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Abstract

The framework of Temporal constraint Satisfaction Problems (TCSP) has been pro-
posed for representing and processing temporal knowledge. Deciding consistency of TC-
SPs is known to be intractable. As demonstrates in this paper, even local consistency
algorithms like path-consistency can be exponential due to the fragmentation problem.
We present two new polynomial approximation algorithms, Upper-Lower-Tightening
(ULT) and Loose-Path-Consistency (LPC), which are e�cient yet e�ective in detecting
inconsistencies and reducing fragmentation. The experiments we performed on hard
problems in the transition region show that LPC is the superior algorithm. When in-
corporated within backtrack search LPC is capable of improving performance by orders
of magnitude.

�This work was partially supported by NSF grant IRI-9157636, by Air Force O�ce of Scienti�c Research
grant AFOSR 900136 and by grants from TOSHIBA of America and Xerox
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1 Introduction

Problems involving temporal constraints arise in various areas such as temporal databases
[6], diagnosis [11], scheduling [22, 21], planning [16], common-sense reasoning [25] and nat-
ural language understanding [1]. Several formalisms for expressing and reasoning about
temporal constraints have been proposed; interval algebra [2], point algebra [29], Temporal
Constraint Satisfaction Problems (TCSP) [7] and the model of combined quantitative and
qualitative constraints [17, 12].

The two types of Temporal Constraint Networks that have emerged are qualitative [2] and
quantitative [7]. In the qualitative model, variables are time intervals and the constraints are
qualitative. In the quantitative model, variables represent time points and the constraints
are metric. Subsequently, these two types were combined into a single model [17, 12]. In
this paper we build upon the model proposed by [17], whose variables are either points or
intervals and involves three types of constraints: metric point-point and qualitative point-
interval and interval-interval.

Answering queries in constraint processing reduces to the tasks of determining consistency,
computing a consistent scenario and computing the minimal network. When time is repre-
sented by rational numbers1, deciding consistency is in NP -complete [7, 17]. For qualitative
networks, computing the minimal network is in NP-hard [10, 7]. In both qualitative and
quantitative models, the source of complexity stems from allowing disjunctive relationships
between pairs of variables. Such constraints often arise in many applications, as demon-
strated by the following example:

Example 1 : A large navy cargo needs to be transported from New York starting on March 7
and arrive at Los Angeles within 8-10 days. From New York to Chicago the delivery requires
1-2 days by air or 10-11 days on the ground. From Chicago to L.A. the delivery requires 3-4
days by air or 13-15 days on the ground. In addition to these constraints, we know that an
airforce cargo needs to be transported using the same terminal in Chicago as required for
the navy's cargo transportation (i.e. the intervals of navy and airforce shipments should
not overlap) and . The transportation of the airforce cargo must start between March 17
and March 20 and with duration of 3-5 days by air or 7-9 days on the ground.

Given the above constraints, we are interested in answering questions such as: \are these
constraints satis�able?", \can the cargo arrive in L.A. on Jan 8-9?", \when must the cargo
arrive in Chicago ?" or \how long may the navy cargo transportation take?". The �rst
two queries reduce to deciding consistency and the third query reduces to computing the
minimal network.

Since answering such queries is inherently intractable, this paper focuses on the design of e�-
cient and e�ective polynomial approximation algorithms for deciding consistency. Enforcing

1This is always the case in practice.
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path-consistency, is the loosest approximation we can provide thus far. As we demonstrate
in this paper, in contrast to discrete CSPs, enforcing path-consistency on quantitative TC-
SPs is exponential. This is because enforcing path-consistency breaks intervals into several
smaller subintervals and may result in an exponential blowup, leading to what we call frag-
mentation.

We present two novel algorithms for bounding fragmentation by approximatingpath-consistency:
Upper-Lower-Tightening (ULT), Loose-Path-Consistency (LPC). We show that these algo-
rithms avoid fragmentation and are e�ective in detecting inconsistencies. We also discuss
several variants of the main algorithms, called Directional ULT (DULT), Directional LPC
(DLPC) and Partial LPC (PLPC).

We address two questions empirically: (1) which of the algorithms presented is preferable
for detecting inconsistencies, and (2) how e�ective are the proposed algorithms when used
to improve backtrack search in preprocessing, or in guiding the search by forward checking
and dynamic ordering.

To answer the �rst question, we show that enforcing path-consistency may indeed be ex-
ponential in the number of intervals per constraint while ULT's execution time is almost
constant. Nevertheless, ULT is able to detect inconsistency in about 70% of the cases in
which enforcing path-consistency does. Algorithm LPC further improves on ULT and, while
being e�cient, is capable of detecting almost all inconsistencies detected by PC.

To answer the second question, we apply the new algorithms in three ways: (1) in a prepro-
cessing phase for reducing the fragmentation before initiating search, (2) in forward checking
algorithm for reducing the fragmentation during the search and detecting dead-ends early,
and (3) in an advice generator for dynamic variable ordering. Using hard problems which
lie in the transition region [4, 18], we show that both ULT and LPC are preferred to PC and
that LPC is the best algorithm. Using LPC for preprocessing, forward checking and dynamic
ordering, improves the performance of backtrack search by several orders of magnitude.

The organization of the paper is as follows. Section 2 presents the model of constraint
satisfaction problems and the known algorithms for processing them. Section 3 presents
algorithm Upper Lower Tightening (ULT) and section 4 presents Loose Path-Consistency
(LPC). Section 5 extends the results presented in sections 3 and 4 to networks of combined
qualitative and quantitative constraints. Section 6 presents backtracking algorithms and
Section 7 presents an empirical evaluation.
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2 Temporal Constraint Networks

2.1 Overview

There are three kinds of Temporal Constraint Satisfaction Problems (TCSP): (1) qualitative
TCSP, widely known as Allen's Interval Algebra [2], (2) quantitative TCSP, introduced in
[7], and (3) combined qualitative and quantitative TCSP, introduced in [17].

A combined qualitative and quantitative TCSP involves a set of variables and a set of
binary constraints over pairs of variables. There are two types of variables, point variables
and interval variables. The constraint Cij between a pair of variables, Xi; Xj is described
by specifying a set of allowed relations, namely

Cij
def
= (Xi r1 Xj) _ � � � _ (Xi rk Xj): (1)

There are three types of relations, or alternatively, disjunctive constraints:

1. A point-point constraint between two point variables Xi; Xj is quantitative2 and has
the form

Xj �Xi 2 I1 [ � � � [ Ik

where I1; . . . ; Ik are intervals.

2. A point-interval constraint between a point variable and an interval variable, is qual-
itative, and is in the set f before, starts, during, �nishes, after g abbreviated f
b, s, d, f, a g respectively (see Table 1 for illustration).

3. An interval-interval constraint between two interval variables is qualitative, and is in
the set (

before; after; meets; met�by;
overlaps; overlaps�by; during; contains; equals;

starts; started�by; �nishes; �nished�by

)

abbreviated f b,bi, m,mi, o,oi, d,di, =, s,si, f,� g respectively (see Table 2 for illus-
tration).

The structure of a TCSP can be represented by a constraint graph. The nodes correspond
to variables (point or interval). The arcs connect pairs of directly constrained variables and
are labeled by the elements of the disjunctive constraint they represent, namely by sets of
intervals (if metric point-point constraints) or by the set of allowed qualitative relations.

Example 2 : Consider the cargo example given in the introduction. Let the variables be:

2In Meiri's thesis, a distinction is made between qualitative and quantitative point-point constraints.
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Table 1: The 5 qualitative point-interval relations
(X is a point and Y is an interval).

Relation Inverse ExampleSymbol

Y

Y

Y

YX   finishes   Y f fi

X   after  Y

didX   during   Y

YX   starts   Y s si

X   before   Y b

X

X

X

bi

ai X

X

a

Table 2: The 13 qualitative interval-interval relations.

Relation Inverse ExampleSymbol

X

X

Y

Y

X Y

X
Y

X
Y

X
Y

X
Y

X   before   Y

X   equal    Y

X   meets   Y

X   overlaps   Y

b bi

= =

m mi

o oi

didX   during   Y

X   starts   Y s si

X   finishes   Y f fi
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[1, 2](air)
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(ground)

(ground)
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I
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{s}

{e}

[10, 13]
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{e}
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[7, 9]

NAVY I

AirforceEnd
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Figure 1: The constraint graph of the logistics problem.

X
N:Y:

= time point at which the cargo was shipped out of N.Y.,
X

Chicago
= time point the cargo arrived into and shipped out of Chicago

X
L:A:

= time point at which the cargo arrived into L.A.
I
NAV Y

= transportation period of the navy cargo.
I
Airforce

= transportation period of the airforce cargo.
X

AirforceStart
= time point at which the airforce shipment starts,

X
AirforceEnd

= time point at which the airforce shipment ends.

The constraints are:

X
N:Y:
�X0 2 [March7; March7]

X
Chicago

�X
N:Y:

2 [1; 2][ [10; 11]
X

L:A:
�X

Chicago
2 [3; 4][ [13; 15]

X
L:A:
�X

N:Y:
2 [8; 10]

X
N:Y:
fstartsg I

NAV Y

X
L:A:
fendsg I

NAV Y

X
AirforceBegin

fstartsg I
Airforce

X
AirforceEnd

fendsg I
Airforce

X
AirforceEnd

�X
AirforceBegin

2 [3; 5][ [7; 9]
X

AirforceBegin
�X

N:Y:
2 [10; 13]

I
NAV Y

fbefore; meets; met�by; afterg I
Airforce

The constraint graph representing this network is given in Figure 1.

2.2 Quantitative TCSPs

For simplicity of exposition, we will present our algorithms for the restricted model of
quantitative TCSP �rst. Thereafter, we extend these algorithm to process Meiri's combined
model [17].

A quantitative TCSP involves a set of variables, X1; . . . ; Xn, having continuous domains,
each representing a time point. Each constraint C is a set of intervals

C
def
= fI1; . . . ; Ing = f[a1; b1]; . . . ; [an; bn]g:
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A unary constraint Ci restricts the domain of the variable Xi to the given set of intervals

Ci
def
= (a1 � Xi � b1) [ . . .[ (an � Xi � bn):

A binary constraint Cij over Xi; Xj restricts the permissible values for the distance Xj�Xi;
it represents the disjunction

Cij
def
= (a1 � Xj �Xi � bl) [ . . .[ (an � Xj �Xi � bn):

All intervals are assumed to be open and pairwise disjoint.

De�nition 1 : [ solution ]
A tuple X = (x1; . . . ; xn) is called a solution if the assignment X1 = x1; . . . ; Xn = xn
satis�es all the constraints. The network is consistent i� at least one solution exists.

The minimal network is very useful for answering a variety of queries, as described below,
because it describes explicitly all the implicit (induced) binary constraints.

De�nition 2 : [ minimal network ]
A value v is a feasible value of Xi if there exists a solution in which Xi = v. The minimal
domain of a variable is the set of all feasible values of that variable. A minimal constraint Cij

between Xi and Xj is such that every instantiation of Xi; Xj which is consistent with Cij

can be extended to a global solution. A network is minimal i� its domains and constraints
are minimal.

A TCSP can be represented by a directed constraint graph, where nodes represent variables
and an edge i! j indicates that a constraint Cij is speci�ed. Every edge is labeled by the
interval set as illustrated in Figure 1. A special time point X0 is introduced to represent
the \beginning of the world". All times can be speci�ed relative to X0 and thus each
unary constraint Ci can be represented as a binary constraint C0i (having the same interval
representation).

2.3 Answering Queries

For completeness, we describe the set of queries the TCSP model is designed to support.
Consider the following sample queries:

1. Is the network consistent, and if so, what is a possible scenario ?

2. Can Xi occur 5 to 10 minutes after Xj ?
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3. Must Xi occur 5 to 10 minutes after Xj ?

4. What are the possible times event Xi can occur at ?

5. Given the time event Xi occurred, when can Xj occur ?

These queries can be partitioned into two groups, those that can be reduced to the task of
deciding consistency and those that require computing the minimal network.

Clearly, Query 1 requires testing consistency of the TCSP. To answer Query 2 we add the
constraint Xj�Xi 2 [5; 10] and test for consistency. If the resulting network is consistent the
answer to the query is 'yes'; otherwise it is 'no'. Query 3, often referred to as entailment, can
be answered by adding to the negation of the constraint, namelyXj�Xi 2 [�1; 5][[10;1],
and checking for inconsistency. If consistency was detected by computing a solution, that
solution is a counter example which shows how can Xi occur less than 5 or more than 10
minutes after Xj .

Queries 4 and 5 can be answered in constant time after computing the equivalent minimal
network (de�ned above) by a simple table lookup. The event associated with Xi can occur
at time t for every t 2 C0i, where C0i is the constraint between X0 and Xi in the minimal
network. Given that Xi occurred at time t1, event Xj can occur at time t2 2 Cij� t1, where
Cij is the constraint between Xi and Xj in the minimal network.

2.4 Constraint Propagation

Since computing the minimal network can be done by a polynomial number of consistency
queries, we focus on the task of deciding consistency. Deciding whether a given network is
consistent is in NP-complete [7] and deciding whether it is minimal is in NP-hard (which
subsumes NP-complete). Therefore, it is common to use algorithms which detect some (but
not all) inconsistencies and tighten the constraints to obtain an approximation of minimal
constraints. Such algorithms enforce local k-consistency by ensuring that every subnetwork
with k variables is minimal [8]. For qualitative TCSPs, 3,4-consistency algorithms were
covered by [27]. For quantitative TCSPs, 3-consistency, or alternatively path-consistency,
is de�ned using the �;
 operations.

De�nition 3 : Let T = fI1; . . . ; Ilg and S = fJ1; . . . ; Jmg be two sets of intervals
which can correspond to either unary or binary constraints.

1. The intersection of T and S, denoted by T � S,
admits only values that are allowed by both of them.

2. The composition of T and S, denoted by T 
 S, admits only values r for which there
exists t 2 T and s 2 S such that r = t + s (Figure 2).
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T

S

S

S

T

T

0 1 2 3 4 5 6 7 8 9-1-2

T = f[�1:25; 0:25]; [2:75; 4:25]g
S = f[�0:25; 1:25]; [3:77; 4:25]g

T � S = f[�0:25; 0:25]; [3:75; 4:25]g
T 
 S = f[�1:50; 1:50]; [2:50; 5:50]; [6:50; 8:50]g

Figure 2: A pictorial example of the � and 
 operations.

Note that the 
 operation may result in intervals that are not pairwise disjoint. Therefore,
some additional processing may be required to compute the disjoint interval set.

De�nition 4 : The path-induced constraint on variablesXi; Xj is R
path
ij = �8k(Cik
Ckj).

A constraint Cij is path-consistent i� Cij � Rpath
ij and a network is path-consistent i� all its

constraints are path-consistent.

Any arbitrary consistent quantitative TCSP can be converted into an equivalent path-
consistent network by repeatedly applying the relaxation operation Cij  Cij� (Cik
Ckj)
until a �xed point is reached. Figure 3 presents an algorithm for enforcing path-consistency.
For completeness, we also describe a weaker yet more e�cient version of path-consistency,
that is tied to a particular ordering of the variables, called DPC [7].

Theorem 1 : [7]
If time is described by rational numbers, then algorithms PC and DPC terminate in O(n3R3)
and O(n3R2) steps respectively, where n is the number of variables and R is the range of
the constraints, i.e. the di�erence between the lowest and highest numbers speci�ed in the
input network.

In contrast to discrete CSPs, however, enforcing path-consistency on TCSPs is problematic
when the range R is large or the domains are continuous [7, 21]. An upper bound on the
number of intervals in T 
S is jT j � jSj, where jT j; jSj are the number of intervals in T and S
respectively. As a result, the total number of intervals in the path-consistent network might
be exponential in the number of intervals per constraint in the input network, yet bounded
by R when integer domains are used.

Example 3 : Consider the network presented in Figure 4, having 3 variables, 3 constraints
and 3 intervals per constraint. After enforcing path-consistency, two constraints remain
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unchanged in the path-consistent network while the third is broken into 10 subintervals. As
this behavior is repeated over numerous triangles in the network, the number of intervals
may become exponential.

2.5 Simple Temporal Problems

A special class of problems which does not exhibit such an exponential blow-up is the Simple
Temporal Problem (STP). In these networks, only a single interval is speci�ed per constraint.

An STP can be associated with a directed edge-weighted graph, Gd, called a distance graph
(d-graph), having the same vertices as the constraint graph G; each edge i! j is labeled by
a weight wij representing the constraint Xj�Xi � wij, as illustrated in Figure 5. An STP is
consistent i� the corresponding d-graph Gd has no negative cycles and the minimal network
of the STP corresponds to the minimal distances in Gd. Therefore, an all-pairs shortest
path procedure (Figure 5) is equivalent to enforcing path-consistency and is complete for
STPs [7]. The focus of the paper is on two algorithms designed to bound the fragmentation.

3 Upper Lower Tightening (ULT)

The intractability of enforcing path-consistency stems from the fact that the relaxation
operation Cij  Cij � (Cik 
 Ckj) may increase the number of intervals in Cij. Our idea
is to compute looser constraints which consists of fewer intervals that subsumes all the
intervals of the path-induced constraint.

The algorithm for approximating path-consistency, called Upper Lower Tightening (ULT),
utilizes the fact that an STP is tractable. The idea is to use the extreme points of all
intervals associated with a single constraint as one big interval, yielding an STP, and then
to perform path-consistency on that STP. This process can only decrease the number of
intervals per constraint. Finally we intersect the resulting simple path-consistent minimal
network with the input network.

De�nition 5 : (Upper Lower Tightening) Let Cij = [I1; . . . ; Im] be the constraint over
variables Xi; Xj and let Lij ; Uij be the lower and upper bounds of Cij, respectively. We
de�ne N 0; N 00; N 000 as follows (see Figure 7):

� N 0 is an STP derived from N by relaxing its constraints to
C0

ij = [Lij; Uij ].

� N 00 is the minimal network of N 0 (N' is an STP).
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Algorithm PC

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. if Cij 6= Cik 
 Ckj then

5. Cij  Cij � (Cik 
Ckj)
6. if Cij = fg then exit (inconsistency)
7. Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g
8. end-if

9. end-while

Algorithm DPC

1. for k  n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j) 2 E do

3. if Cij 6= Cik 
 Ckj then

4. E  E [ (i; j)
5. Cij  Cij � (Cik 
 Ckj)
6. if Cij = fg then exit (inconsistency)
7. end-if

8. end-for

9. end-for

Figure 3: Algorithms PC and DPC [7].

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

Path-Consistency [11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

[24,26]   [27,29]   [34,36]   [37,39]   [44,46] 
[1,3]   [11,13]   [17,19]   [21,22]   [23,23][0,22]  [23,33]  [34,50]

Figure 4: The fragmentation problem.

dG

Minimal Distance
Algorithm

Floyd - Warshall

[1,4]

[0,15]

[0,5]

[2,20]

[2,7]

Distance Graph
4 4

-1

7-2

5

0

12

-2

-3

11

-3 16

-1

7-2

5

0

15

0
20-2

Figure 5: Processing an STP.
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Algorithm Upper-Lower Tightening (ULT)
1. input: N

2. N 000  N

3. repeat

4. N  N 000

5. compute N 0; N 00; N 000.
6. until 8ij (L000

ij = Lij) and (U 000

ij = Uij)
or 9ij (U 000

ij < L000

ij )
7. if 8ij (U 000

ij > L000

ij ) output: N 000

otherwise output: \Inconsistent."

Figure 6: The Upper Lower Tightening (ULT) algorithm.

� N 000 is the intersection of N 00 and N , namely C000

ij = C00

ij � Cij.

Algorithm Upper Lower Tightening (ULT) is presented in Figure 6. The network N 0 is a
relaxation of N . N 00 is computed by applying the all-pairs shortest path algorithm on N 0.
Because N 00 is equivalent to N 0, intersecting it with N results in a network which is also
equivalent to N .

Lemma 1 : Let N be the input to ULT and R be its output.

1. The networks N and R are equivalent.

2. Every iteration of ULT (except the last one) removes at least one interval.

Proof: Part 1: Let Sol(N ) denote the set of solutions of the network N , then Sol(N ) �
Sol(N 0) = Sol(N 00). This implies that Sol(N )\Sol(N 00) = Sol(N ) and therefore Sol(N 000) =
Sol(N ). Part 2: Let N 0

i ; N
00

i be the networks N 0; N 00 at iteration i. If an interval is not
removed at iteration i, N 00

i = N 0
i+1 = N 00

i+1, which implies no change. 2

AlgorithmULT computes a looser networks than enforcing full path-consistency. A complete
comparison, is given in the next section and depicted in Figure 14.

Example 4 : An example run of ULT on a sample problem instance is given in Figure
7. We start with N and compute N 0

(1); N
00

(1); N
000

(1). Thereafter, we perform the second

iteration in which we compute N 0

(2); N
00

(2); N
000

(2) and �nally, in the third iteration, there is
no change. The �rst iteration removes two intervals, while the second iteration removes one.
In addition, ULT computes an induced constraint C02, allowing inference of new implicit
facts that were not speci�ed explicitly in the input network.
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Iteration 1 Iteration 2 Iteration 3

N’(1)

N’’(1)

XN

XX

X0

3 2

1

[0,50]

[20,40]

[60,70]
[180,200]

[140,170]

[20,130]

[10,20]  [30,40]

[130,150]
[60,90]

[0,40]

[20,70]
[0,150]

[0,50]

[20,200]

[10,40]

[20,70]

[30,110]

[30,160]

[20,120]

[0,50]

[10,40]

N’’’(1)

[20,40]

[60,70]

[10,20] [30,40]

[140,160]

[30,130]

[20,40]

[60,90]

[0,50]

[30,110]

N’(2)

N’’(2)

N’’’(2)

N’(3)

N’’(3)

N’’’(3)

[20,90]
[20,70]

[30,160]

[30,110]

[10,40]

[0,50]

[20,90]

[20,70]

[30,110]

[20,40]

[60,70]

[20,40]

[60,90]

[0,50]

[30,130]

[30,110]

[10,20] [30,40]

[30,130]

[10,40]

[0,50]

[20,90]

[20,70]

[20,90]

[20,70]

[20,40]

[60,70]

[10,20] [30,40]

[30,130]
[60,90]

[20,40]

[0,50]

[30,110]

[30,130]

[30,110]

[30,110] [0,50]

[10,40]

[10,40]

[0,50]

[30,130]

Figure 7: A sample run of ULT.
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Theorem 2 : Algorithm ULT terminates in O(n3ek + e2k2) steps where n is the number
of variables, e is the number of edges, and k is the maximal number of intervals in each
constraint.

Proof: Computing N 0 requires processing every interval in the network at most once,
thus requires O(ek) steps. Computing N 00 from N 0 can be done by applying the all-pairs
shortest path algorithm (e.g. Floyd-Warshall) which requires O(n3) steps. Computing the
intersection T �S of two sorted constraints requires O(jT j+ jSj) steps, thus computing N 000

from N 00 requires O(ek) steps. As a result, each iteration requires O(n3 + ek) steps. The
halting condition (Figure 6, line 6) implies that at every iteration at least one interval must
be removed (Lemma 1). Therefore at most O(ek) iterations are performed yielding a total
complexity of O(n3ek + e2k2) steps. 2

Note that in contrast to PC, ULT is guaranteed to converge in O(ek) iterations even if the
interval boundaries are not rational numbers.

3.1 Variations of ULT

While an iteration of ULT is divided into three sequential stages that involve the whole net-
work, algorithm PC uses simpler local operations over triplets of variables and allows par-
allel execution. We next present two variations on ULT, called ULT-2 and Directional ULT
(DULT), which perform such local computations (see Figure 8). We use low(Cij); high(Cij)
to denote the lowest lower bound and highest upper bound of the union of the intervals in
Cij, respectively.

Theorem 3 : Given a network N , let n be the number of variables, e be the number of
constraints and k be the maximum number of intervals per constraint.

1. Algorithms ULT-2 and DULT terminate in O(nk2(n2+ek)); O(n3k2) steps respectively
and compute a network equivalent to their input network.

2. Algorithm ULT-2 computes a tighter network than DULT.

Proof: 1) Algorithm ULT-2 initializes the queue with O(n3) triangles. A set of O(n)
triangles is added to Q (LPC-2 line 6) only if at least one interval was removed from the
network, and therefore at most O(ekn) triangles are added. Since computing T 
S requires
at most O(k2) steps the total complexity is O(n3k2 + ek3n). Algorithm DULT performs a
single pass of O(n3) triangles and each triangle requires O(k2) steps.
2) Every triangle that is considered in DULT is also considered in ULT-2 but not vice versa
and thus DULT is weaker. 2
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Algorithm ULT-2

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. T 0

ij  (Cik 
 Ckj)
5. T 00

ij  Cij � (low(T 0

ij); high(T
0

ij))
6. if T 0

ij = fg then exit (inconsistency)
7. if T 00

ij 6= Cij then

Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g
8. Cij  T 00

ij

9. end-while

Algorithm DULT

1. for k  n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j) 2 E do

3. T 0

ij  (Cik 
 Ckj)
4. T 00

ij  Cij � (low(T 0

ij); high(T
0

ij))
5. if T 00

ij = fg then exit (inconsistency)
6. if T 00

ij 6= Cij then E  E [ (i; j)
7. Cij  T 00

ij

8. end-for

9. end-for

Figure 8: Algorithms ULT-2 and DULT.
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Algorithm Loose Path-Consistency (LPC)
1. input: N

2. N 00  N

3. repeat

4. N  N 00

5. Compute N 0 by assigning T 0

ij = �8k(Cik 
Ckj), for all i; j.
6. Compute N 00 by loosely intersecting T 00

ij = Cij / T
0

ij , for all i; j.
7. until 9i; j (T 00

ij = �) ; inconsistency, or
or 8i; j jT 00

ijj = jCij j ; no interval removed.
8. if 9i; j (T 00

ij = �) then output \inconsistent."
else output: N 00.

Figure 10: The Loose Path-Consistency (LPC) algorithm.

4 Loose Path-Consistency (LPC)

In the following we present algorithm Loose Path-Consistency (LPC), which is stronger than
ULT and its variants, namely it generates tighter approximations to path-consistency. The
algorithm is based on the following loose intersection operator.

De�nition 6 : Let T = fI1; I2; . . . ; Irg and S = fJ1; J2; . . . ; Jsg be two constraints. The
loose intersection, T /S consists of the intervals fI01; . . . ; I

0
rg such that 8i I0i = [Li; Ui] where

[Li; Ui] are the lower and upper bounds of the intersection Ii � S.

It is easy to see that the number of intervals in Cij is not increased by the operation
Cij  Cij / (Cik 
Ckj). In addition, 8k Cij � Cij / (Cik 
 Ckj) � Cij � (Cik 
Ckj) and
T / S 6= S / T .

Example 5 : Let T = f[1; 4]; [10;15]g and S = f[3; 11]; [14; 19]g. Then T / S =
f[3; 4]; [10; 15]g, S / T = f[3; 11]; [14; 15]g while S � T = f[3; 4]; [10;11]; [14;15]g.

According to De�nition 2, a constraint Cij is path-consistent i� Cij � �8k(Cik 
 Ckj). By
replacing the intersection operator � with the loose intersection operator /, we can bound
the fragmentation. AlgorithmLPC is presented in Figure 10. The network N 0 is a relaxation
of N and therefore loosely intersecting it with N results in an equivalent network.

Example 6 : In Figure 11 we show a trace of LPC on a sample quantitative network.
We start with N and compute N 0

(1); N
00

(1). Thereafter, we perform a second iteration in

which we compute N 0

(2); N
00

(2) and �nally, in the third iteration, there is no change. The
�rst iteration removes 7 intervals while the second iteration removes a single interval. We
see that LPC explicates an induced constraint C02, thus inferring new facts about the time
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boundaries that event X2 can occur. Note that applying ULT on the same network will
have no e�ect and enforcing path-consistency on this sample results in the same network as
applying LPC does.

Lemma 2 : Let N be the input to LPC and R be its output.

1. The networks N and R are equivalent.

2. Every iteration of LPC (excluding the last) removes at least one interval from one of
the constraints.

Proof: Immediate. 2

Theorem 4 : Algorithm LPC terminates in O(n3k3e) steps where n is the number of
variables, e is the number of constraints and k is the maximal number of intervals in each
constraint.

Proof: Computing N 0 requires processing every triangle in the network once, thus
requires O(n3k2) steps. Because in every iteration at least one interval is removed, there
are at most ek iterations, resulting in a complexity of O(n3k3e). 2

Algorithm LPC computes a tighter networks than ULT. A complete comparison, on an
instance by instance basis, is given below and is depicted in Figure 14.

4.1 Variations of LPC

We next present two variations on LPC which have the same structure as PC-2 and DPC.
These algorithms, summarized in Figure 13, are called Loose Path-Consistency-2 (LPC-2)
and Directional Loose Path-Consistency (DLPC). They di�er from PC and DPC only in
using the loose intersection / operator instead of the strict intersection � operator.

To re�ne the tradeo� between e�ectiveness and e�ciency, we suggest another variant for
constraint propagation. We apply the relaxation operation Cij  Cij / (Cik 
 Ckj) only
in cases where Cij and at least one of Cik and Ckj is non-universal in the input network.
Consider, for example, the tree network in Figure 14a and the circle network in Figure 14b.
The dashed lines point to several triangles which are not processed.

Theorem 5 : [ complexity ]
Given a network N , let n be the number of variables, e be the number of constraints and k be
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Iteration 1 Iteration 2 Iteration 3

N

X X23

X0
X1

[30,40]

(1)N’’ [10,20]    [110,110]

N’(1)

[70,90]

[130,150]

[160,180]

[130,150]

[150,160]

[-100,-60] 

[110,130]    [140,160]

[-60,-30]  [10,30]  [40,70]

[-10,40]  [90,120]

[30,60]    [120,140]

[20,30]

[130,140]

[110][120]

N’’

N’

[130,150]

[10,20]  

[150,160]

[10,30]

[140,160]

[30,50]

[10,30]

[100,120]

[30,50]

[20,30]

[130,140]

[110,120]

N’’

N’(2)

(2)

[130,150]

[10,20]  

[150,160]

[10,30]

[140,160]

[30,50]

[240,250]

[10,30]

[100,120]

[30,50]

[20,30]

[130,140]

[110,120]

(3)

(3)

[30,140]

[230,250]

[130,160]

[40,60]

[-160,-120]

[-110,-70]

[-60,30]

[60,90]

[10,20]  [100,110]

[20,40]

[100,130]

[50,70]   [110,120]

[130,140]   [160,190]

[80,100]

[150,160]

[180,190]

Figure 11: A sample run of LPC.
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[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

Loose   Path-Consistency

[0,22]  [23,33]  [34,50] [1,22]  [23,29]  [34,46]

Figure 12: Solving the fragmentation problem.

Algorithm LPC-2

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. T 0

ij  Cij / (Cik 
 Ckj)
5. if T 0

ij = fg then exit (inconsistency)
6. if jT 0

ijj < jCij j then
Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g

7. Cij  T 0

ij

8. end-while

Algorithm DLPC

1. for k  n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j) 2 E do

3. T 0

ij  Cij / (Cik 
Ckj)
4. if T 0

ij = fg then exit (inconsistency)
5. if jT 0

ij j < jCijj then E  E [ (i; j)
6. Cij  T 0

ij

7. end-for

8. end-for

Figure 13: Algorithms LPC-2 and DLPC.
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(a) (b)

Triangles not processed

Figure 14: The utility of PLPC.

Exponential
Polynomial

LPC-2

DPC

PC-2

PLPC

LPC

ULT

ULT-2

DLPC

DULT

Figure 15: The partial order on the e�ectiveness.
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the maximum number of intervals per constraint. Algorithms LPC-2 and DLPC terminate
in O(nk2(n2 + ke)); O(n3k2) steps respectively and compute an equivalent network.

Proof: Algorithm LPC-2 applies the operation Cij  Cij / (Cik 
 Ckj) which does not
change the set of solutions, and thus the resulting network is equivalent. Initially, the queue
Q consists of O(n3) triangles. A set of O(n) triangles is added to Q (LPC-2 line 6) only if
at least one interval was removed from the network, and therefore at most O(ekn) triangles
are added. Since computing T 
 S requires at most O(k2) steps the total complexity is
O(n3k2 + ek3n). Algorithm LPC-2 applies the operation Cij  Cij / (Cik 
 Ckj) at most
O(n3)times. Each such operation does not change the set of solutions and requires O(k2)
steps. 2

The partial order of all the algorithms presented above is summarized in Figure 15. A
directed edge from algorithm A1 to A2 indicates that A2 computes an equal or tighter
network than A1 on an instance by instance basis. Note that algorithms PC and DPC are
exponential.

5 Extensions to Combined Networks

Algorithms ULT-2, LPC-2 can be extended to process networks of combined qualitative and
quantitative constraints. We will describe the extension for LPC only. As de�ned in Section
2, the combined model involves three types of constraints: point-point (quantitative), point-
interval and interval-interval (qualitative). Each node in a triangle can be either a point
or an interval variables, resulting in 23 = 8 types of triangles. We therefore modify the
semantics of the /;
 operators to accommodate all 8 combinations types.

Let Cij; Cik; Ckj be the constraints on pairs variables Xi; Xj; Xk. For computing T 0

ij  
Cij / (Cik 
 Ckj) we use Meiri's tables, except when quantitative constraints are used. We
consider the following cases:

Case 1: If Xi; Xj; Xk are interval variables then Allen's transitivity table [2] is used to
compute Cik
Ckj and the / operator is interpreted as the usual intersection operator.

Case 2: If both Xi; Xj are interval variables and Xk is a point variable then Meiri's tran-
sitivity tables [17] are used to compute Cik
Ckj and the / operator is interpreted as
the usual intersection.

Case 3: If exactly one of Xi; Xj is an interval variable and Xk is a point variable, then
the quantitative point-point constraint, Cik or Ckj, is translated into a qualitative
point-point constraint (using <;>;=) and Meiri's transitivity tables [17] are used to
compute Cik 
 Ckj; the / operator is interpreted as the usual intersection.
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Case 4: If Xi; Xj are point variables and Xk is an interval variable then Cik 
 Ckj is
computed using the tables given in [17]. If Cik 
 Ckj 6= f<;>g then the resulting
constraint is translated into a single interval and the / operator is interpreted as the
� operator in De�nition 1. Otherwise, to avoid increasing the number of intervals in
Cij, we set T 0

ij  Cij, i.e. no change .

Case 5: If all of Xi; Xj ; Xk are point variables then the composition operation used is
described by De�nition 1 and the / operator is described in De�nition 3.

With these new de�nitions of the operators 
; /, we can apply algorithms LPC, LPC-2,
DLPC as described in Figures 6 and 9. Algorithm ULT-2 can be extended in a similar
manner.

6 General Backtracking.

Algorithms ULT and LPC are useful for detecting inconsistencies and for explicating con-
straints, however besides being incomplete, they are not designed to �nd a consistent sce-
nario. A brute-force algorithm for determining consistency or for computing consistent
scenarios can decompose the network into separate simple subnetworks by selecting a single
interval from each quantitative constraints and a single relation from a qualitative con-
straint [17, 7]. Each network can then be solved separately in polynomial time by enforcing
path-consistency, and the solutions can be combined. Alternatively, a naive backtracking
algorithm can successively select one interval or relation from each disjunctive constraint
as long as the resulting network is consistent [17, 7]. Once inconsistency is detected, the
algorithm backtracks. This algorithm can be improved by performing forward checking to
reduce the number of future possible interval assignment3 during the labeling process.

De�nition 7 : [17] A basic label of an arc i! j is a selection of (1) a single interval from
the interval set Cij for quantitative constraints, and (2) a single relation for qualitative
constraints. A singleton labeling of N is a selection of a basic label for all the constraints
in N and a partial labeling of N is such that some constraints are assigned basic labels.

Backtrack search with forward checking is performed in the space of all possible partial
labelings as follows: It chooses a disjunctive constraint and replaces it by a single interval
or relation from that constraint. When the constraints are chosen in a dynamic order,
the constraint with the smallest disjunction size is selected for labeling. Thereafter, the
algorithm tests consistency using a constraint propagation algorithm like LPC or ULT.
Applying ULT or LPC also tightens the network. Subsequently, the algorithm selects a
new constraint on the tightened network, assign it a label and test consistency again. This
is repeated until either inconsistency is detected or a consistent labeling is found. When

3or any other applicable heuristic.

22



inconsistency is detected, a dead-end is declared and the algorithms backtracks by undoing
the last constraint labeling.

Additional improvements we introduce are (1) not to perform constraint propagation on
the subnetwork that is already singly labeled (since it is already consistent) (2) not to use
a stack for undoing the last constraint labeling4, and instead, we reconstruct the previous
partial labeling using the indexes of the labels; (3) not to instantiate constraints that were
universal in the input network but became non-universal as a result of constraint propaga-
tion.

In addition to propagating constraints during backtrack search, algorithms ULT and LPC
are useful for preprocessing before initiating search. These algorithms reduce the number of
disjuncts in the constraints, i.e. the number of intervals in quantitative constraints and the
number of allowed relation in qualitative constraints. As a result, the branching factor of the
search space is reduced. In addition to reducing the disjunction size, these algorithms render
all universal constraint non-universal. Note that had we used path-consistency algorithms
for preprocessing before search, the fragmentation would have increased. As a result, the
branching factor would have been increased and the search would have become less e�cient.

7 Empirical Evaluation

Our empirical evaluation is aimed at answering two questions: (1) which of the polynomial
approximation algorithms presented above is preferable for detecting inconsistencies, and
(2) how e�ective are these algorithm when used to improve backtrack search via preprocess-
ing, forward checking and dynamic ordering.

Section 7.1 presents experiments aimed at answering the �rst question by measuring the
tradeo� between e�ciency and e�ectiveness. Section 7.2 presents experiments aimed at
answering the second question.

Problems were generated with the following parameters: n and e are the number of variables
and constraints, and k is the number of intervals per quantitative point-point constraint.
These quantitative constraints specify integers in [�R;R], and the tightness � of a constraint
T = fI1; . . . ; Ikg is (jI1j+� � �+jIkj)=2R where jIij is the size of Ii. We used uniform tightness
for all constraints. The parameter � is the number of relations in every point-interval
constraint and  is the number of relations in every interval-interval constraint.

4In the stack there would be O(n2) entries of size O(n2) each - this was the major problem in [14]
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Figure 16: The execution time and quality of the approximation obtained by DPC and ULT to
PC. Each point represents 20 runs on networks with 10 variables, 95

7.1 Comparing Constraint Propagation Algorithms

Next we evaluates the tradeo� between e�ciency and e�ectiveness. To compare e�ciency,
we simply compare execution time. To compare the e�ectiveness of incomplete constraint
propagation algorithms,we propose to compare their e�ectiveness of by counting the fraction
of cases in which the weaker algorithm detected inconsistency given that the stronger one
did.

7.1.1 Path-Consistency vs ULT

In Figure 14 we have described the qualitative relationships between the various algorithms.
We next present a quantitative empirical comparison of algorithms ULT, LPC and LPC-2.
We also include algorithm PC-1 as presented in [7] in this comparison. In Figure 16 we show
that despite the fact that ULT is orders of magnitude more e�cient than PC, it is able to
detect inconsistency in about 70% of the cases that path-consistency does.

7.1.2 Comparing LPC and ULT

The relative e�ectiveness and e�ciency of algorithms LPC, DLPC, PLPC and ULT is pre-
sented in Table 1 and Figure 17. The columns labeled \Acc < alg >" specify the accuracy
of algorithm < alg > relative to LPC, i.e., the fraction of cases algorithm < alg > detected
inconsistency given that LPC did. The columns labeled \# Op < alg >" describe the
number of revision operations made by algorithm < alg >. The basic revision operation of
LPC is Cij  Cij / (Cik 
 Ckj), while for ULT we use the relaxation operation described
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Figure 17: E�ectiveness and E�ciency of LPC, ULT, DLPC and PLPC.

in section 3 de�nition 3. This measure is machine and implementation independent, unlike
execution time.

The problems generated have 32 variables. Tightness of interval-interval constraints is 7
relations allowed out of 13, namely  = 7=13; for point-interval constraints � = 4=5; and
for point-point constraints � = 0:45. Each entry represents the average of 200 instances.

For networks with only point variables, having about 200 constraints (leftmost column is
200), ULT was capable of detecting 15% of the inconsistencies LPC did (the column labeled
\Acc of ULT"), while DLPC and PLPC were capable of detecting 25% and 95% respectively.
For the same benchmark, the execution time of ULT, DLPC, PLPC, LPC was 0.162, 0.259,
0.533, 0.623 seconds respectively. The general trend we observe in table 1 is that (1) ULT
is clearly the most e�cient algorithm; (2) PLPC is almost as e�ective as LPC in detecting
inconsistencies.

Based on table 1 it is di�cult to select a clear winner. We speculate that in applications
where queries involve a small subset of the variables and e�ciency is crucial (real time ap-
plications, large databases), ULT will be preferable to LPC and its variants. However, LPC
is by far superior to ULT. According to the experience we accumulated so far, we believe
that in most cases PLPC is better than LPC.
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# of Acc of Acc of Acc of # Op: # Op: # Op: T ime Time Time Time

Consts PLPC DLPC ULT LPC PLPC DLPC LPC PLPC DLPC ULT

32 vars; 100% interval variables (pure qualitative); 200 reps:

250 100% 100% 100% 17K 13K 11K 0:621 0:467 0:417 0:621
300 100% 98% 100% 20K 17K 15K 0:748 0:632 0:551 0:748
350 100% 92% 100% 25K 22K 19K 0:886 0:807 0:689 0:886
400 100% 79% 100% 28K 27K 23K 1:001 0:970 0:807 1:001
450 100% 71% 100% 30K 30K 26K 1:056 1:056 0:907 1:056
496 100% 73% 100% 28K 28K 25K 0:971 0:971 0:885 0:971

32 vars; 50% interval variables (mixed); 200 reps:
150 100% 100% 100% 13K 6K 5K 0:210 0:121 0:082 0:163
200 99% 98% 97% 18K 11K 8K 0:283 0:200 0:135 0:174
250 98% 93% 95% 23K 17K 11K 0:374 0:306 0:199 0:308
300 96% 63% 65% 26K 22K 15K 0:456 0:406 0:266 0:422
350 98% 32% 89% 27K 25K 20K 0:460 0:440 0:325 0:426
400 100% 46% 98% 24K 23K 20K 0:406 0:402 0:347 0:385
450 100% 86% 100% 20K 20K 19K 0:400 0:400 0:343 0:379
496 100% 100% 100% 16K 16K 16K 0:359 0:353 0:294 0:331

32 vars; 100% point variables (pure quantitative); 200 reps:

150 98% 92% 90% 25K 12K 5K 0:546 0:400 0:165 0:132
200 99% 25% 15% 27K 17K 8K 0:623 0:533 0:259 0:162
250 100% 70% 45% 14K 11K 10K 0:380 0:350 0:315 0:181
300 100% 99% 77% 9K 8K 8K 0:287 0:275 0:270 0:164
350 100% 100% 94% 7K 7K 7K 0:244 0:241 0:235 0:126
400 100% 100% 100% 6K 6K 6K 0:211 0:212 0:204 0:105

Table 1: E�ectiveness and e�ciency of LPC, DLPC, Partial LPC and ULT.
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7.2 Backtracking

Because the performance of backtrack search is very sensitive to the benchmark being used,
generating the correct problem distribution is crucial for obtaining meaningful results. It
is commonly hypothesized that for every NP-complete problem, the hard problems lie in
a transition region which is similar to the region previously discovered by [4, 18] for SAT
problems. We therefore identify that region and use these problems in our experiments.

To improve backtrack search, the new polynomial approximation algorithms can be used
in three ways: (1) as a preprocessing phase before initiating search, to reduce the frag-
mentation, (2) to perform forward checking for early detection of dead-ends, and (3) as an
advice generator for dynamic ordering which helps to decide which labeling to perform next.
For simplicity of exposition, we report results of experiments in which the same constraint
propagation algorithm is used for for preprocessing, forward-checking and dynamic ordering.

In the �rst part of this section we report results of experiments performed on quantitative
TCSPs, while in the second part we focus on qualitative networks.

7.2.1 Quantitative TCSPs

As noted earlier, constraint propagation algorithms can be used as a preprocessing phase
before backtracking to reduce the number of dead-ends encountered during search. After
preprocessing with algorithmPC, problems become even harder to solve due to the increased
fragmentation. In contrast, preprocessing with ULT results in problems on which even naive
backtracking is manageable (for small problems).

We compare three backtrack search algorithms: \Old-Backtrack+ULT" which uses ULT as
a preprocessing phase with no forward checking and static ordering; \ULT-Backtrack+ULT"
and \LPC-Backtrack+LPC" which use ULT and LPC respectively for preprocessing, forward-
checking and dynamic ordering.

The experiments reported in Figure 18 were conducted with networks of 10-16 variables,
complete graphs and 3 intervals in each constraint. Each point represents 500 runs. We call
the region where about half of the problems are satis�able, the transition region [4, 18]. In
Figures 18a and 18b we observe a phase-transition when varying the size of the network,
while in Figures 18c and 18d we observe a similar phenomenon when varying the tightness
of the constraints.

The experiments reported in Figure 19 were conducted with networks of 12 variables, com-
plete graphs (i.e. 66 constraints) and 3 intervals in each constraint. Each point repre-
sents 500 runs. We observe that ULT and LPC are capable of pruning dead-ends and
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improving search e�ciency on our benchmarks by orders of magnitude. Speci�cally, aver-
aged over 500 instances in the transition region (per point), Old-Backtrack+ULT is about
1000 times slower than ULT-Backtrack+ULT, which is about 1000 times slower than LPC-
Backtrack+LPC. The latter encounters about 20 dead-ends on the peak (worst performance)
on networks with 12 variables and 66 constraints with 3 intervals to instantiate each. As
expected, as we depart from the transition region the improvements are less signi�cant.
Note that we could not process these problems using PC due to fragmentation.

7.2.2 Qualitative TCSPs

Next we present results obtained with backtracking on qualitative networks, for which we use
the standard path-consistency algorithm [2]. The backtracking algorithm described above
is similar to the algorithm used by [14]. In their implementation, they avoid enforcing path-
consistency on the subnetwork that is already labeled during backtrack search (since it is
already consistent). To this we added forward checking and dynamic ordering, as describe
in Section 6.

The experiments reported in Figure 20 were conducted with networks of 12 variables, 66
constraints, and each point is averaged over 100 instances. We change the tightness of the
constraints by changing . The parameters we measure are the number of dead-ends (Fig-
ure 20a) and the fraction of cases enforcing path-consistency correctly decides consistency
(Figure 20b).

In Figure 20a we show that qualitative networks exhibit a phase transition at  = 8=13.
The only di�erence between the experiments reported in this section and those conducted
by [14] is that the latter used a �xed  = 0:5, namely in about half of the cases, six interval
relations out of 13 were allowed and in another half, seven were allowed.

Our results agree with those reported in [14] in that for  = 0:5 most of the generated
problems were inconsistent. However, we see that for  = 9=13, all the problems generated
were consistent. For  = 6=13, the problems were about two orders of magnitude easier
than those at the peak (Figure 20a) because, in most of the cases, path-consistency detects
inconsistency before invoking backtracking search (Figure 20b).

8 Conclusion

Temporal Constraint Satisfaction Problems (TCSP) provide a formal framework for reason-
ing about temporal information, which is derived from the framework of classical CSPs. As
in classical CSPs, the central task of deciding consistency is known to be NP-complete. To
cope with intractability it is common to use polynomial approximation algorithms which
enforce path-consistency.
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Figure 19: A comparison of various backtracking algorithms.
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Figure 20: The di�culty as a function of tightness for Qualitative Networks.

In this paper we demonstrated that, in contrast to classical CSPs, enforcing path-consistency
on quantitative TCSPs is exponential due to the fragmentation problem. To control frag-
mentation, we present two new polynomial approximation algorithms, Upper lower Tight-
ening (ULT) and Loose Path-Consistency (LPC), which are e�ective in detecting inconsis-
tencies and reducing the fragmentation. We present re�nements on the main algorithms
called ULT-2, Directional ULT (DULT), LPC-2, Directional LPC (DLPC) and Partial LPC
(PLPC).

We addressed two questions empirically: (1) which of the algorithms presented is preferable
for detecting consistency, and (2) how e�ective are these algorithms when incorporated
within backtrack search.

To answer the �rst question, we are measure the tradeo� between e�ciency and e�ectiveness.
E�ciency is measured by execution time while e�ectiveness is measured by counting the
fraction of cases in which inconsistency was detected.

We show that on randomly generated problems, enforcing path-consistency may indeed be
exponential in the number of intervals per constraint while ULT's execution time is almost
constant in that number. Nevertheless, ULT is able to detect inconsistency in about 70%
of the cases in which enforcing path-consistency does. The best algorithm, LPC, is less
e�cient than ULT, is more e�ective than ULT and very e�ective relative to enforcing path-
consistency.
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To answer the second question, we apply the new algorithms in three ways: (1) in a pre-
processing phase for reducing the fragmentation before initiating search, (2) as a forward
checking algorithm for reducing the fragmentation during the search and detecting dead-ends
early, and (3) in an advice generator for dynamic variable ordering. Using hard problems
which lie in the transition region [4, 18], we show that incorporating ULT in backtrack
search is preferred to incorporating PC and that LPC is the best algorithm, in all three ap-
plications. Using LPC for preprocessing, forward checking and dynamic ordering, improves
the performance of backtrack search by several orders of magnitude.
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A ULT for discrete CSPs

The idea of ULT can be extended to approximate path-consistency in classical CSPs. While
enforcing full path-consistency requires O(n3k3) steps [19], approximating with a single it-
eration of ULT requires O(n3k2), and using the complete ULT requires O(n3ek + e2k2).
Using a single ULT iteration (weaker than ULT) may signi�cantly reduce propagation time
(compared to PC) when the domains are large.

A binary relation Rij on Xi; Xj can be represented by a (0,1)-matrix with jDij rows and
jDjj columns by imposing an ordering on the domains. A zero entry at row r and column s
means that the pair consisting of the r-th element of Di and the s-th element of Dj in not
allowed.

De�nition 8 : (row convexity [28]) A (0,1)-matrix is row convex i� in each row all of
the ones are consecutive, that is no two ones within a single row are separated by a zero in
that same row. A constraint is row convex i� its matrix representation is row convex and
the network is row convex i� all its constraints are row convex. A row convex relation can
be represented by a set of k pairs of integers, (lr ; ur), where lr is the number of the �rst
non-zero column and ur is the number of the last non-zero column.

It was shown that enforcing path-consistency on row convex networks renders them globally
consistent [28]. In Figure 9, we present algorithm ULT-CSP. The algorithm relaxes the
network into a row-convex network, enforces path-consistency and intersects the resulting
network with the original network, until there is no change.

De�nition 9 : Given an arbitrary matrixA, its upper bound row convex matrix is obtained
by changing, for every row r, all the elements between column lr and ur, (e.g. ar;lr . . .ar;ur )
to ones. An upper bound row convex approximation of a binary constraint is obtained
by computing an upper bound row convex of its matrix representation. The networks
N 0; N 00; N 000 are de�ned as follows:

� N 0 is the row convex upper bound of N .

� N 00 is the minimal network of N 0 (obtained by enforcing path-consistency).

� N 000 is derived from N 0 and N 00 by intersection.

Theorem 6 : Let N be the input to ULT-CSP and R be its output.

1. N and R are equivalent networks.
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Algorithm ULT-CSP
1. input: N
2. N 000 N
3. repeat
4. N  N 000

5. Compute N 0 by computing the row-convex upper bound of N .
6. Compute N 00 by enforcing path consistency on N 0.
7. Compute N 000 by intersecting N 0 and N 00.
8. until N 000 = N .
9. if N 000 is consistent, output: N"'.

output: \Inconsistent."

Figure 9: Algorithm ULT-CSP.

a b

X

Figure 11: Sample portion of the search tree

2. For row convex networks, ULT-CSP computes the minimal network in a single itera-
tion.

3. Every iteration of algorithm ULT-CSP terminates in O(n3k2) steps.

Proof: Part 1: Let Sol(N ) denote the set of solutions of then Sol(N ) � Sol(N 0) =
Sol(N 00). This implies that Sol(N ) \ Sol(N 00) = Sol(N ) and therefore Sol(N 000) = Sol(N ).
Part 2: Clearly, if the input network is row convex, then N = N 0 and it is known that for
row convex networks path-consistency is complete [28]. Part 3: Computing lr; ur for every
row in every matrix requires O(n2k2) steps and enforcing path-consistency on row convex
networks requires O(n3k2) steps. 2

B Detailed Backtracking Algorithms

The key for scaling up the backtrack algorithm suggested above is e�ective memory man-
agement. In contrast to classical CSPs, when backtracking on TCSPs there is a need to
store information about the complete network at each level of the search tree.

To illustrate the problem, consider part of the search tree shown in Figure 11, in which every
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node is a partial labeling. Suppose the search algorithm expands node \X", and thereafter
visits the left child labeled by \a". Suppose that once node \a" was visited there is a need to
backtrack due to inconsistency. The naive way to allow backtracking is to simply store the
partial labeling of \X". Such an approach, however, requires to store all partial labelings
on the path from the root of the search tree to the current node, which may require O(n4)
space5. Instead, we propose to construct the partial labeling of node \b" during search
without storing or reconstructing \X". We store only the necessary information required
for reconstruction of node \b", namely the index of the basic labels within every constraint.
Note that applying LPC removes some intervals from the constraints and therefore such
an indexing should be carefully handled. The saving obtained by this method is mostly
apparent when the common parent of a and b is several levels up, closer to the root of the
tree.

When a dead-end is encountered, we determine the source of the conics as follows. Sup-
pose the dead-ends occurred at the constraint Cij, namely, instantiating Cij with any of its
intervals renders the networks inconsistent. Suppose the constraint instantiated before Cij

was Cpq. Then if the networks in which Cpq is made universal is inconsistent with every
possible instantiation of Cij then Cpq is clearly not responsible for the dead-end. In that
case, we check the constraints instantiated before Cpq by making it universal and enforc-
ing path-consistency, until we �nd a constraint for which path-consistency does not detect
inconsistency.

The complete backtracking algorithm is presented in Figure 16. The function of LabelNetwork,
shown in Figure 16, is to reconstruct the partial labeling based on the indexes. It receives
as input the original network N (the root of the tree), the indexes of the basic labels to
be selected from each constraint stored in the Index matrix, and the last constraint which
to be instantiated, Cij. Two copies of the network are maintained: N is the original input
network and N 0 is the partial labeling currently expanded; the ij-th constraint of N 0 is
denoted by T 0

ij .

In contrast to Ladkin and Reinefeld, we propose to perform limited propagation. As shown
in Figure 15 lines 5-8, because every iteration of the \repeat" loop removes at least one
atomic relation from T 0

ij (otherwise no change) we perform at mostmax(26n; 2nk) relaxation
operations where n is the number of variables and k is the maximal number of intervals in
a point-point constraint. In average, however, we perform much less than 2nk.

Finally, the last improvement we propose is not to instantiate constraints that were initially
universal. It is easy to see that every consistent labeling of all the non-universal constraints
is also consistent with the universal constraints; as a result, unnecessary dead-ends can be
avoided.

5an entry for every constraint - O(n2) entries; each entry describes a complete network - O(n2) space
each.
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Input: A network N with n variables.
Output: A consistent singleton labeling of N if consistent, or

a noti�cation that N is inconsistent.
1. i 0; j  1
2. repeat
3. N 0  LabelNetwork(N; Index; i; j)
4. Index[i; j] 0
5. repeat
6. 8k 2 [j + 1; n] T 0

ik  T 0

ik / (T
0

ij 
 T 0

jk)

7. 8k 2 [j + 1; n] T 0

kj  T 0

kj / (T
0

ki 
 T 0
ij)

8. until no change.
9. Length[i; j] = jT 0

i;jj
10. if N 0 is inconsistent then let i; j be the previous i; j such that i < j.
11. while Index[i; j] � Length[i; j] and j > 0 do
12. let i; j be the previous i; j such that i < j.
13. if j > 0 then
14. Index[i; j] = Index[i; j] + 1
15. let i; j be the next constraint to be instantiated such that i < j.
16. until N 0 is a consistent singleton labeling or j = 0.
17. if N 0 is a consistent singleton labeling then exit with N 0 as the solution.
18. else exit with failure.

Figure 15: The general Backtracking algorithm.

LabelNetwork(N; Index; i; j)
Input: N , a network with n variables,

Index, the indexes of the labels,
i; j, the current constraint not to be instantiated.

Output: N 0, a partial labeling of N .
1. 8q 2 [0; j � 1]; 8p 2 [0; q� 1]; T 0

pq  the Index[p; q]-th label of Cpq.
2. 8q 2 [0; i� 1]; T 0

jq  the Index[j; q]-th label of Cjq.
3. return(N 0).

Figure 16: Reconstructing a partial labeling.
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