
Towards Parallel Search for Optimization in Graphical Models

Lars Otten and Rina Dechter
Bren School of Information and Computer Sciences

University of California, Irvine
{lotten,dechter}@ics.uci.edu

Abstract

We introduce a strategy for parallelizing a state-of-the-art se-
quential search algorithm for optimization on a grid of com-
puters. Based on the AND/OR graph search framework, the
procedure exploits the structure of the underlying problem
graph. Worker nodes concurrently solve subproblems that are
generated by a single master process. Subproblem generation
is itself embedded into an AND/OR Branch and Bound algo-
rithm and dynamically takes previous subproblem solutions
into account. Drawing upon the underlying graph structure,
we provide some theoretical analysis of the parallelization pa-
rameters. A prototype has been implemented and we present
promising initial experimental results on genetic haplotyping
and Mastermind problem instances, at the same time outlin-
ing several open questions.

1 Introduction
The practical relevance of graphical models like constraint
satisfaction problems or Bayesian networks has evolved
greatly in the past and is still increasing. The concepts have
been successfully applied to areas as diverse as digital circuit
design and verification, earth observation satellite schedul-
ing, medical diagnosis, and human genetic analysis. This
has driven research in the area and various algorithmic im-
provements have been made over the years.

Because these problems are typically NP-hard, however,
many relevant problem instances remain infeasible, and even
harder ones are continually introduced. With today’s avail-
ability and pervasiveness of inexpensive, yet powerful com-
puters, connected through local networks or the Internet, it
is only natural to “split” these complex problems and exploit
a multitude of computing resources in parallel, which is at
the core of the field of distributed and parallel computing.

This paper puts optimization for general graphical models
into this parallelization context. We will specifically focus
on AND/OR Branch and Bound depth-first search, a state-
of-the-art algorithm which exploits independencies within
the search space and caches identical subproblems (Mari-
nescu & Dechter 2009). While such schemes were demon-
strated to solve harder and larger problems than ever before,
they may have reached their limits within a single-processor
framework due to their memory restrictions and the inherent
exponential complexity of these tasks.

Copyright c© 2009, authors listed above. All rights reserved.

The idea of parallelized Branch and Bound is not new (see
for instance (Gendron & Crainic 1994)). The novelty in our
work is in investigating parallelism for Bayesian networks
and weighted constraint problems, thus taking into consid-
eration the structural properties of the underlying graph.

In this paper, we show how problem decomposition spe-
cific to graphical models, using the concept of AND/OR
search spaces, can be exploited for parallel processing; we
argue how the process of generating subproblems for paral-
lelization can itself be accomplished through an AND/OR
Branch and Bound procedure, where subproblem solutions
are used as bounds for pruning. On the other hand, we
demonstrate how the notion of caching (to avoid redundant
computations) is compromised, since the exchange of infor-
mation across subproblems is not possible in the assumed
grid computation framework. We develop a metric to quan-
tify these redundancies, based on the underlying graph struc-
ture of a given problem.

Subsequently, we provide results of our initial empir-
ical evaluation on genetic haplotyping and Mastermind
problems, which are promising and show that our parallel
scheme, although still in its early stages, can greatly im-
prove solution times when applied to complex problems. In
conjunction with our theoretic analysis, however, the results
also point to a number of issues and open problems which
will be the subject of future work.

The paper is organized as follows: Section 2 provides nec-
essary definitions and concepts, while in Section 3 we detail
our parallelized AND/OR Branch and Bound scheme. Sec-
tion 4 analytically investigates redundancy issues and pro-
vides metrics for the parallel search space as a function of
the parallelization frontier. Section 5 presents empirical re-
sults and analysis, before Section 6 concludes.

2 Background
We assume the following basic definitions:
DEFINITION 1 (graphical model) A graphical modelis gi-
ven as a set of variablesX = {X1, . . . ,Xn}, their respec-
tive finite domainsD = {D1, . . . ,Dn}, a set of cost func-
tions F = {f1, . . . , fm}, each defined over a subset ofX
(the function’sscope), and a combination operator (typi-
cally sum, product, or join) over functions. Together with a
marginalization operator such asminX andmaxX we ob-
tain a reasoning problem.

For instance, aweighted constraint satisfactionproblem is
typically expressed through a set of cost functions over the
variables, with the goal of finding the minimum of the sum
over these costs. In the area of probabilistic reasoning, the
most probable explanationtask over a Bayesian network is
defined as maximizing the product of the probabilities.

DEFINITION 2 (primal graph) Theprimal graphof a gra-
phical model is an undirected graph,G = (X,E) . It has
the variables as its vertices and an edge connecting any two
variables that appear in the scope of the same function.

Figure 1(a) depicts the primal graph of an example problem
with six variables,A,B,C,D,E, F .

DEFINITION 3 (induced graph, induced width) Given an
undirected graphG and an orderingd = X1, . . . ,Xn of its
nodes, the width of a node is the number of neighbors that
precede it ind. The induced graphG′ of G is obtained as
follows: from last to first ind, each node’s preceding neigh-
bors are connected to form a clique (where new edges are
taken into account when processing the remaining nodes).
Theinduced widthw∗ is the maximum width over all nodes
in the induced graph along orderingd .

The induced graph for the example problem along ordering
d = A,B,C,D,E, F is depicted in Figure 1(b), with two
new induced edges,(B,C) and(B,E). Its induced width is
2. Note that different orderings will vary in their implied in-
duced width; finding an ordering of minimal induced width
is known to be NP-hard, in practice heuristics likeminfill are
used to obtain approximations.

2.1 AND/OR Search Spaces
The concept of AND/OR search spaces has recently been
introduced as a unifying framework for advanced algorith-
mic schemes for graphical models to better capture the struc-
ture of the underlying graphical model (Dechter & Mateescu
2007). Its main virtue consists in exploiting conditional in-
dependencies between variables, which can lead to exponen-
tial speedups. The search space is defined using apseudo
tree, which captures problem decomposition:

DEFINITION 4 (pseudo tree) Given an undirected graph
G = (X,E), a pseudo treeof G is a directed, rooted tree
T = (X,E′) with the same set of nodesX, such that ev-
ery arc ofG that is not included inE′ is a back-arc inT ,
namely it connects a node inT to an ancestor inT . The
arcs inE′ may not all be included inE .

See (Dechter & Mateescu 2007; Marinescu & Dechter
2009) for details on how to generate pseudo trees.

AND/OR Search Trees. Given a graphical model instance
with variablesX and functionsF , its primal graph(X,E) ,
and a pseudo treeT , the associatedAND/OR search tree
consists of alternating levels of OR and AND nodes. OR
nodes are labeledXi and correspond to the variables of the
graphical model. AND nodes are labeled〈Xi, xi〉 , or just
xi and correspond to the values of the OR parent’s variable.
The structure of the AND/OR search tree is based on the
underlying pseudo treeT : The root of the AND/OR search
tree is an OR node labeled with the root ofT . The children

(a) (b) (c)

(d)

(e)

Figure 1: Example primal graph with six variables, its in-
duced graph along orderingd = A,B,C,D,E, F , a cor-
responding pseudo tree, the resulting AND/OR search tree,
and the context-minimal AND/OR search graph.

of an OR nodeXi are AND nodes labeled with assignments
〈Xi, xi〉 that are consistent with the assignments along the
path from the root; the children of an AND node〈Xi, xi〉 are
OR nodes labeled with the children ofXi in T , representing
conditionally independent subproblems. It was shown that,
given a pseudo treeT of heighth , the size of the AND/OR
search tree based onT is O(n · kh), wherek bounds the
domain size of variables (Dechter & Mateescu 2007).

AND/OR Search Graphs. In an AND/OR search tree,
different nodes may root identical subproblems. These
nodes can be merged, yielding anAND/OR search graph
of smaller size, at the expense of using additional memory
during search. Some mergeable nodes can be identified by
theircontexts:

DEFINITION 5 (context) Given the pseudo treeT of an
AND/OR search space, the context of an OR nodeXi is the
set of ancestors ofXi in T , that are connected in the primal
graph toXi or its descendants (inT).

The context ofXi separates the subproblem belowXi

from the rest of the network. Merging all context-mergeable
nodes in the AND/OR search tree yields thecontext minimal
AND/OR search graph (Dechter & Mateescu 2007).

PROPOSITION6 (Dechter & Mateescu 2007) Given a
graphical model instance, its primal graphG, and a pseudo
tree T , the size of the context-minimal AND/OR search
graph isO(n · kw∗

) , wherew∗ is the induced width of G
over a depth-first traversal ofT andk again bounds the do-
main size.

EXAMPLE 7 Figure 1(c) depicts a pseudo-tree extracted
from the induced graph in Figure 1(b) and Figure 1(d) shows
the corresponding AND/OR search tree. Merging nodes
based on their context yields the context-minimal AND/OR
search graph in Figure 1(e). Note that the AND nodes forB
have two children each, representing independent subprob-
lems and thus demonstrating problem decomposition. Fur-
thermore, the OR nodes forD (with context{B,C}) andF
(context{B,E}) have two edges converging from the AND
level above them, signifying caching.

Weighted AND/OR Search Graphs. Given an AND/OR
search graph, each edge from an OR nodeXi to an AND
nodexi can be annotated byweightsderived from the set
of cost functionsF in the graphical model: the weight
l(Xi, xi) is the sum of all cost functions whose scope in-
cludesXi and is fully assigned along the path from the root
to xi, evaluated at the values along this path. Furthermore,
each node in the AND/OR search graph can be associated
with a value: the valuev(n) of a noden is the minimal
solution cost to the subproblem rooted atn, subject to the
current variable instantiation along the path from the rootto
n . v(n) can be computed recursively using the values ofn’s
successors (Dechter & Mateescu 2007).

2.2 AND/OR Branch and Bound
AND/OR Branch and Bound is a state-of-the-art algorithm
for solving optimization problems over graphical models.
Assuming a minimization task, it traverses the context-
minimal AND/OR graph in a depth-first manner while keep-
ing track of a current upper bound on the optimal solution
cost. It interleaves forward node expansion with a backward
cost revision or propagation step that updates node values
(capturing the current best solution to the subproblem rooted
at each node), until search terminates and the optimal solu-
tion has been found.

Each noden in the search graph has an associated heuris-
tic valueh(n) that underestimatesv(n). The algorithm can
also compute an upper bound onv(n) based on the portion
of the search space belown that has already been solved:
the upper boundub(n) on v(n) is the current minimal cost
of the solution subtree rooted atn. Upon expanding a node
n in the search space, if for any of its ancestorsm along the
path to the root we haveh(m) > ub(m), the algorithm can
safely prunen .

After expanding a noden, AND/OR Branch and Bound
recursively moves upwards in the search space, fromn to-
wards the root, updating node values along the way: OR
nodes revise their value by minimization over the values of
their AND children, while AND nodes employ the combi-
nation operator of the graphical model – in a belief network,
for instance, the child OR node values correspond to condi-
tional probabilities and are multiplied.

Note that the heuristic estimateh(n) can also guide the
exploration process and, for instance, suggest node order-
ings for the children of an OR node, thereby expanding the
more “promising” nodes first.

Mini-Bucket Heuristics. The primary heuristich(n) that
we use in our experiments is the Mini-Bucket heuristic. It is
based on Mini-Bucket elimination, which is an approximate
variant of a variable elimination scheme and computes ap-
proximations to reasoning problems over graphical models
(Dechter & Rish 2003). It was shown that the intermediate
functions generated by the Mini-Bucket algorithm MBE(i)
can be used to derive a heuristic function that underestimates
the minimal cost solution to a subproblem in the AND/OR
search graph (Marinescu & Dechter 2009).

3 Parallelizing AND/OR Search
We will now describe our scheme for parallelizing AND/OR
branch and bound search to optimally solve a graphical
model reasoning problem. The parallel architecture we as-
sume is very simple and rather restrictive. We operate on a
computational grid, a group of independent computer sys-
tems that are connected over some network. The comput-
ing nodes are assumed to be organized in amaster-worker
hierarchy, where themaster node runs a central process
which coordinates theworkers. It is further assumed that the
worker nodes cannot communicate with each other, which is
often the case in practical grid environments.

DEFINITION 8 (start pseudo tree, parallelization frontier)
Given an undirected graphG = (X,E), a directed rooted
treeTc = (Xc, Ec) , whereXc ⊂ X, is a start pseudo tree
if it has the same root as, and is a subgraph of some pseudo
tree ofG. Given a start pseudo treeTc , we refer to the set
of variables corresponding to the leaf nodes ofTc as the
parallelization frontier.

Given a reasoning problem over a graphical model in-
stance and a start pseudo treeTc, a straightforward approach
to parallelize the search process is as follows:

• The master process begins exploring its master search
space through AND/OR graph search guided by the start
pseudo treeTc . It stops at AND nodes that correspond to
assignments to variables in the parallelization frontier.

• Each OR child of these terminal AND nodes represents
a conditioned subproblem, which the master process sub-
mits to a worker for concurrent solving.

• Worker nodes solve their assigned subproblems in parallel
by sequential AND/OR Branch and Bound graph search
and transmit the optimal subproblem solution back to the
master process.

• The master collects the solutions from the worker nodes
and combines them to obtain the overall solution.

EXAMPLE 9 Consider again the AND/OR search graph in
Figure 1(e). If we pick the simple start pseudo tree where
B is the child ofA, we can illustrate the parallel scheme
through Figure 2: The search space of the master process
is marked in gray and comprises the OR and AND nodes

Figure 2: Schematic application of the parallelization
scheme to the example problem from Figure 1. We pick a
start pseudo tree whereB is the child ofA , which yields the
master search space marked in gray and eight independent
subproblems.

for variablesA andB. Each of the OR nodes for variables
C and E represents one of eight independent subproblems
that will be solved by worker nodes. Note that the paral-
lelization introduces some redundancy in the subproblems
that was eliminated by caching in the unconditioned search
space from Figure 1(e) – namely, the number of nodes forD
andF has doubled.

It is worth pointing out that this approach is closely re-
lated to AND/OR cutset conditioning (Mateescu & Dechter
2005), which improves upon classical cutset conditioning
(Pearl 1988; Dechter 1990) by exploiting the same notion
of a start pseudo tree.

For our implementation we assume that the number of
workers on the grid is a constantp and pass this number
as a parameter to the master process, which will initially
generate just the firstp subproblems. Further ones are only
generated when workers finish computing and become avail-
able again. As noted, the worker nodes execute AOBB(i),
which stands for sequential AND/OR Branch and Bound
graph search with a Mini-Bucket heuristic, augmented to al-
low conditioning on specific variables (to define a subprob-
lem).

3.1 Master Process Details
The master process performs AND/OR Branch and Bound
on the master search space along the start pseudo treeTc . In
particular, every time the master resumes its search proce-
dure to generate the next subproblem, previously received
subproblem solutions will be used as bounds in order to
prune parts of the master search space. Furthermore, the
heuristic value of nodes can be used to define a hierar-
chy over the respective subproblems and process the more
“promising” ones first.

An outline of the master process is given in the pseudo
code of Algorithms 1 and 2. As a Branch and Bound
algorithm it implements node expansion and propagation,
which have been laid out as two concurrent subprocedures
(“threads”).

Exploration Thread. The main thread in Algorithm 1 ex-
plores the AND/OR graph in a depth-first manner guided
by the start pseudo treeTc . Upon expansion of a noden

Algorithm 1 Main exploration thread in master process
Parameters: Reasoning problemP, start pseudo treeTc with root

X0, max. number of workersp
Output: optimal solution toP
1: stack⇐ {X0} // root OR node
2: workers⇐ 0 // shared counter
3: fork auxiliary propagation thread // see Algorithm 2
4: while (stack6= ∅)
5: if (workers== p)
6: wait(workers< p)
7: n ⇐ stack.pop()
8: for (m in ancestors(n)) // go fromn to root
9: if (h(m) > ub(m))

10: v(n) ⇐ ∞ // dead end, prune
11: goto line 4
12: if (n is AND node, denoten = 〈Xi, a〉)
13: for (Xj in childrenTc(Xi)) // pseudo tree children
14: stack.push(Xj) // child OR nodes
15: else // n is OR node, denoten = Xi

16: if (Xi is leaf node inTc)
17: submit subproblem underXi to grid
18: workers⇐ workers+1 // increase shared counter
19: else // Xi is not leaf node inTc

20: for (xi in domain(Xi))
21: stack.push(〈Xi, xi〉) // child AND nodes
22: wait(workers== 0)
23: terminate auxiliary propagation thread
24: return v(X0) // final value of root node is solution

Algorithm 2 Propagation thread in master process
1: while (true) // will be terminated externally
2: wait for next subproblem solution from a worker node
3: c′ ⇐ optimal solution received from worker
4: n ⇐ root node for subproblem in master search space
5: v(n) ⇐ c′ // store optimal solution
6: for (m in ancestors(n)) // go fromn to root
7: if (m is OR nodeXi)
8: v(m) ⇐ min{v(xi) + l(Xi, xi)|xi ∈ children(m)}
9: else // m is AND node〈Xi, xi〉

10: v(m) ⇐ combine{v(Xj) | Xj ∈ children(m)}
11: workers⇐ workers−1 // decrease shared counter

it consults a heuristic functionh(n) to make pruning deci-
sions (line 9), where the computation of the upper bound
ub(m) takes into account subproblem solutions received
from worker nodes so far. Exploration is halted when an
OR node corresponding to a leaf ofTc is expanded. The
master then submits the respective subproblem, given by the
subproblem root variable and its context instantiation, tobe
solved by a worker node.
Propagation Thread. An auxiliary, concurrent thread in-
side the master process collects and processes subproblem
solutions from the worker nodes (Algorithm 2). Upon re-
ceipt of a solved subproblem, in lines 3-5 the subproblem
solution is assigned as the value of the respective node of the
master search space (it will thereby be used for future prun-
ing decisions by the exploration thread). Then the informa-
tion is recursively propagated upwards in the search space
towards the root (lines 6-10), updating node values as de-

scribed previously, identical to sequential AND/OR Branch
and Bound: OR nodes minimize over their AND childrens’
values, while AND nodes combine the values of their OR
children by the graphical model combination operator (for
instance, multiplication in Bayesian networks).

Since these two threads concurrently access the master
search space, proper synchronization and locking mecha-
nisms have to be put in place. Furthermore, access to the
shared variableworkersneeds to enclosed in atomic blocks
of operations. Details have been omitted from the pseudo
code for reasons of clarity.

4 Choosing the Parallelization Frontier
A central issue is how to pick the start pseudo treeTc (and
thereby the parallelization frontier), which in Algorithm1
is provided as input. This will determine the search space
within the master as well as the number, size, and complex-
ity of subproblems assigned to the workers. If one picks the
start pseudo tree too small, it will result in only few sub-
problems, which might still be very complex and yield low
parallel granularity. On the other hand, if the start pseudo
tree is too large, many small and easy subproblems will be
generated, which will entail a significant overhead in terms
of relatively expensive grid communication.

We experimented with using the induced width of each
subproblem as a parameter to characterize and predict the
subproblem complexity: nodes are added to the start pseudo
tree as long as the subproblem induced width is above a set
bound. In practice, however, the asymptotic nature of the
induced width as a bound turned out to be not fine-grained
enough: varying the induced width limit by one often im-
plied a significant change in the depth of the parallelization
frontier and in the practical subproblem complexity.

4.1 Quantifying Redundancy
To facilitate a more analytical approach, we observe that the
choice of parallelization frontier can introduce varying de-
grees of redundancy, which we will try to capture by using
graphical model properties. Specifically, the issue lies in
identical subproblems, which would have been solved only
once in non-parallelized AND/OR graph search (because of
caching, cf. Examples 7 and 9).

We next develop expressions that characterize the size of
the search space resulting from placing the parallelization
frontier at a fixed depthd . Even though a more flexible
choice of a frontier with varying depth could be beneficial
in practice, our hope is that we can shed light on various
aspects impacting the effectiveness of parallelization.

In the following we assume a pseudo treeT for a graph-
ical model withn nodes corresponding to variablesX =
{X1, . . . ,Xn}, each of which has domain sizek . Let Xi

be an arbitrary variable inX , thenh(Xi) is the depth of
Xi in T , where the root ofT has depth 0 by definition;
h := maxi h(Xi) is the height ofT . Lj := {Xi ∈
X |h(Xi) = j} is the set of variables at depthj in T . For
every variableXi , we denote byΠ(Xi) the set of ancestors
of Xi along the path from the root node toXi in T , and for
j <h(Xi) we defineπj(Xi) as the ancestor ofXi at depthj
along the path from the root inT .

By context(Xi) we denote the set of variables in the con-
text ofXi with respect toT (see Definition 5), and as before
w(Xi) := | context(Xi)| is thewidth of Xi .

DEFINITION 10 (conditioned context, conditioned width)
Given a node Xi and j < h(Xi), contextj(Xi)
denotes the conditioned context of Xi when plac-
ing the parallelization frontier at levelj , namely,
contextj(Xi) := context(Xi) \ Π(πj(Xi)) = {X ′ ∈
context(Xi) |h(X ′) ≥ j} . The conditioned widthof
variableXi is then defined as:

wj(Xi) := | contextj(Xi) | for j < h(Xi)

The number of AND nodes in the AND/OR context minimal
graph is then bounded by:

SAO =

n∑

i=1

kw(Xi)+1 =

h∑

j=0

∑

X′∈Lj

kw(X′)+1 (1)

This is because, by virtue of subproblem caching, each vari-
ablex cannot contribute more AND nodes to the context-
minimal search space than the number of assignments to its
context (times its own domain size), which iskw(x)+1.

Again we assume that fix the parallelization frontier at
depthd , i.e., condition up to depthd . Since caching is not
possible across subproblems that are solved independently,
we develop an expression that quantifies the redundancy in-
troduced and gives the overall size of the conditioned search
space.

THEOREM 11 With the parallelization frontier at depthd,
the overall number of AND nodes in the master search space
and all conditioned subproblems is bounded by:

SAO(d) =
d∑

j=0

∑

X′∈Lj

kw(X′) + 1

+

h∑

j=d+1

∑

X′∈Lj

kw(πd(X′)) + wd(X′) + 1 (2)

Proof. The elements of the first sum overj = 0, . . . , d re-
main unchanged from Expression 1, since levels0 through
d are still subject to full caching. We then note that the vari-
ables inLd are those rooting the subproblems that will be
solved by the worker nodes. For a given subproblem root
variableX̂ ∈ Ld we can compute the number of possible
context instantiations askw(X̂), expressing how many dif-
ferent subproblems rooted at̂X will be generated. For a
variableX ′ that is a child ofX̂ in T (i.e.,πd(X

′)= X̂), the
contribution to the search space within a single subproblem
is kwd(X′)+1, based on its conditioned widthwd(X

′). The
overall contribution ofX ′, across all subproblems, is there-
fore kw(X̂) · kwd(X′)+1 = kw(πd(X′))+wd(X′)+1 ; summing
this over all variables at depth greater thand yields the sec-
ond half of Expression 2. 2

Observe thatSAO(0) = SAO(h) = SAO . Ford = 0 the
entire problem is given to a single worker node, whiled = h
implies we solve the problem centrally in the master node.

EXAMPLE 12 Going back to Example 9, consider variable
D. We haveh(D) = 3 and context(D) = {B,C} with
w(D) = 2 . Since the cutoff level isd = 2, we need to con-
siderπ2(D) = C andcontext(C) = {A,B} , which yields
context2(D) = {C} with conditioned widthw2(D) = 1 .
Given domain sizek = 2, the overall contribution of AND
nodes from variableD in the conditioned search space is
thereforekw(π2(D))+w2(D)+1 = 22+1+1 = 16 . Iterating
over all variables yieldsSAO(2) = 54, matching Figure 2.
Contrasting this withSAO = 38 (cf. Figure 1(e)) highlights
the redundancy introduced in this case.

Parallel Search Space. SAO(d) does not account for any
parallelism in solving the subproblems; rather, we need a
notion of parallel search space size, where nodes that are
processed in parallel are only counted once. An approxima-
tion of this can be obtained by simply dividing the second
summand ofSAO(d) by the number of worker nodesp :

COROLLARY 13 The number of AND nodes in the parallel
search space explored byp workers after parallelizing at
depthd is:

PS
p
AO(d) =

d∑

j=0

∑

X′∈Lj

kw(X′) + 1

+
1

p

h∑

j=d+1

∑

X′∈Lj

kw(πd(X′)) + wd(X′) + 1 (3)

As a function ofd, PS
p
AO(d) can guide the parallelization

strategy. This approach, however, turns out to be not power-
ful enough, as evident from the results in the next section.

5 Implementation & Results
We implemented the parallel scheme in C++ on top of the
Condorgrid workload distribution software package (Thain,
Tannenbaum, & Livny 2005), which we use on a dedicated
grid via the “vanilla” universe, i.e., without checkpointing,
rescheduling and other advanced Condor features. One sub-
mits a job to the grid by specifying an executable file and
its input. Condor then selects a suitable worker, transfers
the required files, and initiates execution. The Condor sys-
tem also provides fault tolerance in case of node failures,
for instance. Upon completion the results are automatically
transmitted back to the submitter. Note that communication
between workers or any concept of shared memory is not
possible. For our experiments we used a dedicated Condor
pool with up to 20 nodes (of which one was used by the
master process). Each node has at least 3 GB of memory
and varies in CPU speed from 2.33 to 3.0 GHz.

5.1 Empirical Evaluation
We ran experiments on a set of so-called pedigree networks
from the area of human genetic analysis, specifically haplo-
typing problems1. These can be translated into a most prob-
able explanation task (MPE) over a Bayesian network (cf.

1available for download at http://graphmod.ics.uci.edu/

Table 1: Results on relatively simple pedigree instances.
Sequential performance is compared against the parallel
scheme withp = 5 workers and varying cutoff depthd.

d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

inst. n k w h d∗ Ts Tp Tp Tp Tp Tp Tp Tp Tp Tp

ped1 298 4 15 48 0 1 34 10 30 9 9 9 43 29 30
ped20 387 5 22 60 2 124 134 74 54 64 137 354 575 1,640 2,717
ped23 309 5 25 51 0 3 29 48 79 95 111 154 148 211 372
ped30 1015 5 21 108 0 209 219 220 179 119 132 189 272 530 1,039
ped33 581 4 28 98 2 73 82 89 74 51 71 73 94 233 415
ped37 726 5 21 56 0 11 41 39 98 85 69 151 149 436 1,297
ped38 581 5 17 69 26 681 702 709 657 627 456 372 394 554 768
ped39 953 5 21 76 0 121 134 109 77 108 108 325 551 1,586 3,160
ped50 478 6 17 47 1 7 39 54 95 115 115 177 339 643 1,089

Table 2: Results for parallelized AND/OR Branch and
Bound on very hard pedigree instances. The parallel scheme
was run withp = 15 workers and varying cutoff depthd.
(Timeout 24 hours, not all combinations tested.)

d=5 d=6 d=7 d=8 d=9 d=10 d=11

inst. n k w h d∗ Ts Tp Tp Tp Tp Tp Tp Tp

ped7 1068 4 32 90 0 19,114 8,281 4,827 3,236 3,868 5,437 4,883 7,800
ped13 1077 3 32 102 0 5,961 892 743 881 1,544 2,622
ped19 793 5 25 98 1 time 34,900 32,372 33,280 45,720 53,955
ped31 1183 5 30 85 1 34,247 28,799 19,919 10,917 7,778 13,268
ped41 1062 5 33 100 1 78,040 18,528 11,438 8,693 10,486 12,466 14,798
ped51 1152 5 39 98 2 time time 84,816 60,879

(Fishelson, Dovgolevsky, & Geiger 2005)) or, by moving to
the log domain, a weighted CSP.

For each problem instance, we record the number of vari-
ablesn, the maximum variable domain sizek, and the in-
duced widthw. For the latter we computed 100 randomized
minfill orderings and chose the one giving lowest induced
width; h specifies the height of the corresponding pseudo
tree. Solution time (in seconds) when solving the problem
by sequential AND/OR Branch and Bound graph search on a
single 3.0 GHz processor is denotedTs . The value ofd that
minimizes the expressionPS

p
AO(d) , as derived in Section

4, is given byd∗ .

Easy Haplotyping Instances. In a first round of tests we
looked at relatively easy instances (solvable in at most 10
minutes on a single processor), results are listed in Table
1. We allocatedp = 5 workers and enforced a global cut-
off depth ranging fromd = 0 to d = 8. In each case we
recorded the overall running timeTp .

As expected, for easy problems that take less than 60 sec-
onds on a single computer (ped1, 23, 37, and 50), the overall
solution time increases for the parallel scheme because de-
lays and overhead originating in the grid environment easily
dominate the actual computation in these cases.

On the other hand, for somewhat more complex prob-
lems like ped20, 30, and 38, we find that the improvement
through parallelization can be noticeable. The solution time
for ped38, for instance, keeps improving as we increase the
cutoff depth fromd = 2 to d = 5, and only then starts
to suffer more heavily from the grid overhead (as subprob-
lems become to small) and redundancies. Withd = 5 the
overall solution time for ped38 is roughly half that of the
non-parallel algorithm, for ped20 and ped30 this is the case
for d = 2 andd = 3, respectively.

Table 3: Results on Mastermind problem instances from the
UAI’08 competition. The parallel scheme was run withp =
10 workers and varying cutoff depthd.

d=5 d=6 d=7 d=8 d=9 d=10

instance n k w h d∗ Ts Tp Tp Tp Tp Tp Tp

mm 03 08 05-00113612 2 37 8923 9,715 1,753 1,463 1,592 1,668 2,692 4,706
mm 03 08 05-00123612 2 37 8123 7,568 2,534 2,164 1,487 1,556 1,860 3,012
mm 04 08 04-00002616 2 37 79 3 10,620 1,575 1,362 1,330 1,384 1,607 2,332
mm 06 08 03-00001814 2 31 7229 12,595 1,822 1,809 1,789 1,823 1,933 2,264
mm 10 08 03-00002606 2 47 99 4 26,102 4,909 4,449 4,581 3,895 4,317 4,373
mm 10 08 03-00112558 2 47 101 3 84,029 13,823 11,028 11,509 11,386 10,935 10,778
mm 10 08 03-00122558 2 47 82 4 5,630 2,536 1,357 1,358 1,351 1,880 1,489
mm 10 08 03-00132558 2 46 99 3 10,385 4,231 4,216 2,525 2,466 2,531 2,651

Complex Haplotyping Instances. Results on some very
complex pedigree instances are shown in Table 2. For the
parallel scheme we usedp = 15 worker nodes. It is im-
mediately obvious that these harder problems benefit more
from the parallel approach, solution times improve for all
cases that we tested: ped13 can be solved is less than 13
minutes ford = 6, whereas the sequential algorithm takes
almost 1 hour and 40 minutes. ped41 takes close to 22 hours
on a single computer, while the parallel scheme withd = 7
solves the problem in 2 hours and 23 minutes. Moreover, the
parallel scheme was able to solve two instances, ped19 and
ped51, on which the sequential algorithm timed out after 24
hours.

Complex Mastermind Instances. Lastly, we experi-
mented on some hard Mastermind instances from the
UAI’08 evaluation2, which take from a few hours to almost
a day on a single processor, denoted byTs in Table 3. The
distributed scheme was ran withp = 10 workers and vary-
ing cutoff d, the respective solution times are reported as
Tp . Similar to the results on complex pedigree instances, the
parallel scheme enabled significant improvements in overall
running time. For example, withd=7, mm 04 08 04-0000
went from three hours to little over 22 minutes (a factor of
8), while mm10 08 03-0011 improved from more than 23
hours to about three hours (a factor of 7.6) ford = 9.

Parallelization Frontier. Tables 1, 2, and 3 also record
d∗, the depth of the parallelization frontier for which the ex-
pressionPS

p
AO(d) is minimized given a particular problem

instance. Unfortunately, this parameter estimate exhibits lit-
tle correlation with the actual performance of the parallel
scheme, it is often much too cautious and suggests a very
low cutoff. We believe this is because a number of practical
factors are not reflected in the metrics developed in Section
4, as we point out next.

Load Balancing. In order to obtain deeper insight into
the performance of the parallel scheme, we recorded the
complexity of the generated subproblems, measured via the
number of nodes expanded by the worker node that pro-
cessed it. Exemplary results for three Mastermind instances
are shown in Figure 3, where subproblems are indexed by
the time of their generation in the master process (only the
first 50 are plotted). It should be noted that within each of

2http://graphmod.ics.uci.edu/uai08/

0

2E+07

4E+07

6E+07

8E+07

1E+08

1.2E+08

 0 10 20 30 40

S
ub

pr
ob

le
m

 s
iz

e

Subproblem index

mm_03_08_05-0011
mm_03_08_05-0012
mm_06_08_03-0000

Figure 3: Subproblem size (in number of expanded nodes)
for the first 50 subproblems, indexed by order of generation,
of three select Mastermind problems (p = 10, d = 7).

the three problem instances, with the parallelization frontier
at depthd = 7, the a priori bound on subproblem complex-
ity implied by Theorem 11 is the same across all subprob-
lems. Yet the three plots exhibit significant variance, going
anywhere from a few thousand nodes (i.e., solvable in sec-
onds) to many millions, with the worker taking 10 minutes
or more. These findings hold for other Mastermind and hap-
lotyping instances as well – in fact, in some cases the solu-
tion time of the most complex subproblem is almost identi-
cal to the overall running time of the parallel scheme.

The reason for this behaviour is twofold, we believe: Both
in the haplotyping and Mastermind domain, problems pos-
sess a considerable degree of determinism (inconsistent tu-
ples, zeros in conditional probability tables), which leads to
early dead ends during search space exploration. Further-
more, the AND/OR Branch-and-Branch procedure will typi-
cally be able to prune significant portions of the search space
by virtue of the heuristic function it is equipped with. The
impact of both these phenomena is hard to predict in prac-
tice, and neither is reflected in our current metrics.

In the end, these results show that finding a good paral-
lelization strategy automatically is still a challenging,yet
interesting open question for future research.

6 Conclusion & Future Work
This paper presents a framework that allows for paralleliza-
tion of AND/OR brand and bound graph search, a state-of-
the-art optimization algorithm in the area of graphical mod-
els. The parallelization is performed on a computational grid
of computers, where each system is connected to a common
network but has its own CPU and memory.

Central to this new line of work in the context of graphical
models parallelization is the idea that generating indepen-
dent subproblems can itself be done through an AND/OR
Branch and Bound procedure, where previous subproblem
solutions are dynamically used as bounds for pruning.

Our preliminary results with a prototype system on ge-

netic haplotyping and Mastermind problems are promis-
ing: on complex problem instances we have demonstrated
greatly improved overall solution times, while the scheme’s
effectiveness for simple instances is not guaranteed and de-
pends on the correct choice of parameters.

Indeed, the choice of parameters like cutoff depth, or
more generally the parallelization frontier, remains a cen-
tral issue. We have developed expressions that try to a priori
quantify the level of redundancy introduced by the condi-
tioning process versus potential gains from parallelization.
But as we have found empirically, at this stage it does not
seem to capture the underlying complexity of the problem,
probably because it does not account for various other rel-
evant aspects like determinism and the pruning power of
AND/OR Branch and Bound.

Future work will therefore, besides performing a broader
empirical evaluation, focus first and foremost on the devel-
opment of more powerful parallelization strategies that can
automatically determine good parameter values. We plan
to extend and improve the above estimation scheme, for in-
stance by accounting for determinism as in (Otten & Dechter
2008). We further intend to incorporate more of an online
learning approach, where the master process monitors the
actual complexity of subproblems (through the number of
nodes expanded, for instance) and adjusts the size of subse-
quent subproblems accordingly. This will also facilitate de-
ployment in many real-world, large-scale grid environments,
where resources like running time are often limited in the
grid nodes.

Acknowledgements

We thank the reviewers for their helpful feedback. This work
was partially supported by NSF grant IIS-0713118 and NIH
grant 5R01HG004175-03.

References
[1] Dechter, R., and Mateescu, R. 2007. AND/OR search

spaces for graphical models.Artificial Intelligence171(2-
3):73–106.

[2] Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme for bounded inference.Journal of the ACM
50(2):107–153.

[3] Dechter, R. 1990. Enhancement schemes for constraint
processing: Backjumping, learning, and cutset decompo-
sition. Artificial Intelligence41(3):273–312.

[4] Fishelson, M.; Dovgolevsky, N.; and Geiger, D. 2005.
Maximum likelihood haplotyping for general pedigrees.
Human Heredity59:41–60.

[5] Gendron, B., and Crainic, T. G. 1994. Parallel branch-
and-bound algorithms: Survey and synthesis.Operations
Research42(6):1042–1066.

[6] Marinescu, R., and Dechter, R. 2009. AND/OR
Branch-and-Bound search for combinatorial optimiza-
tion in graphical models.Artificial Intelligence173(16-
17):1457–1491.

[7] Mateescu, R., and Dechter, R. 2005. AND/OR cut-
set conditioning. In19th International Joint Conference

on Artificial Intelligence, Edinburgh, Scotland, UK, 230–
235.

[8] Otten, L., and Dechter, R. 2008. Refined bounds for
instance-based search complexity of counting and other
#P problems. InCP, 576–581.

[9] Pearl, J. 1988.Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

[10] Thain, D.; Tannenbaum, T.; and Livny, M. 2005.
Distributed computing in practice: the Condor experi-
ence. Concurrency - Practice and Experience17(2-
4):323–356.

