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Abstract [7] and Value Elimination [2] within the AND/OR search
space framework. We show that there is no principled
difference between memory-intensive search restricted to
fixed variable ordering and inference beyond: 1. differ-
ent direction of exploring a common search space (top
down for search vs. bottom-up for inference); 2. different
assumption of control strategy (depth-first for search and
breadth-first for inference). We also show that those differ
ences have no practical effect, except under the presence of
determinism. Our analysis assumes a fixed variable order-
ing. When variable ordering is dynamic in search, some of
these conclusions may not hold.

In this paper we compare search and inference in
graphical models through the new framework of
AND/OR search spaces. Specifically, we com-
pare Variable Elimination (VE) and memory-
intensive AND/OR Search (AO) and place al-
gorithms such as graph-based backjumping and
no-good learning, as well aRecursive Condi-
tioning [7] and Value Elimination[2] within the
AND/OR search space.

Section 2 provides background. Section 3 compares VE
with AO search. Section 4 addresses the effect of advanced

1 Introduction e ;
algorithmic schemes and section 5 concludes.

It is convenient to classify algorithms that solve reason-

ing problems of graphical models as either seaely,( 2 Background
depth first, branch and bound) or inferenegg( variable

elimination, join-tree clustering). Search is time expone 5 4 Graphical Models
tial in the number of variables, yet it can be accomplished

in linear memory. - Inference exploits the model's grapha graphical model is defined by a collection of functions,
structure and can be accomplished in time and space expgyer a set of variables, conveying probabilistic or determi
nential in the problem'sree-width When the tree-width jstic jnformation, whose structure is captured by a graph.
is big, inference must be augmented with search to re-

duce the memory requirements. In the past three deczﬂd%ﬁzF”\“TION 2.1 (graphical models) A graphical modeis
search methods were enhanced with structure exploitin 4tuple M = (X,D,F,@) where: 1. X =
methods. These improvements often require substanti%x1 ..., X,}isaset o;‘va;ria;bles 2D = {Ds,..., Dy}
memory, making the distinction between search and ini. , o ¢ ' el

is a set of finite domains of values; 3 = {f1,..., f}

ference fuzzy. Recently, claims regarding the superiorityiS a set of real-valued functions. The scope of funcfign

of memory-intensive _sez_irch over infe_rence or Vic_e'verSE?jenotedscopéfi) C X, is the set of arguments gf 4.
are made [3]. Our a|m_|.s tc_) clanfy this relationship and ®ifi € {1 fi. 3 fi,><; fi} is a combination operator.
also to create cross-fertilization using the strengthsotfib ¢ graphiéal model represents the combination of all its
schemes. functions, namely the se®’_, f;. When the combination

In this paper we compare search and inference in graphieperator is not relevant to the discussion we will denote a
cal models through the new framework of AND/OR searchgraphical model by a 3-tuplét = (X, D, F).

spaces, recently introduced [12]. Specifically, we com-

pare Variable Elimination (VE) against memory-intensive DEFINITION 2.2 (primal graph) The primal graphof a
AND/OR Search (AO), and will place algorithms such graphical model is an undirected graph that has variables
as graph-based backjumping, no-good learning and lookas its vertices and an edge connects any two variables that
ahead schemes [9], as well as Recursive Conditioningppear in the scope of the same function.



(A AP ““Q tree, by linking each buckek; to the one where the re-
B: P<B|A;3<AB>“Z<AB> sulting function generated in buck&t; is placed, which is
®) © & P(ElAB/

called the parent ok ;.

' c: P(ClA) h,(BC) E bucket-C
® ® o p(mﬁv (BCD) bucketd Example 2.1 Figure 1a shows a belief network. Figurelb
@ () © shows the execution of Variable Elimination along ordering
d = (A,B,E,C, D). The buckets are processed frddrto
Figure 1: Execution of Variable Elimination A. Figure 1c shows the bucket tree.

Two central graphical models are belief networks and con2-3 AND/OR Search Spaces
straint networks. Abelief network B = (X, D, P) is de-
fined over a directed acyclic gragh = (X, E) and its
functionsP; denotes conditional probability tables (CPTSs),
P, = {P(X; | pa;)}, wherepa; is the set opparentnodes
pointing to.X; in G. Common tasks are finding the posterior
probability of some variables given the evidence, or finding
the most probable assignment to all the variables given th
evidence. Aconstraint network R = (X, D,C) has a
set of constraint&’ = {C1, ..., C;} as its functions. Each

CS Y ey
constraint is a paiCi, = (S, ;), wheres; ¢ X is the derlying graphical model. Introducing N D nodes into

scope of the relatio®?; defined oversS;, denoting the al- h rch n ture the structure by decomposin
lowed combination of values. Common tasks are finding g € search space can capiure e structure by decomposing

: : : the problem into independent subproblems by conditioning
solution and counting the number of solutions. on values [10, 13]. Since the size of the AND/OR tree may
We assume that the domains of functions include a zero ebe exponentially smaller than the traditional search tree,
ement, 0”. Combining .9, multiplying) anything with  any algorithm searching the AND/OR space enjoys a better
“0" yields a “0". The “0” value expresses inconsistent tu- computational bound. For more details see [4, 12]. A clas-
ples. This is a primary concept in constraint networks butsical algorithm that explores the AND/OR search space is
can also be defined relative to some graphical model as foRecursive Conditioning [7].
lows. Each functionf; expresses an implicit flat con-
straint which is a relatior?; over its scope that includes
all and only the consistent tuples, namely those that are n
mapped to "0”. In this paper, a constraint network refers
also to the flat constraints that can be extracted from an
graphical model. When all the assignments are consiste
we say_that the graphlgal model IS StI'IC.'[|y posmye. A par- of G which is not included inE’ is a back-arc, namely it
tial assignment is consistent if none of its functions evalu

o . : connects a node to an ancestoriin
ate to zero. A solution is a consistent assignment to all the
variables.

The usual way to do search consists of instantiating vari-
ables in turn (we only consider fixed variable ordering). In
the simplest case this defines a search tree, whose nodes
represent states in the space of partial assignments. A
depth-first search (DFS) algorithm searching this space
ould run in linear space. If more memory is available,
then some of the traversed nodes can be cached, and re-
trieved when “similar” nodes are encountered. The tradi-
tional search space does not capture the structure of the un-

Given a graphical modeM, its AND/OR search space is
&ased on @seudo tre¢l13]:

DEFINITION 2.3 (pseudo tree)Given an  undirected
raph G = (V, E), a directed rooted tred” = (V, E’)
efined on all its nodes is callgoseudo treef any arc

2.3.1 AND/OR Search Tree
We assume the usual definitions iofduced graphsin-

duced widthtree-widthandpath-width[9, 1]. Given a graphical modeW = (X, D, '), its primal graph

G and a pseudo treg of GG, the associated AND/OR search
tree, denotedb (M), has alternating levels of AND and
OR nodes. The OR nodes are labelédand correspond to
the variables. The AND nodes are labeléd, ;) and cor-
respond to the values in the domains of the variables. The
structure of the AND/OR search tree is based on the under-
lying backbone pseudo tréé. The root of the AND/OR
search tree is an OR node labeled with the rodf of

2.2 Inference by Variable Elimination

Variable-elimination algorithms [5, 8] are charactedsif
inference methods. Consider a graphical mo@el=
(X,D,F) and an orderingl = (X1, Xs,...,X,). The
orderingd dictates an elimination order for VE, from last
to first. Namely, all functions irf’ that containX; and do
not contain anyX ; for j > i are placed in thbucket ofX;. The children of an OR nod&; are AND nodes labeled
Then, buckets are processed fréf to X; by eliminating  with assignments(X;, z;) that are consistent with the
the bucket variable (combining all functions and removingassignments along the path from the ropath(xz;) =
the variable by a marginalization) and placing the result-((X;, 1), (X2, 22),...,(X;-1,z;—1)). Consistency is
ing function (also callednessaggin the bucket of its latest  well defined for constraint networks. For probabilistic-net
variable ind. This VE procedure also constructs a bucketworks it is defined relative to the underlying flat constraint



Figure 2: AND/OR search tree Figure 3: Context-minimal AND/OR search graph

network derived from the belief network. The children of BF-CMr, is the context-minimal graph wheedl incon-
an AND node(X;, x;) are OR nodes labeled with the chil- sistent subtrees are pruned.

dren of variableX; in the pseudo tre#'. ] o
Example 2.4 Figure 3 shows the full context-minimal

The arcs fromX; to (X;,z;) are labeled with the appro- AND/OR search graph of the problem and pseudo tree from
priate combined values of the functionsfhthat contain  Figure 2.

X, and have their scopes fully assigned. When the pseudo
tree is a chain, the AND/OR search tree coincides with theBased on earlier work by [4, 12], it can be shown that:
regular OR search tree.
THEOREM2.5 (size of minimal context graphsGiven a
Example 2.2 Consider again the belief network in Figure graphical modelM, a pseudo tred” and w the induced
la. Figure 2a shows a pseudo tree of its primal graph, to-width of G along the depth-first traversal df,
gether with the back-arcs (dotted lines). Figure 2b showsl) The size oMy (M) is O(n - k™), whenk bounds the
the AND/OR search tree based on the pseudo tree, for bidomain size.
nary {0, 1} valued variables assuming positive functions. 2) The context-minimal AND/OR search graph (relative
to all pseudo trees) is bounded exponentially by the tree-
Based on earlier work by [13, 4, 6, 7], it can be shown thatwidth, while the context-minimal OR search graph is
bounded exponentially by the path-width.
THEOREM2.3 Given a graphical modeM and a pseudo
tree T, the size of the AND/OR search trée is O(n -  Ataskover a graphical mode g, belief updating, count-
exp(m)) wherem is the depth off’. A graphical model ing) induces a value function for each node in the AND/OR

that has a tree-widthv* has an AND/OR search tree whose Space. The algorithmic task is to compute the value of the
size isO (exp(w* - logn)). root. This can be done recursively from leaves to root by

any traversal scheme. When an AO traversal of the search
DEFINITION 2.4 (backtrack-free) An  AND/OR search space uses full caching based on context it actually tra-
tree of a graphical model isacktrack-freéff all nodes that ~ verses the context-minimali Mr, graph. Itis this context
do not root a consistent solution are pruned. minimal graph that allows comparing the execution of AO
against VE.

2.3.2 AND/OR Search Graph
3 VEvs. AO Search

The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledifiable When unifiable

nodes are merged, the search space becomes a graph. YtES execution is uniquely defined by a bucket-tree, and

glwsme every bucket tree corresponds to a pseudo tree, and a

size becomes smaller at the expense of using addition seudo tree uniquely defines the context-minimal AND/OR
memory when being traversed. When all unifiable node :
search graph, we can compare both schemes on this com-

are merged, a computational intensive task, we get thé

. > o mon search space. Furthermore, we choose the context-
unigueminimal AND/OR graphSome unifiable nodes can minimal AND/OR search graph (CM) because algorithms
be identified based on thaipntextd7]. The context of an grap 9

AND tode . 15 G a h ot f ancesorsl 2L vre 1l M e ey it s compar
in the pseudo tree, including;, that are connected (in the y VE, Y, SP P

induced primal graph) to descendantsXof It is easy to tree-width of their pseudo/bucket trees.

verify that the context ofX; d-separates [15] the subprob- Algorithm AO denotes any traversal of the CM search
lem below X; from the rest of the network. Theontext- graph, AO-DF is a depth-first traversal and AO-BF is a
minimal AND/OR graph denoted’ M (M), is obtained  breadth-first traversal. We will compare VE and AO via the
by merging all the context unifiable AND nodes. When theportion of this graph that they generate and by the order of
graphical model is strictly positive, it yields thdl context-  node generation. The task’s value computation performed
minimal graph Thebacktrack-free context-minimal graph during search adds only a constant factor.
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Figure 4: Variable Elimination

Figure 5: Context-minimal AND/OR search space
We distinguish graphical models with or without determin-
ism, namely, graphical models that have some inconsisef valueh;(A40By) = P(Eg|AqBo) + P(E1|A¢By). AO
tency vs. those who have none. We will also compare besubsequently generates the two pdths, C, By, A1, Eo)
tweenbrute-forceversions of VE and AO as well as those and(D,, Cy, By, A1, F1) and accumulates the next partial
enhanced by various known features. valueh, (41 By) = P(Ey|A1By) + P(E1]|A1By). Subse-
guently it computes the summatién(B,Cy) = P(Ag) -
P(Bo|Ag) - P(Co|Ao) - hi(AgBo) + P(A1) - P(Bo| A1) -
P(Cy|A1) - h1(A1By). Notice that due to caching each arc
is generated and traversed just once (in each directiom). Fo
example when the partial pat®, Cy, By) is created, itis
We start with the simplest case in which the graphicalrecognized (via context) that the subtree below was already

model contains no determinism and the bucket tree (pseuof‘?)xplored and its compiled value will be reused.

We will assume that the task requires the examination of al
solutions, such as belief updating or counting solutions.

3.1 VE vs. AO search When No Determinism

tree) is a chain. In contrast, VE generates the full context-minimal graph by
layers, from thdoottom of the search graph up a manner
3.1.1 OR Search Spaces that can be viewed as dynamic programming or as breadth-

) ] ) first search on the explicated search graph. VE's execution
Figure 4a shows a Bayesian network. Let's consider thean pe viewed as first generating all the edges between E
orderingd = (D,C, B, A, E) which has the tree-width 4,q A (in some order), and then all the edges between A
w(d) = w* = 2. Figure 4b shows the bucket-chain and a5, B (in some order), and so on up to the top. We can see
schematic application of VE along this ordering (the bucket, 4t there are 8 edges between E and A. They correspond
of E is processed first, and the bucket of D last). The bucksq the g tuples in the bucket of E (the function 0hBE)).
ets include the initial CPTs and the functions that are genthere are 8 edges between A and B, corresponding to the
erated and sent (as messages) during the processing. Figye ples in the bucket of A. And there are 8 edges between
4c shows the bucket tree. B and C, corresponding to the 8 tuples in the bucket of B.
If we use the chain bucket tree as pseudo tree for th&imilarly, 4 edges between C and D correspond to the 4
AND/OR search alongl, we get thefull CM-AO graph  tuples in the bucket of C, and 2 edges between D and the
given in Figure 5. Since this is an OR space, we can elimfood correspond to the 2 tuples in the bucket of D.

inate the OR levels as shown. Each level of the graph COlSince the computation is performed from bottom to top,
responds to one variable. The edges should be labeled withe odes of A store the result efiminating E (namely

the product of the values of the functions that have just beeg,o functionh; (AB) resulting by summing ouE). There
instantiated on the current path. We note on the arc jusfe 4 nodes labeled with A, corresponding to the 4 tuples
the assignment to the relevant variablegg( B, denotes i, the message sent by VE from bucket of E to bucket of
B =1andso _on). For exa_lmple, the_ edges between C and B (the message ofdB)). And so on, each level of nodes
are labeled with the function valuation ¢8CD), namely  ¢4rresponds to the number of tuples in the message sent on

P(D|B,C), where for each individual edge this function the separator (the common variables) between two buckets.
is instantiated as dictated on the arcs.

AO-DF computes the valuee(g, updated belief) of the 312 AND/OR Graphs

root node by generating and traversing the context-minimal

graph in a depth-first manner and accumulating the parThe above correspondence between Variable Elimination
tial value €.g, probabilities) using combination (prod- and AND/OR search is also maintained in non-chain
ucts) and marginalization (summation).  The first two pseudo/bucket trees.We refer again to the example in Fig-
paths generated by AO-DF at®,, Co, By, Ao, Eg) and  ures 1, 2 and 3 and assume belief updating. The bucket
(Do, Co, By, Ao, E1), which allow the first accumulation tree in Figure 1c has the same structure as the pseudo tree



in Figure 2. We will show that VE traverses the AND/OR graphical model and when given the same bucket-tree
search in Figure 3 bottom up, while AO-DF traverses thethey traverse an identical search space. Namely, every
same space in depth first manner. node is explored by iff it is explored byB; 2. A'is

, weakly better thar if there exists a graphical model and
';?ED‘Z fu;t) zur:gir? grgé%(iot)jep?h fiigl?g'(%m léo)) J:r a bucket-tree, for whicht explores a strict subset of the
P(DE|B?)’ C(;) + P(Dy|Bo.Cy) and hi(By %1)0 _  nodes explored by; 3. A is better than3 if A is weakly
P(DO|BO701) n P(D11|Bo701) Then it ’computes bettgr thanB but B is not wegkly better. tham; 4. The
hQ(AO,B(;) ~ (P(Cy|Ao) -’h1(léo,00)) + (P(Ch|Ay) - relatlt_)n of "weakly-better” deflnesapartlgl order between
ha(Bo.Ch)). All the computation of AO-DF is precisely algorithms. A and B ar”e not compara},blef t_hey are not
the same as the one performed in the buckets of VE(.:omparabIe w.r.t to the "weakly-better” partial order.

Namely, 7, is computed in the bucket d and placed in g1y any two algorithms for graphical models are either

the bucket ofC'. 1 is computed in the bucket &' and 1 “jgentical, 2. one is better than the other, or 3. they are

placed in the bucket B, 73 is computed in the bucket of comparable. We can now summarize our observations
E and so on, as shown in Figure 1b. All this correspondsy ¢5, using the new terminology.

to traversing the AND/OR graph from leaves to root. Thus,

both algorithms traverse the same graph, only the controfeorem3.2 For a graphical model having no determin-
strategy is different. ism AO-DF, AO-BF and VE are identical.

We can generalize both the OR and AND/OR examples,
3.2 Dead-Caches and Space Complexity
THEOREM 3.1 (VE and AO are identical) Given a
graphical model having no determinism, and given theTo make the complete correspondence between VE and
same bucket/pseudo tree VE applied to the bucket-tree BND/OR search, we can look not only at the computa-
a (breadth-first) bottom-up search that will explore all tional effort, but also at the space required. The straightf
the full CM search graph, while AO-DF is a depth-first ward way of doing the caching is to have a table for each
top-down search that explores (and records) the full CMvariable. However, some tables might never get cache hits.
graph as well. We call thesalead-cachessimilar to [7]. In the AND/OR
search graph dead-caches are at nodes that have only one
Breadth-first on AND/OR. Since one important differ- incoming arc. So, we can distinguish between the portion
ence between AO and VE is the order by which they ex-of the graph that is traversed and the portion that should
plore the search space (top-down vs. bottom-up) we wislye recorded and maintained. AO search needs to record
to remove this distinction and consider a VE-like algorithm only nodes that are likely to have additional incoming arcs,
that goes top-down. One obvious choice is breadth-firsand these nodes can be determined by inspection from the
search, yielding AO-BF. Thatis, in Figure 3 we can processseudo tree. Namely, if the context of a node includes that
the layer of variable A first, then B, then E and C, and thenof its parent, then AO need not store anything for that node,
D. Generalbreadth-firstor best-firstsearch of AND/OR  pecause it would be a dead-cache.
graphs for computing the optimal cost solution subtrees arevoiding the storage of dead-caches in AO corresponds to

well defined procedures. The process involves expandin ; . _ .
all solution subtrees in layers of depth. Whenever a ne ollapsing the subsumed neighboring buckets in the bucket

node is generated and added to the search frontier the val{&e This resultﬁ n r;‘avmgh caclr_\e tablesﬂ?f the size Of thel
of all relevant partial solution subtrees are updated. Awelsc_eparators_, rather t.an the cliques. e computationa
known Best-first version of AND/OR spaces is the AO* (time) savings are within a constant factor from the com-

algorithm [14]. Algorithm AO-BF can be viewed as a top- Elexny of sol\k/)mg tge Iadrgfest cblu_ster. The sp_acl:_e Sﬁvm_gs
down inference algorithm. We can now extend the compar- owever can be reduced from being e_xponenna_ In the size
ison to AO-BE. of the maximal cluster to exponential in the maximal sepa-

rator. Therefore:
Proposition 1 Given a graphical model with no determin- » ) . . .
ism and a bucket/pseudo tree, VE and AO-BF explore thgroposmon 2 Given a graphical model without determin-

same full CM graph, one bottom-up (VE) and the other topS™: AO search that avoids storing dead-caches is identical
down; both perform identical value computation. to super-bucket-VE which collapses subsumed neighboring

buckets.
Terminology for algorithms’ comparison. Let A and B o } _

mance is determined by an underlying bucket/pseudo treeSize as controlling time-space tradeoff is long recognized
[17, 11].This idea can be pushed further to accommodate

DEFINITION 3.1 (comparison of algorithms) We say flexible time/space tradeoffs within search. Notice that in
that: 1. algorithmsA and B areidentical if for every  contrast to AO-DF, algorithm AO-BF must record all the



context independence.

4  Algorithmic Advances and Their Effect

So far we compared brute-force VE to brute-force AO
search. We will now consider the impact of some en-
hancements on this relationship. Clearly, both VE and AO
explore the portion of the context-minimal graph that is
backtrack-free. Thus they can differ only on the portion
frontier of the search. But if we do breadth-first search withthat is included in full CM and not in the backtrack-free
some macro assignments (of a few variables at a time) w€M. Indeed, constraint propagation, backjumping and no-
can avoid unnecessary caching as well. good recording just reduce the exploration of that portion
of the graph that isnconsistent Here we compare those
schemes against bare VE and against VE augmented with
similar enhancements whenever relevant.

When the graphical model contains determinism the

AND/OR trees and graphs are dependant not only on thg 1 g vs. AO With Look-Ahead

primal graph but also on the (flat) constraints, namely on

the consistency and inconsistency of certain relatiorsshipin the presence of determinism AO-DF and AO-BF can nat-
(no-good tuples) in each relation. In such cases AO andrrally accommodate look-ahead schemes which may avoid
VE, may explore different portions of the context-minimal parts of the context-minimal search graph using some level
graphs because the order of variables plays a central rolef constraint propagation. It is easy to compare AO-BF
dictating where the determinism reveals itself. against AO-DF when both use the same look-ahead be-
cause the notion of constraint propagation as look-ahead
is well defined for search and because both algorithms ex-
A,B,C, D, each having the domaifil, 2,3,4}, and the  plore the search space top down. Not surprisingly when

constraintsA < B, B < C andC < D. The primal  poth algorithms have the same level of look-ahead propa-
graph of the problem is a chain. Let's consider the natural gation, they explore an identical search space.

ordering from A to D, which gives rise to a chain pseudo ) )

tree (and bucket-tree) rooted at A. Figure 6a shows the/Vé can also augment VE with look-ahead constraint propa-
full CM graph with determinism generated by AO search,9&tion €.g. unit resolution, arc consistency), y|eld|ng VE-
and Figure 6b the graph generated and traversed by VE-AH as follows. Once VE-LAH processes a single bucket,
in reverse order. The thick lines and the white nodes ard! then applies constraint propagation as dictated by the
the ones traversed. The dotted lines and the black nodd§0k-ahead propagation scheme (bottom-up), then contin-

1 [ B8

Figure 6: CM graphs with determinism: a) AO; b) VE

3.3 VE vs. AO With Determinism

Example 3.3 Let’s consider a problem on four variables:

are not explored (when VE is executed fr@m the con-
straint betweenD and C' implies thatC = 4 is pruned,

and therefore not further explored). Note that the inter-

section of the graphs explored by both algorithms has
common subgraph that corresponds to tecktrack-free

AND/OR context graphcorresponding to the unique solu-

tion (A=1,B=2,C=3,D=4).

a

ues with the next bucket applied over the modified set of
functions and so on. We can show that:

THEOREM4.1 Given a graphical model with determinism
and given a look-ahead propagation schethd,H,

1. AO-DF-LAH and AO-BF-LAH are identical.

2. VE and VE-LAH are each un-comparable against each

of AO-DF-LAH and AO-BF-LAH.

As we saw in the example, AO and VE explore different ] ] )
parts of the inconsistent portion of the full CM. Therefore, Proof. 1. The search graph is traversed in the same direc-
in the presence of determinism, AO-DF and AO-BF aretion by both AO-DF-LAH and AO-BF-LAH, so the look-
both un-comparable to VE, as they differ in the direction@head has the same effect for both. 2. Determinism can

they explore the CM space. still impact differently in different variable orderings. O

THEOREM 3.4 Given a graphical model with determinism, 4.2 The Effect of Graph-Based No-Good Learning
then AO-DF and AO-BF are identical and both are un-

comparable to VE. AO search can be augmented with no-good learning [9].

Graph-based no-good learning means recording that some
This observation is in contrast with claims of superiority nodes are inconsistent based on their context. This is au-
of one scheme or the other [3], at least for the case whetomatically accomplished when we explore the CM graph
variable ordering is fixed and no advanced constraint propwhich actually amounts to recording no-goods and goods
agation schemes are used and assuming no exploitation b their contexts. Therefore AO-DF is identical to AO-BF



and both already exploit no-goods, we get that (AO-NG de-
notes AO with graph-based no-good learning):

THEOREM4.2 For every graphical model the relationship
between AO-NG and VE is the same as the relationship be-
tween AO (Depth-first or breadth-first) and VE.

®
Ao
Combined no-goods and look-aheadNo-goods that are 9”9‘
OO ORO
(b)

G OOSGSEOO

generated during search can also participate in the con-
straint propagation of the look-ahead and strengthen the
ability to prune the search-space further. In other words, t ]
graphical model itself is modified during search and this af- Figure 7: GBJ vs. AND/OR search

fects the rest of the look-ahead. It is interesting to nodé¢ th

AO-BF is not able to simulate the same pruned search spadeFS orderings. If the ordering of the OR space is a DFS
as AO-DF in this case because of its breadth-first mannegrdering of the primal graph, it is known [9] that all the
Namely, while AO-DF can discover some no-goods deep irbackjumps are from a variable to its DFS parent. This
the search space because it is a depth-first algorithm, AOneans thahaive AO-DFautomatically incorporates GBJ
BF has no access to these no-goods and cannot use thgwmping-back character.

VSV;FIT'n a conhstrar(t)propia_g:atlon Schéame_tlr?_sr_lal:owlf r Iﬁvelj’Pseudo tree orderings.In the case of pseudo tree order-
i even when AL EXpioits n0-goods within IS look-anea ings that are not DFS-trees, there is a slight difference be-

propagation scheme VE and AO rema_in not comparabletween OR-GBJ and AO-DF and GBJ may sometime per-
Any exg:rple thathQOes not allow effective no-good Ieam'form deeper backjumps than those implicitly done by AO.
Ing can illustrate this. Figure 7a shows a probabilistic model, 7b a pseudo tree
Example 4.3 Consider a constraint problem oven, ~ @nd 7C a chain driving the OR search (top down). If a
variables.  VariablesX,,...,X,_; have the domain deadend is encountered at variable 3, GBJ retreats to 8 (see

{1,2,...,n — 2,x}, made of n-2 integer values and a spe- 7c¢), while naive AO-DF retreats to 1, the pseudo tree par-
ciail 4: valhe. Bétween any pair of the— 1 variables there €Nt When the deadend is encountered at 2, both algorithms

is a not-equal constraint between the integers and equalitP@ckirack to 3 and then to 1. Therefore, in such cases, aug-
between stars. There is an additional variabie, which ~ menting AO with GBJ can provide additional pruning on
has a constraint with each variable, whose values are contOP Of the AND/OR structure. In other words, GBJ on OR
sistent only with the of the other n-1 variables. Clearly if SPace along a pseudo tree is never stronger than GBJ on
the ordering isd = (X1, ..., Xn_1, X»), AO may search AND/OR and it is sometimes weaker.

all the exponential search space over the first 1 vari- GBJ can be applied using an arbitrary ordefor the OR
ables (the inconsistent portion) before it reaches thaf space. The ordering can be used to generate a pseudo
then — th variable. On the other hand, if we apply VE tree. In this case, however, to mimic GBJ énthe AO
starting from then — th variable, we will reveal the only  traversal will be controlled by. In Figure 7d we show an
solution immediately. No constraint propagation, nor no- arbitrary orderd = (8,1,3,5,4,2,7,6) which generates
good learning can help any AO search in this case. the pseudo tree in 7b. When AO search reaches 3, it goes in
a breadth first manner to 5, accordingitdt can be shown

that GBJ in orderl on OR space corresponds to the GBJ-
based AND/OR search based on the associated pseudo tree.
All the backjumps have a one to one correspondence.

(c

-

THEOREM4.4 Given a graphical model with determinism
and a particular look-ahead propagation scheimd H:
1. AO-DF-LAH-NG is better than AO-BF-LAH-NG.
2. VE and AO-DF-LAH-NG are not comparable.

) ) Since VE is not comparable to AO-DF it will remain un-
4.3 The Effect of Graph-Based Backjumping comparable also with AO-DF-GBJ. Note that backjumping

Backjumping algorithms [9] are backtracking search ap-Is not relevant to AO-BF nor to VE. In summary,

plied to the OR space which uses the problem structurerHEORElv|4 51. When the pseudo tree is a DFS tree

to jump back from a degd—end as far baclf as pos§ible_. If&O-DF is identical to AO-DF-GBJ. This is also true when
Graph-based backjumping (GBJ) each variable maintains fhe AND/OR searchree is explored (rather than the CM-

lgrgph-based_mduchd gncefstorbsetlzvhu_:h gnsures tha'_[ nb(? Sg?r'aph). 2. AO-DF-GBJ is superior to AO-DF for general
utions are missed by jumping back to its deepest varia e|'oseudo trees. 3. VE is not comparable to AO-DF-GBJ.
Conflict-directed backjumping [16] is an improved algo-

rithm that computes a more refined induced-ancestor sd@roof. 1. For DFS trees, backjumps go to DFS parent. 2.
that depends on the constraints themselves. Our analys&ese example in Figure 7b. 3. Determinism reveals itself

here is focused on GBJ [9]. differently in reversed orderings. O
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Figure 8: RC d-trees and AND/OR pseudo trees

4.4 Recursive Conditioning and Value Elimination

Recursive Conditioning (RC) [7] defined for belief net-
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