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Abstract

In this paper we compare search and inference in
graphical models through the new framework of
AND/OR search spaces. Specifically, we com-
pare Variable Elimination (VE) and memory-
intensive AND/OR Search (AO) and place al-
gorithms such as graph-based backjumping and
no-good learning, as well asRecursive Condi-
tioning [7] and Value Elimination[2] within the
AND/OR search space.

1 Introduction

It is convenient to classify algorithms that solve reason-
ing problems of graphical models as either search (e.g.,
depth first, branch and bound) or inference (e.g., variable
elimination, join-tree clustering). Search is time exponen-
tial in the number of variables, yet it can be accomplished
in linear memory. Inference exploits the model’s graph
structure and can be accomplished in time and space expo-
nential in the problem’stree-width. When the tree-width
is big, inference must be augmented with search to re-
duce the memory requirements. In the past three decades
search methods were enhanced with structure exploiting
methods. These improvements often require substantial
memory, making the distinction between search and in-
ference fuzzy. Recently, claims regarding the superiority
of memory-intensive search over inference or vice-versa
are made [3]. Our aim is to clarify this relationship and
also to create cross-fertilization using the strengths of both
schemes.

In this paper we compare search and inference in graphi-
cal models through the new framework of AND/OR search
spaces, recently introduced [12]. Specifically, we com-
pare Variable Elimination (VE) against memory-intensive
AND/OR Search (AO), and will place algorithms such
as graph-based backjumping, no-good learning and look-
ahead schemes [9], as well as Recursive Conditioning

[7] and Value Elimination [2] within the AND/OR search
space framework. We show that there is no principled
difference between memory-intensive search restricted to
fixed variable ordering and inference beyond: 1. differ-
ent direction of exploring a common search space (top
down for search vs. bottom-up for inference); 2. different
assumption of control strategy (depth-first for search and
breadth-first for inference). We also show that those differ-
ences have no practical effect, except under the presence of
determinism. Our analysis assumes a fixed variable order-
ing. When variable ordering is dynamic in search, some of
these conclusions may not hold.

Section 2 provides background. Section 3 compares VE
with AO search. Section 4 addresses the effect of advanced
algorithmic schemes and section 5 concludes.

2 Background

2.1 Graphical Models

A graphical model is defined by a collection of functions,
over a set of variables, conveying probabilistic or determin-
istic information, whose structure is captured by a graph.

DEFINITION 2.1 (graphical models)A graphical modelis
a 4-tuple M = 〈X,D,F,⊗〉 where: 1. X =
{X1, . . . ,Xn} is a set of variables; 2.D = {D1, . . . ,Dn}
is a set of finite domains of values; 3.F = {f1, . . . , fr}
is a set of real-valued functions. The scope of functionfi,
denotedscope(fi) ⊆ X, is the set of arguments offi 4.
⊗ifi ∈ {

∏
i fi,

∑
i fi, ./i fi} is a combination operator.

The graphical model represents the combination of all its
functions, namely the set:⊗r

i=1
fi. When the combination

operator is not relevant to the discussion we will denote a
graphical model by a 3-tupleM = 〈X,D,F 〉.

DEFINITION 2.2 (primal graph) The primal graphof a
graphical model is an undirected graph that has variables
as its vertices and an edge connects any two variables that
appear in the scope of the same function.
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Figure 1: Execution of Variable Elimination

Two central graphical models are belief networks and con-
straint networks. Abelief network B = 〈X,D,P 〉 is de-
fined over a directed acyclic graphG = (X,E) and its
functionsPi denotes conditional probability tables (CPTs),
Pi = {P (Xi | pai)}, wherepai is the set ofparentnodes
pointing toXi in G. Common tasks are finding the posterior
probability of some variables given the evidence, or finding
the most probable assignment to all the variables given the
evidence. Aconstraint network R = 〈X,D,C〉 has a
set of constraintsC = {C1, ..., Ct} as its functions. Each
constraint is a pairCi = (Si, Ri), whereSi ⊆ X is the
scope of the relationRi defined overSi, denoting the al-
lowed combination of values. Common tasks are finding a
solution and counting the number of solutions.

We assume that the domains of functions include a zero el-
ement, “0”. Combining (e.g., multiplying) anything with
“0” yields a “0”. The “0” value expresses inconsistent tu-
ples. This is a primary concept in constraint networks but
can also be defined relative to some graphical model as fol-
lows. Each functionfi expresses an implicit flat con-
straint which is a relationRi over its scope that includes
all and only the consistent tuples, namely those that are not
mapped to ”0”. In this paper, a constraint network refers
also to the flat constraints that can be extracted from any
graphical model. When all the assignments are consistent
we say that the graphical model is strictly positive. A par-
tial assignment is consistent if none of its functions evalu-
ate to zero. A solution is a consistent assignment to all the
variables.

We assume the usual definitions ofinduced graphs, in-
duced width, tree-widthandpath-width[9, 1].

2.2 Inference by Variable Elimination

Variable-elimination algorithms [5, 8] are characteristic of
inference methods. Consider a graphical modelG =
〈X,D,F 〉 and an orderingd = (X1,X2, . . . ,Xn). The
orderingd dictates an elimination order for VE, from last
to first. Namely, all functions inF that containXi and do
not contain anyXj for j > i are placed in thebucket ofXi.
Then, buckets are processed fromXn to X1 by eliminating
the bucket variable (combining all functions and removing
the variable by a marginalization) and placing the result-
ing function (also calledmessage) in the bucket of its latest
variable ind. This VE procedure also constructs a bucket

tree, by linking each bucketXi to the one where the re-
sulting function generated in bucketXi is placed, which is
called the parent ofXi.

Example 2.1 Figure 1a shows a belief network. Figure1b
shows the execution of Variable Elimination along ordering
d = (A,B,E,C,D). The buckets are processed fromD to
A. Figure 1c shows the bucket tree.

2.3 AND/OR Search Spaces

The usual way to do search consists of instantiating vari-
ables in turn (we only consider fixed variable ordering). In
the simplest case this defines a search tree, whose nodes
represent states in the space of partial assignments. A
depth-first search (DFS) algorithm searching this space
could run in linear space. If more memory is available,
then some of the traversed nodes can be cached, and re-
trieved when “similar” nodes are encountered. The tradi-
tional search space does not capture the structure of the un-
derlying graphical model. IntroducingAND nodes into
the search space can capture the structure by decomposing
the problem into independent subproblems by conditioning
on values [10, 13]. Since the size of the AND/OR tree may
be exponentially smaller than the traditional search tree,
any algorithm searching the AND/OR space enjoys a better
computational bound. For more details see [4, 12]. A clas-
sical algorithm that explores the AND/OR search space is
Recursive Conditioning [7].

Given a graphical modelM, its AND/OR search space is
based on apseudo tree[13]:

DEFINITION 2.3 (pseudo tree)Given an undirected
graph G = (V,E), a directed rooted treeT = (V,E′)
defined on all its nodes is calledpseudo treeif any arc
of G which is not included inE′ is a back-arc, namely it
connects a node to an ancestor inT .

2.3.1 AND/OR Search Tree

Given a graphical modelM = 〈X,D,F 〉, its primal graph
G and a pseudo treeT of G, the associated AND/OR search
tree, denotedST (M), has alternating levels of AND and
OR nodes. The OR nodes are labeledXi and correspond to
the variables. The AND nodes are labeled〈Xi, xi〉 and cor-
respond to the values in the domains of the variables. The
structure of the AND/OR search tree is based on the under-
lying backbone pseudo treeT . The root of the AND/OR
search tree is an OR node labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled
with assignments〈Xi, xi〉 that are consistent with the
assignments along the path from the root,path(xi) =
(〈X1, x1〉, 〈X2, x2〉, . . . , 〈Xi−1, xi−1〉). Consistency is
well defined for constraint networks. For probabilistic net-
works it is defined relative to the underlying flat constraint
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Figure 2: AND/OR search tree

network derived from the belief network. The children of
an AND node〈Xi, xi〉 are OR nodes labeled with the chil-
dren of variableXi in the pseudo treeT .

The arcs fromXi to 〈Xi, xi〉 are labeled with the appro-
priate combined values of the functions inF that contain
Xi and have their scopes fully assigned. When the pseudo
tree is a chain, the AND/OR search tree coincides with the
regular OR search tree.

Example 2.2 Consider again the belief network in Figure
1a. Figure 2a shows a pseudo tree of its primal graph, to-
gether with the back-arcs (dotted lines). Figure 2b shows
the AND/OR search tree based on the pseudo tree, for bi-
nary{0, 1} valued variables assuming positive functions.

Based on earlier work by [13, 4, 6, 7], it can be shown that:

THEOREM 2.3 Given a graphical modelM and a pseudo
tree T , the size of the AND/OR search treeST is O(n ·
exp(m)) wherem is the depth ofT . A graphical model
that has a tree-widthw∗ has an AND/OR search tree whose
size isO(exp(w∗ · log n)).

DEFINITION 2.4 (backtrack-free) An AND/OR search
tree of a graphical model isbacktrack-freeiff all nodes that
do not root a consistent solution are pruned.

2.3.2 AND/OR Search Graph

The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledunifiable. When unifiable
nodes are merged, the search space becomes a graph. Its
size becomes smaller at the expense of using additional
memory when being traversed. When all unifiable nodes
are merged, a computational intensive task, we get the
uniqueminimal AND/OR graph. Some unifiable nodes can
be identified based on theircontexts[7]. The context of an
AND node〈Xi, xi〉 is defined as the set of ancestors ofXi

in the pseudo tree, includingXi, that are connected (in the
induced primal graph) to descendants ofXi. It is easy to
verify that the context ofXi d-separates [15] the subprob-
lem belowXi from the rest of the network. Thecontext-
minimal AND/OR graph denotedCMT (M), is obtained
by merging all the context unifiable AND nodes. When the
graphical model is strictly positive, it yields thefull context-
minimal graph. Thebacktrack-free context-minimal graph,

0

A

B

0

E C

0 1

1

E C

1

B

0

E C

D

0 1

D

1

E C

D

0 1

D

0 1

Figure 3: Context-minimal AND/OR search graph

BF -CMT , is the context-minimal graph whereall incon-
sistent subtrees are pruned.

Example 2.4 Figure 3 shows the full context-minimal
AND/OR search graph of the problem and pseudo tree from
Figure 2.

Based on earlier work by [4, 12], it can be shown that:

THEOREM 2.5 (size of minimal context graphs)Given a
graphical modelM, a pseudo treeT and w the induced
width ofG along the depth-first traversal ofT ,
1) The size ofCMT (M) is O(n · kw), whenk bounds the
domain size.
2) The context-minimal AND/OR search graph (relative
to all pseudo trees) is bounded exponentially by the tree-
width, while the context-minimal OR search graph is
bounded exponentially by the path-width.

A task over a graphical model (e.g., belief updating, count-
ing) induces a value function for each node in the AND/OR
space. The algorithmic task is to compute the value of the
root. This can be done recursively from leaves to root by
any traversal scheme. When an AO traversal of the search
space uses full caching based on context it actually tra-
verses the context-minimal,CMT , graph. It is this context
minimal graph that allows comparing the execution of AO
against VE.

3 VE vs. AO Search

VE’s execution is uniquely defined by a bucket-tree, and
since every bucket tree corresponds to a pseudo tree, and a
pseudo tree uniquely defines the context-minimal AND/OR
search graph, we can compare both schemes on this com-
mon search space. Furthermore, we choose the context-
minimal AND/OR search graph (CM) because algorithms
that traverse the full CM need memory which is compara-
ble to that used by VE, namely, space exponential in the
tree-width of their pseudo/bucket trees.

Algorithm AO denotes any traversal of the CM search
graph, AO-DF is a depth-first traversal and AO-BF is a
breadth-first traversal. We will compare VE and AO via the
portion of this graph that they generate and by the order of
node generation. The task’s value computation performed
during search adds only a constant factor.
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We distinguish graphical models with or without determin-
ism, namely, graphical models that have some inconsis-
tency vs. those who have none. We will also compare be-
tweenbrute-forceversions of VE and AO as well as those
enhanced by various known features.

We will assume that the task requires the examination of all
solutions, such as belief updating or counting solutions.

3.1 VE vs. AO search When No Determinism

We start with the simplest case in which the graphical
model contains no determinism and the bucket tree (pseudo
tree) is a chain.

3.1.1 OR Search Spaces

Figure 4a shows a Bayesian network. Let’s consider the
orderingd = (D,C,B,A,E) which has the tree-width
w(d) = w∗ = 2. Figure 4b shows the bucket-chain and a
schematic application of VE along this ordering (the bucket
of E is processed first, and the bucket of D last). The buck-
ets include the initial CPTs and the functions that are gen-
erated and sent (as messages) during the processing. Figure
4c shows the bucket tree.

If we use the chain bucket tree as pseudo tree for the
AND/OR search alongd, we get thefull CM-AO graph
given in Figure 5. Since this is an OR space, we can elim-
inate the OR levels as shown. Each level of the graph cor-
responds to one variable. The edges should be labeled with
the product of the values of the functions that have just been
instantiated on the current path. We note on the arc just
the assignment to the relevant variables (e.g., B1 denotes
B = 1 and so on). For example, the edges between C and B
are labeled with the function valuation on(BCD), namely
P (D|B,C), where for each individual edge this function
is instantiated as dictated on the arcs.

AO-DF computes the value (e.g., updated belief) of the
root node by generating and traversing the context-minimal
graph in a depth-first manner and accumulating the par-
tial value (e.g., probabilities) using combination (prod-
ucts) and marginalization (summation). The first two
paths generated by AO-DF are(D0, C0, B0, A0, E0) and
(D0, C0, B0, A0, E1), which allow the first accumulation
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Figure 5: Context-minimal AND/OR search space

of valueh1(A0B0) = P (E0|A0B0) + P (E1|A0B0). AO
subsequently generates the two paths(D0, C0, B0, A1, E0)
and(D0, C0, B0, A1, E1) and accumulates the next partial
valueh1(A1B0) = P (E0|A1B0) + P (E1|A1B0). Subse-
quently it computes the summationh2(B0C0) = P (A0) ·
P (B0|A0) · P (C0|A0) · h1(A0B0) + P (A1) · P (B0|A1) ·
P (C0|A1) ·h1(A1B0). Notice that due to caching each arc
is generated and traversed just once (in each direction). For
example when the partial path(D1, C0, B0) is created, it is
recognized (via context) that the subtree below was already
explored and its compiled value will be reused.

In contrast, VE generates the full context-minimal graph by
layers, from thebottom of the search graph up, in a manner
that can be viewed as dynamic programming or as breadth-
first search on the explicated search graph. VE’s execution
can be viewed as first generating all the edges between E
and A (in some order), and then all the edges between A
and B (in some order), and so on up to the top. We can see
that there are 8 edges between E and A. They correspond
to the 8 tuples in the bucket of E (the function on(ABE)).
There are 8 edges between A and B, corresponding to the
8 tuples in the bucket of A. And there are 8 edges between
B and C, corresponding to the 8 tuples in the bucket of B.
Similarly, 4 edges between C and D correspond to the 4
tuples in the bucket of C, and 2 edges between D and the
rood correspond to the 2 tuples in the bucket of D.

Since the computation is performed from bottom to top,
the nodes of A store the result ofeliminating E (namely
the functionh1(AB) resulting by summing outE). There
are 4 nodes labeled with A, corresponding to the 4 tuples
in the message sent by VE from bucket of E to bucket of
A (the message on(AB)). And so on, each level of nodes
corresponds to the number of tuples in the message sent on
the separator (the common variables) between two buckets.

3.1.2 AND/OR Graphs

The above correspondence between Variable Elimination
and AND/OR search is also maintained in non-chain
pseudo/bucket trees.We refer again to the example in Fig-
ures 1, 2 and 3 and assume belief updating. The bucket
tree in Figure 1c has the same structure as the pseudo tree



in Figure 2. We will show that VE traverses the AND/OR
search in Figure 3 bottom up, while AO-DF traverses the
same space in depth first manner.

AO-DF first sums h3(A0, B0) = P (E0|A0, B0) +
P (E1|A0, B0) and then goes depth first toh1(B0, C0) =
P (D0|B0, C0) + P (D1|B0, C0) and h1(B0, C1) =
P (D0|B0, C1) + P (D1|B0, C1). Then it computes
h2(A0, B0) = (P (C0|A0) · h1(B0, C0)) + (P (C1|A0) ·
h1(B0, C1)). All the computation of AO-DF is precisely
the same as the one performed in the buckets of VE.
Namely,h1 is computed in the bucket ofD and placed in
the bucket ofC. h2 is computed in the bucket ofC and
placed in the bucket ofB, h3 is computed in the bucket of
E and so on, as shown in Figure 1b. All this corresponds
to traversing the AND/OR graph from leaves to root. Thus,
both algorithms traverse the same graph, only the control
strategy is different.

We can generalize both the OR and AND/OR examples,

THEOREM 3.1 (VE and AO are identical) Given a
graphical model having no determinism, and given the
same bucket/pseudo tree VE applied to the bucket-tree is
a (breadth-first) bottom-up search that will explore all
the full CM search graph, while AO-DF is a depth-first
top-down search that explores (and records) the full CM
graph as well.

Breadth-first on AND/OR. Since one important differ-
ence between AO and VE is the order by which they ex-
plore the search space (top-down vs. bottom-up) we wish
to remove this distinction and consider a VE-like algorithm
that goes top-down. One obvious choice is breadth-first
search, yielding AO-BF. That is, in Figure 3 we can process
the layer of variable A first, then B, then E and C, and then
D. Generalbreadth-firstor best-firstsearch of AND/OR
graphs for computing the optimal cost solution subtrees are
well defined procedures. The process involves expanding
all solution subtrees in layers of depth. Whenever a new
node is generated and added to the search frontier the value
of all relevant partial solution subtrees are updated. A well
known Best-first version of AND/OR spaces is the AO*
algorithm [14]. Algorithm AO-BF can be viewed as a top-
down inference algorithm. We can now extend the compar-
ison to AO-BF.

Proposition 1 Given a graphical model with no determin-
ism and a bucket/pseudo tree, VE and AO-BF explore the
same full CM graph, one bottom-up (VE) and the other top-
down; both perform identical value computation.

Terminology for algorithms’ comparison. Let A andB

be two algorithms over graphical models, whose perfor-
mance is determined by an underlying bucket/pseudo tree.

DEFINITION 3.1 (comparison of algorithms) We say
that: 1. algorithmsA and B are identical if for every

graphical model and when given the same bucket-tree
they traverse an identical search space. Namely, every
node is explored byA iff it is explored byB; 2. A is
weakly better thanB if there exists a graphical model and
a bucket-tree, for whichA explores a strict subset of the
nodes explored byB; 3. A is better thanB if A is weakly
better thanB but B is not weakly better thanA; 4. The
relation of ”weakly-better” defines a partial order between
algorithms. A and B are not comparableif they are not
comparable w.r.t to the ”weakly-better” partial order.

Clearly, any two algorithms for graphical models are either
1. identical, 2. one is better than the other, or 3. they are
not comparable. We can now summarize our observations
so far using the new terminology.

THEOREM 3.2 For a graphical model having no determin-
ism AO-DF, AO-BF and VE are identical.

3.2 Dead-Caches and Space Complexity

To make the complete correspondence between VE and
AND/OR search, we can look not only at the computa-
tional effort, but also at the space required. The straightfor-
ward way of doing the caching is to have a table for each
variable. However, some tables might never get cache hits.
We call thesedead-caches, similar to [7]. In the AND/OR
search graph dead-caches are at nodes that have only one
incoming arc. So, we can distinguish between the portion
of the graph that is traversed and the portion that should
be recorded and maintained. AO search needs to record
only nodes that are likely to have additional incoming arcs,
and these nodes can be determined by inspection from the
pseudo tree. Namely, if the context of a node includes that
of its parent, then AO need not store anything for that node,
because it would be a dead-cache.

Avoiding the storage of dead-caches in AO corresponds to
collapsing the subsumed neighboring buckets in the bucket
tree This results in having cache tables of the size of the
separators, rather than the cliques. The computational
(time) savings are within a constant factor from the com-
plexity of solving the largest cluster. The space savings
however can be reduced from being exponential in the size
of the maximal cluster to exponential in the maximal sepa-
rator. Therefore:

Proposition 2 Given a graphical model without determin-
ism, AO search that avoids storing dead-caches is identical
to super-bucket-VE which collapses subsumed neighboring
buckets.

The distinction between the separators size and clique
size as controlling time-space tradeoff is long recognized
[17, 11].This idea can be pushed further to accommodate
flexible time/space tradeoffs within search. Notice that in
contrast to AO-DF, algorithm AO-BF must record all the



Figure 6: CM graphs with determinism: a) AO; b) VE

frontier of the search. But if we do breadth-first search with
some macro assignments (of a few variables at a time) we
can avoid unnecessary caching as well.

3.3 VE vs. AO With Determinism

When the graphical model contains determinism the
AND/OR trees and graphs are dependant not only on the
primal graph but also on the (flat) constraints, namely on
the consistency and inconsistency of certain relationships
(no-good tuples) in each relation. In such cases AO and
VE, may explore different portions of the context-minimal
graphs because the order of variables plays a central role,
dictating where the determinism reveals itself.

Example 3.3 Let’s consider a problem on four variables:
A,B,C,D, each having the domain{1, 2, 3, 4}, and the
constraintsA < B, B < C and C < D. The primal
graph of the problem is a chain. Let’s consider the natural
ordering from A to D, which gives rise to a chain pseudo
tree (and bucket-tree) rooted at A. Figure 6a shows the
full CM graph with determinism generated by AO search,
and Figure 6b the graph generated and traversed by VE
in reverse order. The thick lines and the white nodes are
the ones traversed. The dotted lines and the black nodes
are not explored (when VE is executed fromD, the con-
straint betweenD and C implies thatC = 4 is pruned,
and therefore not further explored). Note that the inter-
section of the graphs explored by both algorithms has a
common subgraph that corresponds to thebacktrack-free
AND/OR context graph, corresponding to the unique solu-
tion (A=1,B=2,C=3,D=4).

As we saw in the example, AO and VE explore different
parts of the inconsistent portion of the full CM. Therefore,
in the presence of determinism, AO-DF and AO-BF are
both un-comparable to VE, as they differ in the direction
they explore the CM space.

THEOREM 3.4 Given a graphical model with determinism,
then AO-DF and AO-BF are identical and both are un-
comparable to VE.

This observation is in contrast with claims of superiority
of one scheme or the other [3], at least for the case when
variable ordering is fixed and no advanced constraint prop-
agation schemes are used and assuming no exploitation of

context independence.

4 Algorithmic Advances and Their Effect

So far we compared brute-force VE to brute-force AO
search. We will now consider the impact of some en-
hancements on this relationship. Clearly, both VE and AO
explore the portion of the context-minimal graph that is
backtrack-free. Thus they can differ only on the portion
that is included in full CM and not in the backtrack-free
CM. Indeed, constraint propagation, backjumping and no-
good recording just reduce the exploration of that portion
of the graph that isinconsistent. Here we compare those
schemes against bare VE and against VE augmented with
similar enhancements whenever relevant.

4.1 VE vs. AO With Look-Ahead

In the presence of determinism AO-DF and AO-BF can nat-
urally accommodate look-ahead schemes which may avoid
parts of the context-minimal search graph using some level
of constraint propagation. It is easy to compare AO-BF
against AO-DF when both use the same look-ahead be-
cause the notion of constraint propagation as look-ahead
is well defined for search and because both algorithms ex-
plore the search space top down. Not surprisingly when
both algorithms have the same level of look-ahead propa-
gation, they explore an identical search space.

We can also augment VE with look-ahead constraint propa-
gation (e.g., unit resolution, arc consistency), yielding VE-
LAH as follows. Once VE-LAH processes a single bucket,
it then applies constraint propagation as dictated by the
look-ahead propagation scheme (bottom-up), then contin-
ues with the next bucket applied over the modified set of
functions and so on. We can show that:

THEOREM 4.1 Given a graphical model with determinism
and given a look-ahead propagation scheme,LAH,
1. AO-DF-LAH and AO-BF-LAH are identical.
2. VE and VE-LAH are each un-comparable against each
of AO-DF-LAH and AO-BF-LAH.

Proof. 1. The search graph is traversed in the same direc-
tion by both AO-DF-LAH and AO-BF-LAH, so the look-
ahead has the same effect for both. 2. Determinism can
still impact differently in different variable orderings. 2

4.2 The Effect of Graph-Based No-Good Learning

AO search can be augmented with no-good learning [9].
Graph-based no-good learning means recording that some
nodes are inconsistent based on their context. This is au-
tomatically accomplished when we explore the CM graph
which actually amounts to recording no-goods and goods
by their contexts. Therefore AO-DF is identical to AO-BF



and both already exploit no-goods, we get that (AO-NG de-
notes AO with graph-based no-good learning):

THEOREM 4.2 For every graphical model the relationship
between AO-NG and VE is the same as the relationship be-
tween AO (Depth-first or breadth-first) and VE.

Combined no-goods and look-ahead.No-goods that are
generated during search can also participate in the con-
straint propagation of the look-ahead and strengthen the
ability to prune the search-space further. In other words, the
graphical model itself is modified during search and this af-
fects the rest of the look-ahead. It is interesting to note that
AO-BF is not able to simulate the same pruned search space
as AO-DF in this case because of its breadth-first manner.
Namely, while AO-DF can discover some no-goods deep in
the search space because it is a depth-first algorithm, AO-
BF has no access to these no-goods and cannot use them
within a constraint propagation scheme in shallower levels.
Still even when AO exploits no-goods within its look-ahead
propagation scheme VE and AO remain not comparable.
Any example that does not allow effective no-good learn-
ing can illustrate this.

Example 4.3 Consider a constraint problem overn
variables. VariablesX1, . . . ,Xn−1 have the domain
{1, 2, . . . , n − 2, ∗}, made of n-2 integer values and a spe-
cial ∗ value. Between any pair of then − 1 variables there
is a not-equal constraint between the integers and equality
between stars. There is an additional variableXn which
has a constraint with each variable, whose values are con-
sistent only with the∗ of the other n-1 variables. Clearly if
the ordering isd = (X1, . . . ,Xn−1,Xn), AO may search
all the exponential search space over the firstn − 1 vari-
ables (the inconsistent portion) before it reaches the∗ of
the n − th variable. On the other hand, if we apply VE
starting from then − th variable, we will reveal the only
solution immediately. No constraint propagation, nor no-
good learning can help any AO search in this case.

THEOREM 4.4 Given a graphical model with determinism
and a particular look-ahead propagation schemeLAH:
1. AO-DF-LAH-NG is better than AO-BF-LAH-NG.
2. VE and AO-DF-LAH-NG are not comparable.

4.3 The Effect of Graph-Based Backjumping

Backjumping algorithms [9] are backtracking search ap-
plied to the OR space which uses the problem structure
to jump back from a dead-end as far back as possible. In
Graph-based backjumping (GBJ) each variable maintains a
graph-based induced ancestor set which ensures that no so-
lutions are missed by jumping back to its deepest variable.

Conflict-directed backjumping [16] is an improved algo-
rithm that computes a more refined induced-ancestor set
that depends on the constraints themselves. Our analysis
here is focused on GBJ [9].

4 61

3 2 7 5

8

2 7

1

4

3 5

6

8

(a)

(b) (c)

2

6

1

4

3

5

7

8

(d)

2

6

1

4

3

5

7

8

Figure 7: GBJ vs. AND/OR search

DFS orderings. If the ordering of the OR space is a DFS
ordering of the primal graph, it is known [9] that all the
backjumps are from a variable to its DFS parent. This
means thatnaive AO-DFautomatically incorporates GBJ
jumping-back character.

Pseudo tree orderings.In the case of pseudo tree order-
ings that are not DFS-trees, there is a slight difference be-
tween OR-GBJ and AO-DF and GBJ may sometime per-
form deeper backjumps than those implicitly done by AO.
Figure 7a shows a probabilistic model, 7b a pseudo tree
and 7c a chain driving the OR search (top down). If a
deadend is encountered at variable 3, GBJ retreats to 8 (see
7c), while naive AO-DF retreats to 1, the pseudo tree par-
ent. When the deadend is encountered at 2, both algorithms
backtrack to 3 and then to 1. Therefore, in such cases, aug-
menting AO with GBJ can provide additional pruning on
top of the AND/OR structure. In other words, GBJ on OR
space along a pseudo tree is never stronger than GBJ on
AND/OR and it is sometimes weaker.

GBJ can be applied using an arbitrary orderd for the OR
space. The orderingd can be used to generate a pseudo
tree. In this case, however, to mimic GBJ ond, the AO
traversal will be controlled byd. In Figure 7d we show an
arbitrary orderd = (8, 1, 3, 5, 4, 2, 7, 6) which generates
the pseudo tree in 7b. When AO search reaches 3, it goes in
a breadth first manner to 5, according tod. It can be shown
that GBJ in orderd on OR space corresponds to the GBJ-
based AND/OR search based on the associated pseudo tree.
All the backjumps have a one to one correspondence.

Since VE is not comparable to AO-DF it will remain un-
comparable also with AO-DF-GBJ. Note that backjumping
is not relevant to AO-BF nor to VE. In summary,

THEOREM 4.5 1. When the pseudo tree is a DFS tree
AO-DF is identical to AO-DF-GBJ. This is also true when
the AND/OR searchtree is explored (rather than the CM-
graph). 2. AO-DF-GBJ is superior to AO-DF for general
pseudo trees. 3. VE is not comparable to AO-DF-GBJ.

Proof. 1. For DFS trees, backjumps go to DFS parent. 2.
See example in Figure 7b. 3. Determinism reveals itself
differently in reversed orderings. 2
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Figure 8: RC d-trees and AND/OR pseudo trees

4.4 Recursive Conditioning and Value Elimination

Recursive Conditioning (RC) [7] defined for belief net-
works is based on the divide and conquer paradigm. RC
instantiates variables with the purpose of breaking the net-
work into independent subproblems, on which it can recurs
using the same technique. The computation is driven by a
data-structure calleddtree, which is a full binary tree, the
leaves of which correspond to the network CPTs.

It can be shown that RC explores an AND/OR space. Con-
sider the example in Figure 8, which shows: (a) a belief net-
work; (b) and (c), two dtrees and the corresponding pseudo
trees for the AND/OR search. It can also be shown that the
context of the nodes in RC is identical to that in AND/OR
and therefore equivalent caching schemes can be used.

Value Elimination [3] is a recently developed algorithm
for Bayesian inference. It was already explained in [3] that,
under static variable ordering, there is a strong relation be-
tween Value Elimination and VE. We can therefore derive
that Value Elimination also explores an AND/OR space un-
der static variable orderings.

5 Summary and Conclusions

The paper compares search and inference in graphical mod-
els through the new framework of AND/OR search spaces.
We show that there is no principled difference between
memory-intensive search with fixed variable ordering and
inference beyond: 1. different direction of exploring a
common search space (top down for search vs. bottom-
up for inference); 2. different assumption of control strat-
egy (depth-first for search and breadth-first for inference).
We also show that those differences occur only in the pres-
ence of determinism. We show the relationship between
algorithms such as graph-based backjumping and no-good
learning [9], as well as Recursive Conditioning [7] and
Value Elimination [2] within the AND/OR search space.
AND/OR search spaces can also accommodate dynamic
variable and value ordering which can affect algorithmic
efficiency significantly. Variable Elimination and general
inference methods however require static variable ordering.
This issue will be addressed in future work.
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