). For
instance, an intervention on D1 would only affect the downstream variables in the graph while other relationships are either
not relevant (due to graph mutilation) or remain unchanged.
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only associations between variables in the data, without distinguishing between causal relationships and
(spurious) correlations.

CDS systems targeted at precision medicine (also known as personalized medicine) need to answer
complex queries about how individuals would respond to interventions. A precision CDS system for
Alzheimer’s disease (AD), for instance, should be able to quantify the effect of treating a patient with a
given drug on the final outcome, e.g. predict the subsequent cognitive test score. Even with the
appropriate data and perfect performance, current ML systems would predict the best treatment
based only on previous correlations in data, which may not represent actionable information.
Information is defined as actionable when it enables treatment (interventional) decisions to be based on
a comparison between different scenarios (e.g. outcomes for treated versus not treated) for a given
patient. Such systems need causal inference (CI) in order to make actionable and individualized
treatment effect predictions [2].

A major upstream challenge in healthcare is how to acquire the necessary information to causally
reason about treatments and outcomes. Modern healthcare data are multi-modal, high-dimensional
and often unstructured. Information from medical images, genomics, clinical assessments and
demographics must be taken into account when making predictions. A multi-modal approach better
emulates how human experts use information to make predictions. In addition, many diseases are
progressive over time, thus necessitating that time (the temporal dimension) is taken into account.
Finally, any system must ensure that these predictions will be generalizable across deployment
environments such as different hospitals, cities or countries.

Interestingly, it is the connection between CI and ML that can help alleviate these challenges. ML
allows causal models to process high-dimensional and unstructured data by learning complex
nonlinear relations between variables. CI adds an extra layer of understanding about a system with
expert knowledge, which improves information merging from multi-modal data, generalization and
explainability of current ML systems.

The causal machine learning (CML) literature offers several directions for addressing the
aforementioned challenges when using observational data. Here, we categorize CML into three
directions: (i) Causal representation learning—given high-dimensional data, learn to extract low-
dimensional informative (causal) variables and their causal relations; (ii) causal discovery—given a set
of variables, learn the causal relationships between them; and (iii) causal reasoning—given a set of
variables and their causal relationships, analyse how a system will react to interventions. We
illustrated in figure 1 how these CML directions can be incorporated into healthcare.
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In this paper, we discuss how CML can improve personalized decision-making as well as help to
mitigate pressing challenges in CDS systems. We review representative methods for CML, explaining
how they can be used in a healthcare context. In particular, we (i) present the concept of causality and
causal models; (ii) show how they can be useful in healthcare settings; (iii) discuss pressing challenges
such as dealing with high-dimensional and unstructured data, out of distribution generalization and
temporal information; and (iv) review potential research directions from CML.
lishing.org/journal/rsos
R.Soc.Open

Sci.9:220638
2. What is causality?
We use a broad definition of causality: if A is a cause and B is an effect, then B relies on A for its value.
As causal relations are directional, the reverse is not true; A does not rely on B for its value. The notion of
causality thus enables analysis of how a system would respond to an intervention.

Questions such as ‘How will this disease progress if a patient is given treatment X?’ or ‘Would this
patient still have experienced outcome Z if treatment Y was received?’ require methods from causality to
understand how an intervention would affect a specific individual. In a clinical environment, causal
reasoning can be useful for deciding which treatment will result in the best outcome. For instance, in
an AD scenario, causality can answer queries such as ‘Which of drug A or drug B would best
minimize the patient’s expected cognitive decline within a 5-year time span?’. Ideally, we would
compare the outcomes of alternative treatments using observational (historical) data. However, the
‘fundamental problem of CI’ [3] is that for each unit (i.e. patient) we can observe either the result of
treatment A or of treatment B, but never both at the same time. This is because after making a choice
on a treatment, we cannot turn back time to undo the treatment. These queries that entertain
hypothetical scenarios about individuals are called potential outcomes. Thus, we can observe only one
of the potential consequences of an action; the unobserved quantity becomes a counterfactual.
Causality’s mathematical formalism pioneered by Pearl [4] and Imbens and Rubin [5] allows these
more challenging queries to be answered.

Most ML approaches are not (currently) able to identify cause and effect, because CI is fundamentally
impossible to achieve without making assumptions [4,6]. Several of these assumptions can be satisfied
through study design or external contextual knowledge, but none can be discovered solely from
observational data.

Next, we introduce the reader to two ways of defining and reasoning about causal relationships: with
structural causal models (SCMs) and with potential outcomes. We wrap up this section with an
introduction to determining causal relationships, including the use of randomized controlled trials
(RCT).

2.1. Structural causal models
The mathematical formalism around the so-called do-calculus and SCMs pioneered by the Turing Award
winner Pearl [4] has allowed a graphical perspective to reasoning with data which heavily relies on
domain knowledge. This formalism can model the data generation process and incorporate
assumptions about a given problem. An intuitive and historical description of causality can be found
in Pearl & Mackenzie’s recent book The Book of Why [7].

An SCM G :¼ ðS, PNÞ consists of a collection S = ( f1,…, fK) of structural assignments (called
mechanisms)

Xk :¼ fkðPAk, NkÞ, ð2:1Þ
where PAk is the set of parent variables of Xk (its direct causes) and Nk is a noise variable for modelling
uncertainty. N = {N1, N2,…, Nd} is also referred to as exogenous noise because it represents variables that
were not included in the causal model, as opposed to the endogenous variables X = {X1, X2,…, Xd} which
are considered known or at least intended by design to be considered, and from which the set of parents
PAk are drawn. This model can be defined as a direct acyclic graph (DAG) in which the nodes are the
variables and the edges are the causal mechanisms. One might consider other graphical structures
which incorporate cycles and latent variables [8], depending on the nature of the data.

It is important to note that the causal mechanisms are representations of physical mechanisms that are
present in the real world. Therefore, according to the principle of independent causal mechanisms (ICM), we
assume that the causal generative process of a system’s variables is composed of autonomous modules
that do not inform or influence each other [6,9]. This means that exogenous variables N are mutually
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independent with the following joint distribution PðNÞ ¼ Qd
k¼1 PðNkÞ. Moreover, the joint distribution

over the endogenous variables X can be factorized as a product of independent conditional mechanisms

PGðX1, X2, . . . , XKÞ ¼
YK

k¼1

PG(Xk j PAk): ð2:2Þ

The causal framework now allows us to go beyond (i) associative predictions, and begin to answer (ii)
interventional and (iii) counterfactual queries. These three tasks are also known as Pearl’s causal hierarchy
[7]. The do-calculus introduces the notation do(A), to denote a system where we have intervened to fix the
value of A. This allows us to sample from an interventional distribution PG;doð���Þ

X , which has the advantage
over an observational distribution PG

X that the causal structure enforces that only the descendants of the
variable intervened upon will be modified by a given action. As illustrated in figure 1, after an intervention,
the edges between the intervened variable and its parents are not relevant, resulting in a mutilated graph.

2.2. Potential outcomes
An alternative approach to CI is the potential outcomes framework proposed by Rubin [10]. In this
framework, a response variable Y is used to measure the effect of some cause or treatment for a
patient, i. The value of Y may be affected by the treatment assigned to i. To enable the treatment
effect to be modelled, we represent the response with two variables Yð0Þ

i and Yð1Þ
i which denote

‘untreated’ and ‘treated’, respectively. The effect of the treatment on i is then the difference, Yð1Þ
i � Yð0Þ

i .
As a patient may potentially be untreated or treated, we refer to Yð0Þ

i and Yð1Þ
i as potential outcomes. It is,

however, impossible to observe both simultaneously, according to the previously mentioned fundamental
problem of CI [3]. This does not mean that CI itself is impossible, but it does bring challenges [5]. Causal
reasoning in the potential outcome frameworks depends on obtaining an estimate for the joint
probability distribution, P(Y(0), Y(1)).

Both SCM and potential outcomes approaches have useful applications, and are used where
appropriate throughout this article. In practice [11], while graphical SCMs are powerful for modelling
assumption or identifying if an intervention is even possible or not, the potential outcomes literature
is more focused on quantifying the effect of interventions. We note that single world intervention
graphs [12] have been proposed as a way to unify them.

2.3. Determining cause and effect
Determining causal relationships often requires carefully designed experiments. There is a limit to how
much can be learned using purely observational data.

The effects of causes can be determined through prospective experiments to observe an effect E after a
cause C is tried or withheld, keeping constant all other possible factors. It is hard, and in most cases
impossible, to control for all possible confounders of C and E. The gold standard for discovering a
true causal effect is by performing an RCT, where the choice of C is randomized, thus removing
confounding. For example, by randomly assigning a drug or a placebo to patients participating in an
interventional study, we can measure the effect of the treatment, eliminating any bias that may have
arisen in an observational study due to other confounding variables, such as lifestyle factors, that
influence both the choice of using the drug and the impact of cognitive decline [13].

Note that the conditional probability P(E|C) of observing E after observing C can be different from
the interventional probability P(E|do(C )) of observing E after doing/intervening on C. P(E|do(C ))
means that only the descendants of C (in a causal graph) change after an intervention, all other
variables maintain their values. In RCTs, ‘do’ is guaranteed and unconditioned, while with
observational data such as historical EHRs, it is not, due to the presence of confounders.

Determining the causes of effects (the aetiology of diseases) requires hypotheses and experimentation
where interventions are performed and studied to determine the necessary and sufficient conditions for
an effect or disease to occur.
3. Why should we consider a causal framework in healthcare?
CI has made several contributions over the last few decades to fields such as social sciences,
econometrics, epidemiology and aetiology [4,5], and it has recently spread to other healthcare fields
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such as medical imaging [14–16] and pharmacology [2]. In this section, we will elaborate on how
causality can be used for improving medical decision-making.

Even though data from EHRs, for example, are usually observational, they have already been
successfully leveraged in several ML applications [17], such as modelling disease progression [18],
predicting disease deterioration [19] and discovering risk factors [20], as well as for predicting
treatment responses [21]. Further, we now have evidence of algorithms which achieve superhuman
performance in imaging tasks such as segmentation [22], detection of pathologies and classification
[23]. However, predicting a disease with almost perfect accuracy for a given patient is not what
precision medicine is trying to achieve [24]. Rather, we aim to build ML methods which extract
actionable information from observational patient data in order to make interventional (treatment)
decisions. This requires CI, which goes beyond standard supervised learning methods for prediction
as detailed below.

In order to make actionable decisions at the patient level, one needs to estimate the treatment effect.
The treatment effect is the difference between two potential outcomes: the factual outcome and the
counterfactual outcome. For actionable predictions, we need algorithms that learn how to reason about
hypothetical scenarios in which different actions could have been taken, creating, therefore, a decision
boundary that can be navigated in order to improve patient outcome. There is recent evidence that
humans use counterfactual reasoning to make causal judgements [25], lending support to this
reasoning hypothesis.

This is what makes the problem of inferring treatment effect fundamentally different from standard
supervised learning [2] as defined by the potential outcome framework [5,10]. When using observational
datasets, by definition, we never observe the counterfactual outcome. Therefore, the best treatment for an
individual—the main goal of precision medicine [26]—can only be identified with a model that is capable
of causal reasoning as will be detailed in §3.3.
3.1. Alzheimer’s disease practical example
We now illustrate the notion of CML for healthcare with an example from Alzheimer’s disease (AD).
A recent attempt to understand AD from a causal perspective [27,28] takes into account many
biomarkers and uses domain knowledge (as opposed to RCTs) for deriving ground truth causal
relationships. In this section, we present a simpler view with only three variables: chronological age,1

magnetic resonance (MR) images of the brain, and AD diagnosis. The diagnosis of AD is made by a
clinician who takes into account all available clinical information, including images. We are
particularly interested in MR images because analysing the relationship of high-dimensional data,
such as medical images, is a task that can be more easily handled with ML techniques, the main focus
of this paper.

AD is a type of cognitive decline that generally appears later in life [30]. AD is associated with brain
atrophy [31,32], i.e. volumetric reduction of grey matter. We consider that AD causes the symptom of
brain morphology change, following Richens et al. [33], by arguing that a high-dimensional variable
such as the MR image is caused by the factors that generated it; this modelling choice has been
previously used in the causality literature [34–36]. Further, it is well established that atrophy also
occurs during normal ageing [37,38]. Time does not depend on any biological variable, therefore
chronological age cannot be caused by AD nor any change in brain morphology. In this scenario, we
can assume that age is a confounder of brain morphology, measured by the MR image, and AD
diagnosis. These relationships are illustrated in the causal graph in figure 2.

To model the effect of having age as a confounder of brain morphology and AD, we use a conditional
generative model from Xia et al. [39],2 in which we condition on age and AD diagnosis for brain MRI
image generation. We then synthesize images of a patient at different ages and with different AD
status as depicted in figure 2. In particular, we control for (i.e. condition on) one variable while
intervening on the other. That is, we synthesize images based on a patient who is cognitively normal
(CN) for their age of 64 years. We then fix the Alzheimer’s status at CN and increase the age by 3
years for three steps, resulting in images of the same CN patient at ages 64, 67, 70, 73. At the same
time, we synthesize images with different Alzheimer’s status by fixing the age at 64 and changing the
Alzheimer’s status from mild cognitive impairment to a clinical diagnosis of AD.
1Age can otherwise be measured in biological terms using, for instance, DNA methylation [29].
2We take the model from Xia et al. [39] and run new demonstrative experiments for illustration in this paper.
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Figure 2. Causal graph (left) and illustration of how the brain changes in MR images in response to interventions on ‘Age’ or
‘Alzheimer’s disease status’. The images are axial slices of a brain MR scan. The middle image used as a baseline is from a
patient aged 64 years old who is classified an cognitively normal (CN) within the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. All other images are synthesized with a conditional generative model [39]. The images with grey background
are difference images obtained by subtracting the synthesized image from the baseline. The upper sequence of images is
generated by fixing Alzheimer’s status at CN and increasing age by 3 years. The bottom images are generated by fixing the
age at 64 and increasing Alzheimer’s status to MCI and AD, as discussed in the main text.
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This example illustrates the effect of confounding bias. By observing qualitatively the difference
between the baseline and synthesized images, we see that ageing and AD have similar effects on the
brain.3 That is, that both variables change the volume of brain when intervened on independently.

Throughout the paper, we will further add variables and causal links to this example to illustrate how
healthcare problems can become more complex and how a causal approach might mitigate some of the
main challenges. In particular, we will build on this example by explaining some consequences of causal
modelling for dealing with high-dimensional and unstructured data, generalization and temporal
information.
3.2. Modelling the data generation process
The AD example illustrates the importance of considering causal relationships in a ML scenario. Namely,
causality gives the ability to model and identify types and sources of bias.4 To correctly identify which
variables to control for (as means to mitigate confounding bias), causal diagrams [4] offer a direct means
of visual exploration and consequently explanation [40,41].

Castro et al. [14] details further how understanding the causal generating process can be useful in
medical imaging. By representing the variables of a particular problem and their causal relationships
as a causal graph, one can model domain shifts, such as population shift (different cohorts), acquisition
shift (different sites or scanners) and annotation shift (different annotators), and data scarcity
(imbalanced classes). A benefit of reasoning causally about a problem domain is transparency, by
offering a clear and precise language to communicate assumptions about the collected data [14,42,43].
In a similar vein, models whose architecture mirrors an assumed causal graph can be desirable in
applications where interpretability is important [44].
3See Xia et al. [39] for quantitative results confirming this hypothesis.
4We refer to https://catalogofbias.org/biases for a catalogue of bias types.

https://catalogofbias.org/biases
https://catalogofbias.org/biases


Table 1. Illustration of how a naively trained classifier (a neural network) fails when the data generation process and causal
structure are not identified. We report the precision and recall on the test set when training a classifier for diagnosing AD. We
stratify the results by age. We highlight that the group with worse performance is the older cognitively normal patients due to
the confounding bias described in the main text. After training with counterfactually augmented data, the classifier’s precision
for the worse performance age group improved. These results were replicated from our previous work Xia et al. [45].

age range (years) 60–70 70–80 80–90

naive precision 87.7 91.4 75.5

recall 92.5 94.2 97.1

counterfactually augmented precision 88.3 93.6 84.2

recall 91.5 96.5 95.7
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In the AD setting above, a classifier naively trained to perform diagnosis fromMR images of the brain
might focus on the brain atrophy alone. This classifier may show reduced performance in younger adults
with AD or for CN older adults, leading to potentially incorrect diagnosis. To illustrate this, we report the
results of a convolutional neural network classifier trained and tested on the ADNI dataset following the
same setting as Xia et al. [45].5 Table 1 shows that as feared, healthy older patients (80–90 years old) are
less accurately predicted because ageing itself causes the brain to have Alzheimer’s-like patterns.

Indeed, using augmented data based on causal knowledge is a solution discussed in Xia et al. [45],
whereby the training data are augmented with counterfactual images of a patient when intervening
on age. That is, images of a patient at different ages (while controlling for Alzheimer’s status) are
synthesized so the classifier learns how to differentiate the effects of ageing versus AD in brain images.

This causal knowledge enables the formulation of best strategies for mitigating data bias(es) and
improving generalization (further detailed in §4.3). For example, if after modelling the data
distribution, an acquisition shift becomes apparent (e.g. training data were obtained with a specific
MR sequence but the model will be evaluated on data from a different sequence), then data
augmentation strategies can be designed to increase robustness of the learned representation. The
acquisition shift—e.g. different intensities due to different scanners—might be modelled according to
the physics of the (sensing) systems. Ultimately, creating a diagram of the data generation process
helps rationalize/visualize which are the best strategies to solve the problem.
3.3. Treatment effect and precision medicine
Beyond diagnosis, a major challenge in healthcare is ascertaining whether a given treatment influences an
outcome. For a binary treatment decision, for instance, the aim is to estimate the average treatment effect
(ATE), E[Y(1)−Y(0)], where Y(1) is the outcome given the treatment and Y(0) is the outcome without it
(control). As it is impossible to observe both potential outcomes Y(0) and Yð1Þ

i for a given patient i, this
is typically estimated using E[Y|T = 1]− E[Y|T = 0], where T is the treatment assignment.

The treatment assignment and outcomes, however, both depend on the patient’s condition in normal
clinical conditions. This results in confounding, which is best mitigated by the use of an RCT (§2.3).
Performing an RCT as detailed in §2.3, however, is not always feasible, and CI techniques can be used
to estimate the causal effect of treatment from observational data [46]. A number of assumptions need
to hold in order for the treatment effect to be identifiable from observational data [5,47]. Conditional
exchangeability (ignorability) assumes there are no unmeasured confounders. Positivity (overlap) is
the assumption that every patient has a chance of receiving each treatment. Consistency assumes that
the treatment is defined unambiguously. Continuing the Alzheimer’s example, Charpignon et al. [48]
explore drug re-purposing by emulating an RCT with a target trial [49] and find indications that
metformin (a drug classically used for diabetes) might prevent dementia.

Note that even if the treatment effect is estimated using data from a well-designed RCT, E[Y| T = 1]−
E[Y| T = 0] is the average treatment effect across the study population. However, there is evidence [2] that
for any given treatment, it is likely that only a small proportion of subjects will actually respond in a
manner that resembles the ‘average’ patient, as illustrated in figure 3. In other words, the treatment
5Although we replicate results from Xia et al. [45], this work does not constitute an extension of the original paper. Rather, we use Xia
et al. [45] as an example that illustrates how causality might impact standard machine learning.



ou
tc

om
e

feature

treated counterfactual  

treated

untreated

ATE

ITE

Figure 3. We illustrate the difference between individualized and average treatment effect (ITE versus ATE). ‘Feature’ represents
patient characteristics, which would be multi-dimensional in reality. ‘Outcome’ is some measure of response to the treatment,
where a more positive value is preferable. The ITE for each patient is the difference between actual and the counterfactual
outcome. We show an example counterfactual to highlight that ITE for some patients might differ from the average (ATE). By
employing causal inference methods to estimate individualized treatment effects, we can understand which patients benefit
from certain medication and which patients do not, thus enabling us to make personalized treatment recommendations. Note
that the patient data points are evenly distributed along the feature axis, which would indicate that this data comes from an
RCT (due to lack of bias). The estimation of treatment affect using observational data is subject to confounding as patient
characteristics affect both the selection of treatment and outcome. Causal inference methods need to mitigate this.
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effect can be highly heterogeneous across a population. The aim of precision medicine is to determine the
best treatment for an individual [24], rather than simply measuring the average response across a
population. In order to answer this question for a binary treatment decision, it is necessary to estimate
τi =Yi(1)−Yi(0) for a patient i. This is known as the individualized treatment effect. As this estimation
is performed using a conditional average, this is also referred to as the conditional average treatment
effect (CATE) [50].

A long-term goal of precision medicine [2] includes personalized risk assessment and prevention.
Without a causal model to distinguish these questions from simpler prediction systems, interpretational
mistakes will arise. In order to design more robust and effective ML methods for personalized
treatment recommendations, it is vital that we gain a deeper theoretical understanding of the challenges
and limitations of modelling multiple treatment options, combinations and treatment dosages from
observational data.
4. Causal machine learning for complex data
In §3, we focused on causal reasoning in situations where the causal models are known (at least partially)
and variables are well demarcated. We refer the reader to Bica et al. [2] for a comprehensive review on
these methods. Most healthcare problems, however, have challenges that are upstream of causal
reasoning. In this section, we highlight the need to deal with high-dimensional and multi-modal data
as well as with temporal information and discuss generalization in out-of-distribution settings when
learning from unstructured data.

4.1. Multi-modal data
AD, in common with other major diseases such as diabetes and cancer, has multiple causes arising from
complex interactions between genetic and environmental factors. Indeed, a recent attempt [27] to build
causal graphs for describing AD takes into account data derived from several data sources and
modalities, including patient demographics, clinical measurements, genetic data and imaging exams.
Uleman et al. [28], in particular, creates a causal graph6 with clusters of nodes related to brain health,
physical health and psychosocial health, illustrating the complexity of AD.

The above example illustrates that modern healthcare is multi-modal. New ways of measuring
biomarkers are increasingly accessible and affordable, but integrating this information is not trivial.
Information from different sources needs to be transformed to a space where information can be
6Interestingly, Uleman et al. [28] gather expert knowledge using a group model-building technique [51] where multiple experts with
complementary skills create a graph based on their combined mental models and assumptions.
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combined, and the common information across modalities needs to be disentangled from the unique
information within each modality [52]. This is critical for developing CDS systems capable of
integrating images, text and genomics data. In addition, performing interventions [53] with complex
data representations and functions is challenging. Strategies for counterfactual prediction [4] are
simpler with scalar variables and linear functions. Interventions can have qualitatively distinct
behaviours and should be understood as acting on high-level features rather than purely on the raw data.

On the other hand, the availability of more variables might mean that some assumptions which are
made in classical CI are more realistic. In particular, most methods consider the assumption of conditional
exchangeability (or causal sufficiency [54]), as in §3.3. In practice, the conditional exchangeability
assumption may often not be true due to the presence of unmeasured confounders. However,
observing more variables might reduce the probability of this, rendering the assumption more plausible.
l/rsos
R.Soc.Open

Sci.9:220638
4.2. Temporal data
It is well known that a gene called apolipoprotein E is associated with an increased risk of AD [55,56].
However, environmental factors, such as education [57–59], also have an impact on dementia. In other
words, environmental factors over time contribute to different disease trajectories in AD. In addition,
there are possible loops in the causal diagram [28]. Wang & Holtzman [60] illustrate, for instance, a
positive feedback loop between sleep and AD. That is, poor sleep quality aggravates amyloid-beta
and tau pathology concentrations, potentially leading to neuronal dysfunction, which, in turn, leads to
worse sleep quality. It is, therefore, important to consider data-driven approaches for understanding
and modelling the progression of disease over time [61].

At the same time, using temporal information for inferring causation can be traced back to one of the
first definitions of causality by Hume [62]. Quoting Hume [62]: ‘we may define a cause to be an object
followed by another, and where all the objects, similar to the first, are followed by objects similar to the
second’. There are many strategies for incorporating time into causal models since using SCMs with
directed acyclic graphs (as defined in §2.1) is not enough in this context. A classical model of
causality for time series developed by Granger [63] considers X→Y if past X is predictive of future Y.
Therefore, inferring causality from time-series data is at the core of CML. Bongers et al. [8] show that
SCMs can be defined with latent variables and cycles, allowing temporal relationships. Early work
has used temporal CI in neuroscience [64], but the application of temporal CI in combination with
ML for understanding and dealing with complex disease remains largely unexplored.

Managing diseases such as AD can be challenging due to the heterogeneity of symptoms and their
trajectory over time across the population. A pathology might evolve differently for patients with
different covariates. For treatment decisions in a longitudinal setting, CI methods need to model
patient history and treatment timing [65]. Estimating trajectories under different possible future
treatment plans (interventions) is extremely important [66]. CDS systems need to take into account the
current health state of the patient, to make predictions about the potential outcomes for hypothetical
future treatment plans, to enable decision-makers to choose the sequence and timing of treatments
that will lead to the best patient outcome [66–68].
4.3. Out-of-distribution generalization with unstructured and high-dimensional data
The challenge of integrating different modalities and temporal information increases when unstructured
data is used. Most causality theory was originally developed in the context of epidemiology,
econometrics, social sciences and other fields wherein the variables of interest tend to be scalars [4,5].
In healthcare, however, the use of imaging exams and free-text reports poses significant challenges for
consistent and robust extraction of meaningful information. The processing of unstructured data is
mostly tackled with ML, and generalization is one of the biggest challenges for learning algorithms.

In its most basic form, generalization is the ability to correctly categorize new samples that differ from
those used for training [69]. However, when learning from data, the notion of generalization has many
facets. Here, we are interested in a realistic setting where the test data distribution might be different from
the training data distribution. This setting is often referred to as out-of-distribution generalization.
Distribution shifts are often caused by a change in environment (e.g. different hospitals). We wish to
present a causal perspective [70–72] on generalization which unifies many ML settings. Causal
relationships are stable across different environments [73]. In a causal learning, the prediction should
be invariant to distribution shifts [74].
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Figure 4. Reasoning about generalization of a prediction task with a causal graph. Anti-causal prediction and a spurious association
that may lead to shortcut learning are illustrated.
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As the use of ML in high-impact domains becomes widespread, the importance of evaluating safety
has increased. A key aspect is evaluating how robust a model is to changes in environment (or domain),
which typically requires applying the model to multiple independent datasets [75]. Since the cost of
collecting such datasets is often prohibitive, CI argues that providing structure (which comes from
expert knowledge) is essential for increasing robustness in real life [4].

Imagine a prediction problem where the goal is to learn P(Y|X ), with the causal graph illustrated in
figure 4. We consider an environment variable Envwhich controls the relationship between Y andW. Env
is a confounder Y← Env→W and X is caused by the two variables Y→X←W.

Firstly, we consider the view that most prediction problems are in the anti-causal direction
[34–36,76].7 That is, when making a prediction from a high-dimensional, unstructured variable X (e.g.
a brain image) one is usually interested in extracting and/or categorizing one of its true generating
factors Y (e.g. grey matter volume). P(X|Y ), which represents the causal mechanism, Y→X, is
independent of P(Y|Env); however, P(Y|X ) is not, as P(Y|X ) = P(X|Y )P(Y|Env)/P(X ). Thus P(Y|X )
changes as the environment changes.

Secondly, another (or many others) generating factor W is often correlated with Y, which might cause
the predictor to learn the relationship between X and W instead of the P(Y|X ). This is known as shortcut
learning [79] as it may be easier to learn the spurious correlation than the required relationship. For
example, suppose an imaging dataset X is collected from two hospitals, Env1 and Env2. Hospital Env1
has a large neurological disorder unit, hence a higher prevalence of AD status (denoted by Y), and
uses a 3T MRI scanner (scanner type denoted by W). Hospital Env2 with no specialist unit, hence a
lower prevalence of AD, happens to use a more common 1.5T MRI scanner. The model will learn the
spurious correlation between W (scanner type) and Y (AD status).

We can now describe several ML settings based on this causal perspective by comparing data
availability at train and test time. Classical supervised learning (or empirical risk minimization [80])
uses the strong assumption that the data from train and test sets are independent and identically
distributed (i.i.d.), therefore we assign the same environment for both sets. Semi-supervised learning [81]
is a case where part of the training samples are not paired to annotations. Continual (or Lifelong)
learning considers the case where data from different environments are added after training, and the
challenge is to learn new environments without forgetting what has initially been learned. In domain
adaptation, only unpaired data from the test environment is available during training. Domain
generalization aims at learning how to become invariant to changes of environment, such that a new
(unseen in training data) environment can be used for the test set. Enforcing fairness is important
when W is a sensitive variable and the train set has Y and W spuriously8 correlated due to a choice of
environment. Finally, learning from imbalanced datasets can be seen under this causal framework
when a specific Y = y have different numbers of samples because of the environment, but the test
environment might contain the same bias towards a specific value of Y.
5. Research directions in causal machine learning
Having discussed the utility of CML for healthcare including complex multimodal, temporal and
unstructured data, the final section of this paper discusses some future research directions. We discuss
7We note that other seminal works [77,78] consider prediction a causal task because prediction should copy a cognitive human process
of generating labels given the data.
8We use the term spurious for features that correlate but do not have a causal relationship between each other.
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CML according to the three categories defined in §1: (i) causal representation learning; (ii) causal
discovery; and (iii) causal reasoning.

5.1. Causal representations
Representation learning [82] refers to a compositional view of ML. Instead of a mapping between input
and output domains, we consider an intermediate representation that captures concepts about the
world. This notion is essential when considering learning and reasoning with real healthcare data.
High-dimensional and unstructured data, as considered in §4.3, are not organized in units that can be
directly used in current causal models. In most situations, the variable of interest is not, for instance,
the image itself, but one of its generating factors, for instance grey matter volume in the AD example.

Causal representation learning [9] extends the notion of learning factors about the world to modelling
the relationships between variables with causal models. In other words, the goal is to model the
representation domain Z as an SCM as in §2.1. Causal representation learning builds on top of the
disentangled representation learning literature [83–85] towards enforcing stronger inductive bias as
opposed to assumptions of factor independence commonly pursued by disentangled representations.
The idea is to reinforce a hierarchy of latent variables following the causal model, which in turn
should follow the real data generation process.

5.2. Causal discovery
Performing RCTs is very expensive and sometimes unethical or even impossible. For instance, to
understand the impact of smoking in lung cancer, it would be necessary to force random individuals
to smoke or not smoke. Most real data are observational and discovering causal relationships between
the variables is more challenging. Considering a setting where the causal variables are known, causal
discovery is the task of learning the direction of causal relationships between the variables. In some
settings, we have many input variables and the goal is to construct the graph structure that best
describes the data generation process.

Extensive background has been developed over the last three decades around discovering causal
structures from observational data, as described in recent reviews of the subject [6,86–88]. Most
methods rely on conditional independence tests, combinatorial exploration over possible DAGs and/
or assumptions about the data generation process’s function class and noise distribution (e.g. the true
causal relationships assumed to be linear, with additive noise, or that the exogenous noise has a
Gaussian distribution) for finding the causal relations of given causal variables. In healthcare, Huang
et al. [89] and Sanchez-Romero et al. [90] use causal discovery for learning how different physiological
processes in the brain causally influence each other using functional MRI data.

Causal discovery is still an open area of research, and some of the major challenges in discovering
causal effects [6,91] from observational data are the inability to (i) identify all potential sources of bias
(unobserved confounders); (ii) select an appropriate functional form for all variables (model
misspecification); and (iii) model temporal causal relationships.

5.3. Causal reasoning
It has been conjectured that humans internally build generative causal models for imagining
approximate physical mechanisms through intuitive theories [35]. Similarly, the development of
models that leverage the power of causal models around interventions would be useful. The causal
models can be formally manipulated for measuring the effects of interventions. Using causal models
for quantifying the effect of interventions and pondering about the best decision is known as causal
reasoning. As previously discussed in §3.3, one of the key benefits from causal reasoning in healthcare
is around personalized decision-making.

In SCMs (§2.1), personalized decision-making usually refers to the ability to answer counterfactual
queries [53] about historical situations, such as ‘What would have happened if the patient had
received alternative treatment X?’. Counterfactuals can be estimated with (i) a three-step procedure
[53] (abduction–action–prediction) which has been recently enhanced with deep learning [15,92] using
generative models such as normalizing flows [93], variational autoencoders [94] and diffusion
probabilistic models [95] or (ii) twin networks [96] which augment the original SCM resulting in both
factual and counterfactual variables represented simultaneously. Deep twin networks [97] leverage
neural networks to further improve flexibility of the causal mechanisms. We note that quantifying the
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effect of interventions usually assumes that causal models are given either explicitly [15,98] or learned via
causal discovery [99]. Aglietti et al. [98] evaluate their method with using a model of the causal effect of
statin drugs on the levels of prostate specific antigen [100] while Pawlowski et al. [15] and Wang et al.
[101] model the data generation process of the MRI images of the brain. Reinhold et al. [102] extend
Pawlowski et al. [15] by adding pathological information about multiple sclerosis lesions.

In the potential outcomes framework (§2.2), a number of approaches have been proposed to estimate
personalized (also called individualized or conditional average) treatment effect from observational data.
These techniques include Bayesian additive regression trees [103], double ML [104,105], regularization of
neural networks with integral probability metrics [106] or orthogonality constraints [107], Gaussian
processes [108], generative adversarial networks [109] or energy-based models [110]. Another trend for
estimating CATE are based on meta-learners [111,112]. In the meta-learning setting, traditional
(supervised) ML is used to predict the conditional expectations of the potential outcomes and
propensity. Then, CATE is computed by taking the difference between the estimated potential
outcomes [112] or using a two-step procedure with regression adjustment, propensity weighting or
doubly robust learning [111].
c.Open
Sci.9:220638
6. Conclusion
We have described the importance of considering CML in healthcare systems. We highlighted the need to
design systems that take into account the data generation process. A causal perspective on ML
contributes to the goal of building systems that are not just performing better (e.g. achiever higher
accuracy), but are able to reason about potential effects of interventions at population and individual
levels, closing the gap towards realizing precision medicine.

We have discussed key pressing challenges in precision medicine and healthcare, namely, using
multi-modal, high-dimensional and unstructured data to make decisions that are generalizable across
environments and take into account temporal information. We finally proposed opportunities drawing
inspiration from causal representation learning, causal discovery and causal reasoning towards
addressing these challenges.
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