
Supervised Whole DAG Causal Discovery

Hebi Li
Dept. of Computer Science

Iowa State University
Ames, IA 50010

hebi@iastate.edu

Qi Xiao
Dept. of Electrical Engineering

Iowa State University
Ames, IA 50010

qxiao@iastate.edu

Jin Tian
Dept. of Computer Science

Iowa State University
Ames, IA 50010

jtian@iastate.edu

Abstract

We propose to address the task of causal structure learning from data in a supervised
manner. Existing work on learning causal directions by supervised learning is
restricted to learning pairwise relation, and not well suited for whole DAG discovery.
We propose a novel approach of modeling the whole DAG structure discovery as
a supervised learning. To fit the problem in hand, we propose to use permutation
equivariant models that align well with the problem domain. We evaluate the
proposed approach extensively on synthetic graphs of size 10,20,50,100 and real
data, and show promising results compared with a variety of previous approaches.

1 Introduction

Causal structure discovery is an important topic for artificial intelligence research. We will focus
on the task of learning from data a Directed Acyclic Graph (DAG) where an edge in the DAG
indicates the direct causal relationship between the parent node and the child node. There have been
many methods proposed to recover causal structures among variables from observational data and/or
interventional data.

There are several different kinds of approaches for causal discovery. Traditional constraint-based
algorithms such as PC Pearl (2009) and FCI Spirtes et al. (2000) rely on conditional independence
tests to infer graphical conditions, and construct causal graphs without violating the constraints.
Score-based methods like GES Chickering (2002); Ramsey et al. (2017) and CAM Bühlmann et al.
(2014) use a pre-defined score-function, such as AIC, BIC, BDe scores, and search in the space of all
valid DAGs for the highest possible score, via search algorithms such as Hill Climbing.

A recent break through, NOTEARS Zheng et al. (2018), models the acyclic constraint as an equivalent
continuous equality constraint, and solves the causal discovery entirely as a continuous optimization
problem via augmented Lagrangian. Follow-up works along this line design different search strategies
and non-linear extensions: DAG-GNN Yu et al. (2019) extends the linear model to non-linear via
generative models; RL-BIC2 Zhu and Chen (2019) uses reinforcement learning as the search strategy;
and Grad-DAG Lachapelle et al. (2019) also extends the model to non-linear using neural networks.

Another line of research models pair-wise causal discovery problem as a supervised learning, to infer
the causal direction between a pair. Work along this line includes Randomized Causation Coefficient
(RCC) Lopez-Paz et al. (2015b,a) and Manifold Regularized Causal Learning (MRCL) Hill et al.
(2019). However, both works are pairwise methods, and do not work well in discovering global DAG
structure.

We propose a novel approach of modeling the whole DAG structure discovery as a supervised learning.
In particular, we learn a predictive model that takes a featurization of the input data, and directly
predicts the whole DAG structure. The model is trained in a supervised manner, where the supervised
data is generated from randomly sampled DAGs. When performing causal discovery on testing data,

Preprint. Under review.

ar
X

iv
:2

00
6.

04
69

7v
1

 [
cs

.L
G

]
 8

 J
un

 2
02

0

the resulting DAG is obtained efficiently by a single forward inference pass of the model, instead of
searching or optimization. We focus on the linear causal models in this paper.

We choose to model the learning problem using a neural network. The problem, however, is quite
challenging to fit by naïve models. Experimental results show that naïve Fully-Connected (FC)
networks and Convolutional Neural Networks (CNNs) do not work well due to misalignment between
the characteristics of the model and the problem domain. Our key observation is that the problem
at hand is permutation equivariant w.r.t variable orders. That is, when the input variable order is
permuted, the output adjacency matrix should change accordingly with the same permutation applied.
Motivated by this observation, we instead utilize the recently proposed permutation Equivariant
models Zaheer et al. (2017); Hartford et al. (2018), and show significant improvement over baseline
FC models and CNN models. We call this new method by DAG-EQ, shortcut for DAG Structure
Discovery by Equivariant Models. Similarly, we refer to the baselines that use FC and CNN models
as DAG-FC and DAG-CNN, respectively.

We conduct extensive evaluation of proposed DAG-EQ on different types of graphs of sizes 10,
20, 50, 100, and compare with a variety of methods, including traditional constraint-based method
(PC), score-based methods (GES, CAM), continuous optimization methods (NOTEARS, DAG-GNN,
RL-BIC2), and pairwise supervised methods (RCC) modified to learn the DAG structure. We show
our method performs much better than PC, GES, CAM, RCC, and is comparable with state-of-the-art
NOTEARS-based approaches. We also test DAG-EQ on real data of protein signaling network Sachs
et al. (2005), and show comparable results with state-of-the-art methods. Notably, DAG-EQ pre-trains
a predictive model once with randomly generated examples. Subsequently the model performs causal
discovery on all new tasks very efficiently - no search or optimization needed. Experimental results
show that the pre-trained models perform well across graphs of different types, sizes, or causal
strengths.

In summary, we make the following contributions:

1. We propose a novel formulation of whole DAG structure discovery as a supervised learning
problem. This is the first method of such kind to our best knowledge.

2. We propose to use equivariant models to fit the statistical learning problem. We develop
DAG-EQ, a DAG structure learning algorithm based on equivariant deep neural networks
that capture the intrinsic characteristics of the data.

3. We evaluate DAG-EQ extensively on synthetic datasets and real data, and show promising
results compared with a variety of previous approaches.

2 Background: Functional Causal Model

Functional causal model Pearl (2009) has been the standard causal framework in the literature. For a
set of random variables {X1, . . . , Xd}, where d is the number of variables, a functional causal model
consists of a set of equations of the form

Xi = fi(pai, εi), i = 1, . . . , d (1)
where pai (connoting parents) stands for the set of variables that are immediate causes of Xi, and εi
represents error term due to unobserved factors. The linear Structural Equation Models (linear SEMs)
is a linear instance of functional causal model, and is given by

Xj =
∑
i 6=j

cjiXi + εj , j = 1, . . . , d (2)

Here, each equation characterizes the direct causal influence of Xi on Xj , quantified by the path
coefficient cji. We consider the recursive models in which we assume the coefficients cji = 0 for
i < j. Thus, the set of variables ordering is directed and acyclic. We denote the covariances between
observed variables as σij = Cov(Xi, Xj), and covariances between error terms as φij = Cov(εi, εj).
We define matrix Σ = [σij], Φ = [φij], and C = [cij] accordingly.

The model structure can be represented by a directed acyclic graph (DAG) G, called the causal
diagram, as follows: the nodes of G are variables X1, . . . , Xd; there is a directed edge from Xi to
Xj if cji6=0; there is a bidirected edge between Xi and Xj if error terms εi and εj have non-zero
correlation (φij 6= 0). The covariance matrix Σ is given by

Σ = (I − C)−1Φ(I − C)T
−1

(3)

2

3 Approach

In this section, we formulate the DAG structure discovery as a supervised learning problem. Since
the common learning models cannot take a distribution as input, we first discuss how we featurize the
distribution into a feature vector suitable as model input. Then, we discuss naïve baseline models and
the permutation equivariant model that we use to fit the problem. Finally, we discuss the training
objective and inference procedure.

3.1 Featurization

The structure learning task takes a sample of data pointsX = {Xi}N as inputs, and outputs adjacency
matrix of all the variables {X1, . . . , Xd}. However, the common learning models cannot take a
distribution as input. Thus, we need to first embed the input data distribution as a feature vector, and
train a model to predict the adjacency matrix for the feature vector.

Motivated by the covariance matrix equation of SEMs in Eq. (3), a natural choice is to use covariance
matrix as the featurization, and the learning problem is essentially to learn a model to simulate Eq.
(3). However, the scale of covariance matrix is sensitive to the data distribution, such that models
learned on training data sets do not work/transfer well to datasets with different coefficients scales.
We thus use the normalized version of the covariance matrix, the Pearson correlation coefficients,
also called the correlation matrix, defined as:

ρX,Y =
cov(X,Y)

σXσY
(4)

Pearson correlation coefficients are normalized into the range of [0, 1], thus transfer much better than
covariance matrix when training and testing distributions differ.

In summary, given the input data distribution over X , we compute correlation matrix ρX,X which is
a d× d matrix, as the input feature vector.

3.2 Baseline Models

Recall that our goal is to learn a mapping from correlation matrix of size d × d to the adjacency
matrix of size d× d where d is the number of variables. In particular, the learning model takes as
input the correlation matrix ρX,X of the input data distribution X , and outputs the edge probability
matrix Ŷ .

Ŷ = fθ(ρX,X) (5)

where fθ is the model parameterized by θ.

In this paper, we consider using neural networks for better model expressiveness. We consider two
baselines, the Fully-Connected (FC) Multi-Layer Perceptrons (MLPs) and CNN models.

The FC models first reshape the input matrix to one dimension vector of size d2. The vector is fed
into multiple fully-connected layers with a ReLU non-linear activation after each layer. The output of
the last layer is of size d2, and reshaped to d× d matrix representing the probability of the existence
of edges in the adjacency matrix. These probabilities are activated by sigmoid functions to ensure the
probabilities are in [0, 1].

For the CNN baseline, we consider a “flat” CNN where all convolutional layers use 3× 3 kernels
with padding size 1, so that the feature maps of all layers are of the same size. The output is used as
final adjacency matrix after a sigmoid activation.

3.3 Permutation Equivariant Models

As we shall show in the evaluation, the two baseline models cannot fit the problem well, especially
for large graphs. They tend to over-fit the training data. The FC model does not enforce any kinds
of regularization; the CNN models enforce local relations, but in our problem domain, the relations
between variables are long range. Thus there needs some strong form of regularization better aligned
with the problem domain.

3

The key observation is that, when the input variable order is permuted, the output adjacency matrix
should change accordingly with the same permutation applied. Formally, for any permutation matrix
P and input correlation matrix ρX,X , the model fθ should satisfy the following property:

fθ(PρX,XP
T) = Pfθ(ρX,X)PT (6)

This is known as permutation equivariant Cohen and Welling (2016); Zaheer et al. (2017). Formally,

Theorem 3.1 Zaheer et al. (2017) Let f be a function of the form of f(x) = σ(Wx), i.e. a 1-layer
neural network with weight W and 0-bias, where x ∈ RM , W ∈ RM×M i.e. f : RM → RM . The
function f is permutation equivariant iff W has the form

W = λI + γ(11T) λ, γ ∈ R 1 = [1, . . . , 1]T ∈ RM I ∈ RM×M is the identity matrix (7)

In our case, the input and output are 2-dimentional matrix, thus we use a generalization called matrix
permutation equivariant model Hartford et al. (2018), formally

Theorem 3.2 Hartford et al. (2018) Let f = σ(Wvec(X)). f is an exchangeable matrix layer iff
the elements of the parameter matrix W are tied together such that the resulting fully connected layer
simplifies to

Y = σ(w1X + w211
TX + w3X11T + w411

TX11T + b) (8)

where 1 = [1, . . . , 1]T and w1, . . . , w4, b ∈ R

Intuitively, an equivariant kernel has 5 components, w1, w2, w3, w4 and b. In particular, w1 is a
constant weight applied to all entries of the input matrix. w2 and w3 are weights applied to sums
of rows and columns, respectively. w4 is the weight to the sum of the whole input matrix, and b is
bias. All of these 5 components are equivariant to permutations of rows and columns, thus the whole
equivariant operator is equivariant to matrix permutation.

Such layers can be stacked to form a deep network. The capacity of the equivariant layers can be tuned
by changing the number of channels. In particular, each layer can have multiple such equivariant
kernels, producing multiple channel outputs. The next equivariant layer is applied individually to
each of the channel, and the results are summed to form the output. This procedure is in the same
way as the channels of Convolutional layers in CNNs.

One additional feature for such stacked equivariant layers is that it natually accepts varying sizes
input. Thus, it is possible to ensemble train the model on graphs of different sizes and types, and it
is also possible to apply the trained models on varying and unseen graphs. The transferability and
ensemble training results are presented in Evaluation section.

3.4 Training and Inference

As described above, we apply sigmoid activation to the model outputs, so that the output probability
matrix Ŷ ∈ [0, 1]d×d. We compute binary cross-entropy of Ŷ and true binary labels Y ∈ {0, 1}d×d
as the loss function:

L = − 1

N

N∑
n=1

d∑
j=1

d∑
i=1

[
Y ni,j · log(Ŷ ni,j) + (1− Y ni,j) · log(1− Ŷ ni,j)

]
, (9)

where n is the sample index, and i, j are the row and column index respectively. The optimization is
done via stochastic gradient descent using standard optimizer, in particular, we used the Adam Kingma
and Ba (2014) optimizer in our evaluation.

During the inference (the structure discovery), given a distribution of data points {Xi}N , we perform
the following steps to obtain the DAG: (1) compute featurization of the input data, in particular, the
Pearson correlation matrix ρX,X , (2) perform model inference, Ŷ = fθ(ρX,X), (3) construct DAG:
we recursively add the edge with the highest probability (larger than 0.5) unless it introduces a cycle.

4

4 Evaluation

Our model is implemented in the Julia programming language, and Flux Innes et al. (2018) neural
network library. The source code and pre-trained models can be found at https://github.com/
lihebi/DAG-EQ. For the methods in comparison, we obtain the python or R implementations from
the authors. All experiments are done in a desktop with Ryzen 3600 6-core 12-thread processor and a
Nvidia RTX2060-Super graphical card.

4.1 Evaluation Setup

Evaluation metrics We report precision and recall of discovered edges, as

precision =
|Ê ∩ E|
|Ê|

recall =
|Ê ∩ E|
|E|

(10)

where Ê is the set of predicted edges, E is the set of true edges. We also report Structural Hamming
Distance (SHD), which is the smallest number of edge additions, deletions, and reversals to convert
the estimated graph into the true DAG. Since PC and GES may output undirected edges, we treat
undirected edges as bidirectional to calculate the metrics.

Synthetic data generation Following the literature, we use Scale-free (SF) and Erdos-Renyi (ER)
graphs because they have been shown to be close to real causal graphs. The number of edges of SF
and ER graphs are the same as the number of nodes. For each setting with d ∈ {10, 20, 50, 100}
number of variables, we sample 1000 random DAGs. We use 80% as training graphs, and 20% as
testing graph, so that the model never sees the same graph in training and testing data.

For each generated DAG, we sample 1000 data points according to a linear causal model with additive
Gaussian of N (0, 1) or non-Gaussian noise described separately later. The linear causal model is
generated by generating coefficients matrix Cij according to the sampled DAG, in the form of:

Cij =

{
uniformly from[−0.5− k,−0.5] ∪ [0.5, 0.5 + k] if Ei→j = true
0 otherwise

(11)

where k is a hyper-parameter that controls the scale of the weight matrix. Finally, the true label Yij is
the binary adjacency matrix where Yij = 0 if edge does not present, and Yij = 1 otherwise.

Our data generating scheme will generate identifiable causal graphs: the linear SEMs with equal
variance Gaussian noise are shown to be identifiable Peters et al. (2014); linear SEMs with non-
Gaussian noise are also identfiable Shimizu et al. (2006).

Model details We refer to our model with equivariant layers as DAG-EQ, and denote those with
baseline FC and CNN models as DAG-FC and DAG-CNN, respectively. The DAG-EQ model consists
of 6 equivariant layers of hidden layer of size 300 (channels). There’s a leaky-ReLU activation after
each layer, following the recommendation in the literature Hartford et al. (2018). The final output has
the sigmoid activation to make sure the output is in the range of [0, 1]. The DAG-FC baseline model
consists of 6 fully connected layers with hidden layer size 1024, and a ReLU non-linear activation
after each layer. The DAG-CNN consists of 6 CNN layers, all using 3× 3 kernels with padding size 1.
There’s a ReLU non-linear activation and a batch normalization layer after each convolutional layer.

Existing methods in comparison We compare our model with pairwise supervised model, the
Randomized Causation Coefficient (RCC) Lopez-Paz et al. (2015b,a). However, since it only outputs
the direction of the edge of either A to B or B to A, we modify the model to predict the existence of
an edge from A to B. The existence of the reverse edge (B to A) is obtained by feeding the model
with B and A in reverse order. During the inference, to predict the whole DAG, we apply the model
to all pairs of variables. The original RCC used random forest classifier, denoted as RCC-RF. We
also implemented a fully-connected neural network classifier, denoted as RCC-NN.

We also compare our methods with various types of structure learning approaches in the literature.
For traditional methods, we compare with constraint-based methods PC algorithm Pearl (2009),
score-based method Greedy Equivalence Search (GES) Chickering (2002); Ramsey et al. (2017) and
Causal Additive models (CAM) Bühlmann et al. (2014). Continuous optimization approaches in the

5

https://github.com/lihebi/DAG-EQ
https://github.com/lihebi/DAG-EQ

line of NOTEARS are state-of-the-art in terms of learning accuracy. In particular, we consider the
original NOTEARS Zheng et al. (2018), and two most recent follow-up works, the DAG-GNN Yu
et al. (2019) that uses a generative model with graph neural network, and RL-BIC2 Zhu and Chen
(2019) that uses reinforcement learning to do the graph search.

4.2 Comparison with the Literature

We first present the structure discovery results on SF graphs of sizes 10, 20, 50, and 100, and compare
our DAG-EQ with baseline DAG-FC, DAG-CNN and existing approaches. Results shown in Table 1.

Table 1: Comparison with literature, shown scale-free (SF) graph of size d=10,20,50,100
model d prec recall shd d prec recall shd

DAG-EQ 10 93.0 94.7 1.1 20 92.3 89.2 3.5
DAG-FC 10 81.7 79.8 3.4 20 49.0 41.6 19.3
DAG-CNN 10 88.7 87.7 2.1 20 82.0 78.4 7.4

RCC-RF 10 17.0 96.7 44.4 20 9.4 97.9 192.6
RCC-NN 10 18.6 68.9 33.2 20 11.9 75.3 122.5

PC 10 26.9 35.6 14.3 20 33.9 47.9 26.9
GES 10 19.5 30.0 15.6 20 19.1 26.3 34.3
CAM 10 7.5 25.6 35.5 20 6.6 30.5 94.3

NOTEARS 10 100.0 100.0 0.0 20 92.8 94.7 2.5
DAG-GNN 10 92.3 88.9 1.7 20 84.8 92.1 5.0
RL-BIC2 10 23.3 50.0 15.5 20 12.5 6.6 19.25

DAG-EQ 50 91.1 67.0 19.4 100 82.3 58.4 53.7
DAG-CNN 50 50.0 43.4 49.0 100 51.3 28.4 97.6

RCC-RF 50 3.5 78.8 1113.9 100 2.4 69.5 2800.8
RCC-NN 50 5.6 63.7 554.1 100 3.1 67.1 2130.8

PC 50 33.8 43.3 68.2 100 34.8 45.5 138.0
GES 50 10.7 15.9 104.6 100 6.9 10.9 233.2
CAM 50 7.6 36.7 249.8 100 7.2 34.3 509.0

NOTEARS 50 94.6 97.3 4.2 100 70.6 89.5 49.8
DAG-GNN 50 82.1 91.2 16.0 100 79.3 87.7 37.8

We first compare DAG-EQ with baselines. DAG-EQ models perform much better compared with
baseline DAG-FC and DAG-CNN. DAG-FC models can fit only for small graph of size 10, but
struggle to fit for graphs of 20 or more. CNN models perform much better than FC models, however,
it performs significantly worse than EQ models. This demonstrates that the characteristic of CNN
does not align well with the problem domain. Instead, EQ models fit well on graph of sizes up to 100.

Comparing DAG-EQ with pairwise supervised model, RCC, we find that both RCC-RF and RCC-NN
are not well suited for predicting the whole DAG. This suggests that pairwise model is insufficient to
perform whole DAG discovery. A potential explanation is that they can’t distinguish between direct
and indirect effects, therefore they will add extra edges, causing low precision.

Comparing with traditional constraint-based and score-based methods, we find that PC, GES, and
CAM do not perform well, especially when the graphs are large. This is consistent with the results
reported by NOTEARS line of work Zheng et al. (2018); Yu et al. (2019); Zhu and Chen (2019);
Lachapelle et al. (2019). Our model can infer much more accurate graphs.

Finally, comparing with state-of-the-art NOTEARS line of research. our model under-performs
depending on the size of the graphs. For example, for a large graph d=100, our EQ model achieves
SHD=53.7, while NOTEARS and DAG-GNN achieve SHD=49.8 and SHD=37.8 respectively.

4.3 Transferability and Ensemble Training

It is desired to have one trained model to work for graphs of different sizes and types. We approach
this goal in two ways. First, we study the direct transferability across different noise models, graphs

6

of different types and sizes, and different causal strengths. Second, we ensemble train the model with
graphs of varying sizes and kinds, and test the trained model on other unseen graphs.

Firstly, we apply DAG-EQ model trained on Gaussian noise model with N (0, 1) and 3 other non-
Gaussian noises, including Exponential with λ = 1, Gumbel with µ = 0, β = 1 and Poisson with
λ = 1. As shown in Table 2, the model works very well on all different noise models.

Table 2: Transfer between different noise models.
model train_noise test_noise d prec recall shd d prec recall shd

DAG-EQ Gaussian Gaussian 10 87.2 96.9 1.6 20 86.4 93.9 4.0
DAG-EQ Gaussian Exp 10 92.1 94.8 1.2 20 92.4 87.5 3.7
DAG-EQ Gaussian Gumbel 10 92.1 94.4 1.2 20 92.4 87.6 3.7
DAG-EQ Gaussian Poisson 10 92.3 94.9 1.2 20 92.4 87.4 3.8

We then transfer model to different causal strengths, defined by the weights of the causal coefficients,
generated uniformly from the range [−0.5−k,−0.5]∪ [0.5, 0.5 +k]. In Table 3, the DAG-EQ model
is trained on k = 1, and tested on k = 1, 2, 4. The transferability is more limited compared with that
of different noise models. This reveals that the training and testing distribution didn’t align with each
other very well, and suggests two interesting research directions in the future. On the one hand, there
requires a more flexible featurization that is trainable and adapts to the training and testing datasets.
On the other hand, it is interesting to find a model that is invariant to the causal strength.

Table 3: Transfer between different causal strengths.
model train/k test/k d prec recall shd d prec recall shd

DAG-EQ 1 1 10 87.2 96.9 1.6 20 86.4 93.9 4.0
DAG-EQ 1 2 10 79.4 91.2 2.9 20 75.2 80.9 8.7
DAG-EQ 1 4 10 64.7 72.3 6.1 20 57.9 61.5 15.8

We also test the transfer performance across different types of graphs. In particular, the DAG-EQ
models are trained on ER graphs and tested on SF graphs, and vice versa. We show two results in
Table 4. First, the the model transfers well across different types of graphs. For example, ER→ SF
performance is comparable to native performance of SF → SF , and SF → ER is comparable to
ER→ ER. Second, ER graphs seem to be harder than SF graphs for DAG-EQ model.

Table 4: Transferring between different types of graphs.
model train_gtype test_gtype d prec recall shd d prec recall shd

DAG-EQ SF SF 10 87.2 96.9 1.6 20 86.4 93.9 4.0
DAG-EQ ER ER 10 72.5 84.1 4.5 20 72.1 80.3 9.9

DAG-EQ ER SF 10 82.0 95.4 2.3 20 80.9 84.7 6.7
DAG-EQ SF ER 10 69.0 70.9 5.8 20 72.7 62.1 11.9

One potential advantage of DAG-EQ is that it can be trained once on relatively small graphs, and be
applied to very large graphs where most existing methods are hard to scale. In this experiment, we
apply the DAG-EQ trained using d=100 on very large graphs of sizes 200, 300, 400. We compare the
results with GES, because it runs efficiently on graphs of this scale. Results are shown in Table 5.
When the size increases, DAG-EQ can still maintain relatively good precision and recall. In particular,
the recall remains 73% for even d=400 graphs. On the other hand, precision degrades much more,
due to increased number of positive predictions. In comparison, GES had much lower precision
and recall. On d=300 and 400, GES had lower SHD, but much lower precision and recall. This
is because GES predicted much smaller number of edges compared to DAG-EQ, and most of the
predictions are false-positive. E.g. for d=300, GES predicted 742 edges, while only 19 of them are
true-positives. DAG-EQ predicted 1211 edges but captured 232 true-positives. Overall, this results
show that DAG-EQ have good transferability, and perform well on very large graphs where only a
few methods can scale to.

7

Table 5: Transferring to very large graphs. Trained on d=100. Pred: predicted edges, TP: true positive.

model d Pred TP prec recall shd d Pred TP prec recall shd

DAG-EQ 100 70 58 82.3 58.4 53.7 200 404 152 37.5 75.5 302.17
GES 100 169 13 7.6 13.13 242 200 431 19 4.4 9.5 592

DAG-EQ 300 1211 232 19.1 75.5 1058.7 400 2984 330 11.1 73.5 2796.3
GES 300 742 19 3.7 9.2 980.8 400 1148 28 4.1 11.6 1443.2

Finally, we show that, the model can be ensemble-trained using graphs of different sizes and types
for better generalization. We train the model using SF graphs of size 10,15,20, and test the trained
model on SF and ER graphs of various sizes up to d=80. As shown in Table 6, although the model is
only trained on only small graphs, it can work reasonably well even on large graphs of size d=80.

Table 6: Ensemble training on SF graphs of size 10,15,20. Testing on ER and SF graphs of sizes up to d=80.

model test_d test_gtype prec recall shd test_gtype prec recall shd

DAG-EQ-Ensemble 10 SF 89.1 95.3 1.5 ER 72.1 66.9 5.6
DAG-EQ-Ensemble 15 SF 88.2 95.7 2.4 ER 74.3 67.5 8.1
DAG-EQ-Ensemble 20 SF 84.8 94.7 4.2 ER 72.0 66.0 11.6

DAG-EQ-Ensemble 30 SF 75.1 93.3 10.9 ER 68.1 68.9 18.7
DAG-EQ-Ensemble 50 SF 58.8 90.4 35.9 ER 56.0 73.3 41.8
DAG-EQ-Ensemble 80 SF 43.4 88.6 100.2 ER 44.5 79.1 95.3

4.4 Real Data Experiment

We test our model on a well-known real benchmark of a protein signaling network Sachs et al. (2005).
The data contains 853 samples, and the ground truth graph has 11 nodes and 17 edges. We apply the
model ensemble trained using d=10,15,20 graphs above on this dataset. Our trained model outputs 10
edges, with SHD=16, comparable with other methods, shown in Table 7.

Table 7: Performance comparison on real data Sachs et al. (2005).
model predicted edges correct edges SHD

DAG-EQ 10 5 16
NOTEARS 20 6 19
RL-BIC2 10 7 11
CAM 10 6 12
DAG-GNN 15 6 16

5 Conclusion and Future Directions

We proposed the first supervised approach for full DAG discovery, and proposed to use equivariant
models which fit well for this learning problem. We evaluated the proposed DAG-EQ approach
extensively, and demonstrated the advantage of our whole DAG formulation over pairwise one,
the effectiveness of equivariant models over baselines, and promising results in comparison with
state-of-the-art optimization-based methods.

We hope the formulation of DAG discovery into supervised learning will inspire many future works.
On model design, we are interested in exploring other network structures (such as graph neural
networks) and enforcing acyclic constraint (e.g. the equality constraint in NOTEARS). On problem
setting, it is interesting to extend the model to non-linear causal models and interventional data. It
is also interesting to explore more flexible input distribution featurizations that can be learned and
adapted automatically for different datasets.

8

References
Bühlmann, P., Peters, J., Ernest, J., et al. (2014). Cam: Causal additive models, high-dimensional

order search and penalized regression. The Annals of Statistics, 42(6):2526–2556.

Chickering, D. M. (2002). Learning equivalence classes of bayesian-network structures. Journal of
machine learning research, 2(Feb):445–498.

Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999.

Hartford, J., Graham, D. R., Leyton-Brown, K., and Ravanbakhsh, S. (2018). Deep models of
interactions across sets. arXiv preprint arXiv:1803.02879.

Hill, S., Oates, C. J., Blythe, D. A., and Mukherjee, S. (2019). Causal learning via manifold
regularization.

Innes, M., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M. C., Joy, N. M., Karmali, T., Pal, A., and
Shah, V. (2018). Fashionable modelling with flux. CoRR, abs/1811.01457.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien, S. (2019). Gradient-based neural dag
learning. arXiv preprint arXiv:1906.02226.

Lopez-Paz, D., Muandet, K., and Recht, B. (2015a). The randomized causation coefficient. The
Journal of Machine Learning Research, 16(1):2901–2907.

Lopez-Paz, D., Muandet, K., Schölkopf, B., and Tolstikhin, I. (2015b). Towards a learning theory of
cause-effect inference. In International Conference on Machine Learning, pages 1452–1461.

Pearl, J. (2009). Causality. Cambridge university press.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. (2014). Causal discovery with continuous
additive noise models. The Journal of Machine Learning Research, 15(1):2009–2053.

Ramsey, J., Glymour, M., Sanchez-Romero, R., and Glymour, C. (2017). A million variables and
more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal
models, with an application to functional magnetic resonance images. International journal of
data science and analytics, 3(2):121–129.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308(5721):523–529.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. (2006). A linear non-gaussian acyclic
model for causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030.

Spirtes, P., Glymour, C. N., Scheines, R., Heckerman, D., Meek, C., Cooper, G., and Richardson, T.
(2000). Causation, prediction, and search. MIT press.

Yu, Y., Chen, J., Gao, T., and Yu, M. (2019). Dag-gnn: Dag structure learning with graph neural
networks. arXiv preprint arXiv:1904.10098.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).
Deep sets. In Advances in neural information processing systems, pages 3391–3401.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P. (2018). Dags with no tears: Continuous
optimization for structure learning. In Advances in Neural Information Processing Systems, pages
9472–9483.

Zhu, S. and Chen, Z. (2019). Causal discovery with reinforcement learning. arXiv preprint
arXiv:1906.04477.

9

	1 Introduction
	2 Background: Functional Causal Model
	3 Approach
	3.1 Featurization
	3.2 Baseline Models
	3.3 Permutation Equivariant Models
	3.4 Training and Inference

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Comparison with the Literature
	4.3 Transferability and Ensemble Training
	4.4 Real Data Experiment

	5 Conclusion and Future Directions

