
UNIVERSITY OF CALIFORNIA,
IRVINE

Compiling Probabilistic Conformant Planning into Mixed Dynamic Bayesian Network

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Junkyu Lee

Thesis Committee:
Professor Rina Dechter, Chair

Associate Professor Alexander Ihler
Professor Eric Mjolsness

2014

c© 2014 Junkyu Lee

DEDICATION

To my beloved wife Younglim,
my sister,

my parents,
and my grand parents.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1
1.1 Probabilistic Conformant Planning . 3
1.2 Graphical Models and Probabilistic Inference Queries 4

2 Compiling Probabilistic Conformant Planning into Mixed DBN 8
2.1 Conformant Planning as Marignal MAP 8
2.2 Planning Problem Formalisms and Languages 10
2.3 Compiling PPDDL into Mixed DBN . 14

2.3.1 SAT Encoding for PPDDL . 15
2.3.2 Converting CNF clauses into Mixed DBN 18
2.3.3 Complexity of the Translation . 23
2.3.4 Compiling Slippery Gripper Problem 24

3 Empirical Evaluation 29
3.1 Benchmark Setup . 29
3.2 Results from Marginal MAP Algorithms 31

3.2.1 Slippery Gripper . 32
3.2.2 Comm . 34
3.2.3 Blocks World . 35

3.3 Comparion with Other Planners . 36

4 Conclusions 39

Bibliography 42

iii

LIST OF FIGURES

Page

2.1 Informal PDDL Syntax . 13
2.2 Extending PDDL to PPDDL by Adding Probabilistic Effect 13
2.3 Overall Process of Compiling PPDDL into Mixed DBN 15
2.4 Example of CPT Converted From Flat Probabilistic Effect 18
2.5 Example of CPT Converted From Nested Probabilistic Effect 19
2.6 Auxiliary Network for the State Transition Clauses 21
2.7 Auxiliary Network for the Frame Axioms and the Mutual Exclusivity Axiom 22
2.8 Bounding the Maximum Number of Parent Nodes 23
2.9 Slippery Gripper Problem Expressed in PPDDL 24
2.10 2TDBN for the Slippery Gripper Problem 25
2.11 Slippery Gripper: Tables for its Mixed 2TDBN 26
2.12 Slippery Gripper: Tables for the Initial Belief State and The Goal State . . . 27

iv

LIST OF TABLES

Page

2.1 Comparison between STRIPS and ADL 12

3.1 Overview of Benchmark Sets . 30
3.2 Empirical Evaluation with Sippery Gripper Problem 33
3.3 Empirical Evaluation with Comm Problem 34
3.4 Empirical Evaluation with Blocks World Problem with 2 Blocks. 35
3.5 Comparison Between Probabilistic-FF and AOBB-JG 37

v

ACKNOWLEDGMENTS

First I would like to thank Professor Rina Decther for her guidance and support during my

MS program. It is truly my greatest honor and pleasure to have her as the Chair of my

committee. I would like to thank other faculty members – Professor Alexander Iher, and

Eric Mjolsness – for being my committee and their comments.

I am indebted to all those who helped me finish this thesis. I would like to thank Professor

Hector Geffner for his kind comments about this work. I would also like to thank our re-

search group members, Natalia Flerova, and Silu Yang. Especially, many thanks to William

Lam and Radu Marinescu for their collaboration and advice. This thesis would not have

been possible without their support.

Finally, I would like to thank my wife, my sister, and my parents for their endless love and

support.

vi

ABSTRACT OF THE THESIS

Compiling Probabilistic Conformant Planning into Mixed Dynamic Bayesian Network

By

Junkyu Lee

Master of Science in Computer Science

University of California, Irvine, 2014

Professor Rina Dechter, Chair

Probabilistic conformant planning is a task of finding a plan that achieves the goal without

sensing, where the outcome of an action is probabilistic and the initial state is uncertain. In

this thesis, we formulate the probabilistic conformant planning as marginal Maximum A

Posteriori (MAP) probabilistic inference based on the finite horizon state transition model.

In practice, most of the planning problems are expressed in Probabilistic Planning Domain

Definition Languag. Therefore, we developed a translation that reads a PPDDL instance

and compiles the instance into a graphical model to provide a planning problem to existing

marginal MAP solvers. The compilation is based on SAT encoding of planning problems,

and the encoding is extended from the linear encodings used to solve classical planning

problems by SAT solvers. The graphical model is obtained by converting CNF clauses

into a mixed network, where the probabilistic state transitions are compiled as Bayesian

network and deterministic constraints are compiled as an auxiliary network. We performed

empirical evaluation to compare marginal MAP algorithms and Probabilistic-FF planner.

The experiment results show that marginal MAP algorithms were able to solve selected

problem domains.

vii

Chapter 1

Introduction

Planning is a process of selecting and organizing actions to achieve desired goal. The

result of execution of an action can be either deterministic or non-deterministic, and the

state of the world can be either observed, partially observed, or non-observed based on

the environment. Classical planning refers to the category in which the effect of an ac-

tion is deterministic and an agent can fully observe the initial state. On the other hand,

a probabilistic planning agent should expect that the outcome of an action will be prob-

abilistic or non-deterministic. We can further divide the probabilistic planning category

based on the observability of the states: 1. fully observable probabilistic planning, a.k.a.,

FOMDP (Fully Observable Markov Decision Process), 2. partially observable probabilis-

tic planning, a.k.a., POMDP (Partially Observable Markov Deicion Process), and 3. non-

observable probabilistic planning, a.k.a., NOMDP (Non-Observable Markov Decision Pro-

cess).

Conformant planning is equivalent to non-observable probabilistic planning, where an

agent has uncertainty in both the inital state and state transitions, and tries to achieve the

goal with certainty or some threshold value which indicates the probability of success.

1

Nondeterminism of the initial state or state transitions can be provided by a probability

distribution over possible states, which is so called belief state. In practice, a belief state

can be either specified quantitatively with a probability distribution or qualitatively with

a special clause like “one-of” or “unknown”. Whereas the reasoning about belief states

can be reduced to probabilistic inference in the first case, the second case looks closer to

classical setting.

We consider probabilistic conformant planning problem P as the task of generating a se-

quence of actions achieving the goal without sensing. In other words, a planner should

find a sequence of actions in the quantitative belief state space resulting from uncertainty

in both the initial state and action effects. The query to the planner can be formulated in

two different ways: 〈P, θ〉, which asks for a plan achieving the goal with probability that

exceeds a threshold θ, and 〈P,L〉, which fixes the length of the action sequence L and

asks for a plan with maximum probability. We define an optimal probabilistic conformant

planner as a planner which always finds the shortest length plan that exceeds a threshold.

Note that a planner which returns a plan from the query 〈P,L〉 can be transformed into an

optimal planner by increasing the L incrementally.

Probabilistic conformant planning has been adressed less popular than the conformant plan-

ning with qualitative belief states. Indeed, the International Planning Competition offers

all the planning problems except the probabilistic conformant planning. There are a few

planners that can handle the probabilistic conformant planning problem in the literature.

COMPLAN [10] and CPPlan [11] answer to the query 〈P,L〉, and Probabilistic Fast For-

ward [7] returns some satisfying plan to the query 〈P, θ〉.

In this thesis, we are interested in solving the probabilistic conformant planning problem

via a general purpose probabilistic infernece engine. Specifically, the probabilistic confor-

mant planning problem is compiled as a marginal MAP inference problem and we provided

the translated problems to recently developed marginal MAP algorithms [15]. Thus, the

2

overall approach is parallel to that of plannig as SAT, where a PDDL instance is compiled

to CNF clauses and a SAT solver solves the problem. The contribution of this thesis is a

new compilation method that translate existing probabilistic planning problems into graph-

ical models, so that a probabilistic conformant planning problem can be solved by general

purpose probabilistic inference engine.

The rest of this thesis is organized as follows. Following sections in Chapter 1 provides pre-

liminaries, Chapter 2 presents the method of compiling a planning problem into a graphical

model. In particular, it covers formulation of the marginal MAP query that solves proba-

bilistic conformant planning problems, planning problem formalisms, planning domain

languagues, and the process of compliing SAT encodings into a graphical model. Chap-

ter 3 shows the empirical evaluations of applying marginal MAP algorithms and compares

marignal MAP algorithms with existing planners. Finally, Chapter 4 concludes the thesis

and proposes future directions.

1.1 Probabilistic Conformant Planning

The planning problem can be described as a state transition model with flat state/action

representation 〈S, si, sg, A, T 〉, where the S = {s0, s1, · · · , sk} is a set of world states,

each of them represents a mutually disjoint configuration in the world, the si ∈ S and the

sg ∈ S is the inital state and the goal state, the A = {a0, a1, · · · , al} is a set of actions, and

the T is the state transition function represented as a mapping either T : S × A× S, if the

actions were deterministic, or T : S × A× S → [0, 1], if the actions were probabilistic. In

factored state representation, each state is represented by state variables, where each state

variable takes finite values from its domain. For example, a state s can be represented by

n state variables (s0, s1, · · · sn), and each sj takes value from Dom(sj). Thus, the set of

states S is represented as a cartesian product Dom(s0) × Dom(s1) × · · · ,×Dom(sn) in

3

factored state representation. Similarly, actions can be factored with action variables. In

practice, planning problems are represented in planning domain languages rather than the

state transition model. Planning domain languages and planning problem formalisms are

explained in Chapter 2. Now, we define the probabilistic conformant planning as follows.

DEFINITION 1. Probabilistic Conformant Planning P is given by 〈S,bi, sG, A, T 〉, where

the bi is the belief states of the initial states, and the sG = {sg0 , · · · , sgk
} is the set of

goals in which the plan must satisfy one of the goal states, and the T is probabilistic state

transition function, T : S × A× S → [0, 1]. The belief state b is a probability distribution

over states b : S → [0, 1]. The task is to find a sequence of action that achieves the goal

certainly.

DEFINITION 2. Finite Horizon Probabilistic Conformant Planning 〈P,L〉 is a probabilis-

tic conformant planning problem augmented with the length L of the action sequence. The

task is to find length L plan that achieves the goal with maximum probability.

DEFINITION 3. Probabilitic Conformant Planning with Threshold 〈P, θ〉 is a probabilistic

conformant planning problem augmented with the threshold θ. The task is to find any plan

with probability of achieving the goal higher than the θ.

DEFINITION 4. Optimal Probabilistic Conformant Plan is a plan that achieves maximum

probability of success given fixed plan length or the minimal length plan that exceeds the

threshold.

1.2 Graphical Models and Probabilistic Inference Queries

Graphical model is a powerful machinery for knowledge representation and reasoning.

The graph-based representation allows structure of a problem to be encoded compactly,

where the nodes in a graph correspond to the variables in the problem, and two nodes are

4

connected by an edge if there exists some relation between them, i.e., the primal graph of a

graphical model.

DEFINITION 5. graphical model is a tupleR = 〈X,D, F,
⊗
〉, where theX = {x0, · · · , xn}

is a set of variables, the D = {Dom(x0), · · · , Dom(xn)} is a set of domains of vari-

ables, xi ∈ Dom(xi), the F = {F0, · · · , Fm} is a set of functions defined over a set

S = {S0, · · · , Sm} of a scope Sj ⊆ X for the function Fj , and the
⊗

is a combination op-

erator such as the product
∏

, the sum
∑

, or the join ./ operator depending on the problem

formulation.

DEFINITION 6. primal graph G = 〈V,E〉 of a graphical model R has a set of nodes

vi ∈ V from the variables xi ∈ X , and a set of edges eij ∈ E if two variables xi and xj are

members of some scope of a function Fk, {xi, xj} ⊆ Sk.

Popular frameworks for graphical models include Bayesian networks, Markov networks,

Constraint networks, and Mixed networks which explicitly distinguish between probabilis-

tic information and deterministic constraints.

DEFINITION 7. Bayesian network is a graphical modelR represented by a directed acyclic

graph G, where the X is a set of multi-valued random variables, and each function Fi ∈ F

is a conditional probability table, Fi(Si) ≡ Pr(xi|par(xi)). The par(xi) are the parent

nodes of the variable xi in G. The joint probability distribution over variable X is the

product of all conditional probability distributions, Pr(X) =
∏

xi∈X Pr(xi|par(xi)).

DEFINITION 8. Markov network is a graphical modelR represented by a undirected graph

G, where the X is a set of multi-valued variables, and each function Fi ∈ F is a local

potential function defined over a subset of variables Si, Fi(Si) ≡ φi(Si). Whereas the

joint probability distribution of the Bayesian network has to be normalized to 1, the global

potential function φ(X) =
∏

i φi(Si) is not necessarily normalized.

If a function in a graphical model is a deterministic constraint or a functional relation, all

5

the values of the function are either 1 or 0. For example, a CNF (conjunctive normal form)

clause in propostional satisfiability (SAT) can be encoded as a factor table, where the scope

of the factor is boolean variables in the clause, each row of the table is a truth assignment

to all variables in the clause, and the value of the row is either 1 if the assignment is a

model of the clause, or 0 if the assignment does not satisfy the clause. Practical problem

domains such as probabilistic planning problems carry a large amount of symmetric and

deterministic constraints on the top of causal relations which are normally represented as

Bayesian networks. Hybrid processing of probabilistic information that are quantified by

conditional probability table and deterministic information that are represented as a set of

boolean clauses or constraints leverages computational efficiency of inference algorithms

as well as compact compilation of knowledge [5, 17]. Mixed network is the overarching

framework for representation and inference over mixture of a probabilistic graphical model

(belief network) and a deterministic graphical model (constraint network).

DEFINITION 9. Constraint network is a graphical modelR = 〈X,D, F 〉, where the func-

tions are constraints Fi ≡ Ci = (Si, Ri). Each constraint Ci is defined over its scope Si

with the relations Ri which denotes allowed combinations of values to the variables in Si.

DEFINITION 10. Mixed network can be defined given a belief network B and a constraint

network C, where the B = 〈XB, DB, PB〉 defines the joint probability distribution PrB(XB)

over the variables XB, and the C = 〈XC, DC, CC〉 is a constraint network that defines a set

of solutions ρ(XC) which satisfies the constraints CC over the variables XC . The mixed

network is a graphical model M = 〈XM, DM, PM〉, where the XM = XB ∪ XC , the

DM = DB ∪ DC , the PM = PB ∪ CC , and the joint probability distribution PrM(X) in

conjunction with PrB(XB) and ρ(XC) is defined as follows.

PrM(x̄) =

PrB(x̄), if x̄ ∈ ρ(XC)

0, otherwise.
(1.1)

6

The probabilistic inference queries over the a belief network contains the posterior marginal,

the probability of evidence, the most probable explanation (MPE), and the marginal maxi-

mum a posteriori probability (MAP). The above queries can be extended straight-forwardly

in mixed networks [4].

Given a belief network B = 〈X,D, P 〉 and a set of evidence variables E in which variables

are already assigned to some value as ē, we define typical probabilistic inference queries,

where the P is either a set of conditional probability tables for Bayesian networks or a set

of local potential functions for Markov networks, and the product of all elemements in P

is the joint probability distribution PrB(X).

DEFINITION 11. Posterior marginal is the marginal probability of a variable xi given a set

of evidence, PrB(xi|ē) =
∑

X−xi

∏
j P (xj|par(xj), ē) .

DEFINITION 12. Probabiliy of evidence is the marginal probability of evidence, PrB(ē) =∑
X

∏
j P (xj|par(xj), ē).

DEFINITION 13. MPE is an optimization task of finding an assinment of variables that

maximize the probability of evidence, x̄ = argmaxX

∏
j P (xj|par(xj), ē). The MPE value

is PrB(x̄).

DEFINITION 14. Marginal MAP is also an optimization task of finding a partial assign-

ment of hypothesized variables A = {a0, · · · , ak} ⊆ X after marginalizing the rest of the

variables, ā = argmaxA

∑
X−A P (X|ē) = argmaxA

∑
X−A

∏
j(xj|par(xj), ē).

The key component of this thesis are the mixed network and marginal MAP inference

since a planning problem will be compiled into a mixed network and such a problem will

be solved by the marginal MAP inference.

7

Chapter 2

Compiling Probabilistic Conformant

Planning into Mixed DBN

This chapter explains the process of compiling a probabilistic conformant planning prob-

lem into a mixed network. The first section derives the formulation for solving a proba-

bilistic conformant planning with a fixed time horizon by the marginal MAP inference, and

the second section rewviews planning problem formalisms and planning domain specific

languages. Finally, we explain detail process of compilation.

2.1 Conformant Planning as Marignal MAP

We formulate probabilistic conformant planning (PCP) with fixed time horizon, 〈P,L〉 as

the marginal MAP query by use of state variables, action variables, and the joint conditional

distribution conditioned on the initial and goal state variables and the action variables.

In Chapter 1, a planning problem was defined as a state transition model with factored

representation. The state transition model of a planning problem with time indices t ∈

8

{0, 1, · · · , L} is rewritten as follows.

DEFINITION 15. PCP with fixed time horizon L is a triplet 〈S,A, T 〉,

• S = {s0, s1, · · · , sL} is a set of st from time index 0 to L. st = {st0, · · · , stn} is a

state variable vector at the t-th time, where n+1 is the total number of state variables

that fully encode all the states at t-th time.

• A = {a0, a1, · · · , aL−1} is a set of at from time index 0 to L−1. at = {at0, · · · , atm}

is an action variable vector at the t-th time, where m+ 1 is the total number of action

variables that fully encode all the actions at the t-th time.

• T is a Markovian state transition function, ∀t, T : st × at × st+1 → [0, 1].

Note that the above definition is equivalent to that of the finite horizon MDP formulation

with the maximum time length L+1. The initial state is s0 and the goal state is sL, and

the state transition function T (st, st+1, at) from time t to t+ 1 is a conditional distribution

Pr(st+1|st, at).

The probabilistic conformant planning task is to find a sequence of actions that maximizes

the probability of achieving the goal given the fixed length L of the plan. Since the state

transition function is Markovian, the joint probability distribution over the set of state vari-

ables and a sequence of actions {a0, a1, · · · , aL−1} can be factored as follows.

Pr(s0..sL|a0..aL−1) =
∏

i=0..L

Pr(si|s0..si−1, a0..aL−1) (2.1)

=
∏

i=0..L

Pr(si|si−1, ai−1) (2.2)

= Pr(s0)Pr(sL|sL−1, aL−1)
∏

i=1..L−1

Pr(si|si−1, ai−1) (2.3)

If the initial state was sI and the goal state was sG, the above probability distribution can

9

be rewritten as,

Pr(s0..sL|s0 = sI, s
L = sG, a

0..aL−1) (2.4)

= Pr(s0 = sI)Pr(s
L|sL = sG, s

L−1, aL−1)
∏

i=1..L−1

Pr(si|si−1, ai−1) (2.5)

where Pr(s0 = sI) is the initial belief state, and the last state is implicitly constrained to

be the goal state, Pr(sL|sL = sG, s
L−1, aL−1) = 0, if sL 6= sG. Finally, the probabilistic

conformant planning task is equivalent to the marginal MAP query in which the action

variables correspond to the hypothesis variables (a0..aL−1).

(a0..aL−1) = arg max
(a0..aL−1)

∑
si∈S

Pr(s1..sL−1|s0 = sI, s
L = sG, a

0..aL−1) (2.6)

If multiple goal states were allowed, the constraint on the last state variable can be extended

as Pr(sL|sL ∈ {sG}, sL−1, aL−1) = 0, if sL /∈ {sG}.

2.2 Planning Problem Formalisms and Languages

In the previous section, probabilistic conformant planning was formulated as the marginal

MAP inference based on the state transition model, a.k.a., finite horizon MDP (FH-MDP).

However, practical planning problems are usually formulated by STRIP like formalisms

and expressed in the planning domain specific languages. Therefore, it is desired to design

a translation method that converts the planning domain specific languages to the FH-MDP

formulation. We assume that the result of the translation will be represented by tabular

forms i.e., UAI format which has been widely used in UAI (Uncertainty in Artificial Intel-

ligence) community [1].

The STRIPS (Stanford Research Institute Problem Solver) formalism refers to the original

10

proposal for representing classical planning problems in [8].

DEFINITION 16. Classical Propositional STRIPS formalism is a quadraple 〈P,O, I,G〉,

where the P is a set of propositional atoms, the O is a set of operators (actions), the I is a

list of positive atoms that must be true at the initial state, the G is a list of positive atoms

that must be true at the goal state. Each operator o ∈ O contains three lists of positive atoms

〈pre(o), add(o), del(o)〉, where the pre(o) is a precocondition list that must be satisfied to

exectue the operator o, the add(o) is an add list that will be true after executing the operator

o, and the del(o) is a delete list that will be false after executing the operaotr o.

The STRIPS planning system maintains positive propositional atoms with closed world

assumption. The semantic of applying an operator at a state can be described as follows. A

planner maintains a list of positive atoms that is true at each state s. If pre(o) ⊆ s, executing

the operator o will transform the current list of atoms of the state s to result(s, o) =

s ∪ add(o) − del(o). On the other hand, if pre(o) * s, executing the operator o is not

defined. The plan is a sequence of operator {o0, · · · , on} that satisfies pre(o) ⊆ I , s1 =

result(I, o0), pre(oi) ⊆ si, and G ⊂ result(on).

The orginal CPS formalism did not allow negated atoms in its precondition list and the goal

list. Relaxing such restrictions gives the formalism, Propositional STRIPS with Negative

goals (PSN).

Action Description Language (ADL) is another formulation for the classical planning prob-

lems. ADL features are highlighted and compared to CPN in Table 2.1, and we consult

[21] for deeper descrition about ADL. The notable difference between the STRIPS and

the ADL is that the ADL introduces variable terms for expressing states, and quantifiers,

equality predicates, and types for such variables. In addition, disjunction is also allowed

in condition expressions. Researchers proposed various planning languages that are in-

herited from STRIPS and ADL by incorporating the first order language constructs: lifted

11

STRIPS ADL
States Conjunction of positive literals Conjunction of literals
Goal state Only positive ground literals Allow quantified variables
Goal expression Conjunction Allow Conjunction and disjunction
Operator expression Conjunction Allow Conditional effects
Unmentioned literals Closed world assumption Open world assumption
Equality predicates No equality Allow equality predicates for terms
Types No types Allow types for variables

Table 2.1: Comparison between STRIPS and ADL

predicates, lifted action operators, a.k.a., action schemata, types for the terms, equality

predicates, quantifiers, disjunction, and etc.

The Planning Domain Definition Language (PDDL) is de facto standard language for clas-

sical planning problems. The first version of PDDL was published in 1998 as the official

language for the first international planning competition, and it has been subsequently ex-

tended by various language constructs, for example, numeric states, plan metrics, durative

actions, soft constraints, just to name a few. In this thesis, the scope of PDDL is limited

to level 1, the usual STRIPS and ADL planning. In PDDL, a planning problem instance is

decribed by the domain definition part and the problem definition part. The domain defini-

tion part specifies a planning problem in first order syntax that can be reused with various

problem definitions which only specify instance specific information such as ground ob-

jects, the ground initial state, and the ground goal states. A compact summary of PDDL

syntax is given in Figure 2.1. Note that the following syntax is informal, and the exact

PDDL syntax should be consulted in the language specification[18]. As mentioned, the

core language constructs of PDDL are first order predicates and action schemata. Notable

features of PDDL are: 1. a condition expression in an action schema or in a conditional

effect allows an arbitrary function free first order sentence, 2. an effect, the result of exe-

cuting an action, can be nested to arbitarry depth by conditional effects and conjunction of

effects, 3. the goal is also allowed to be an arbitrary function free first order sentence, and

4. the default value of unspecified predicates are true, a.k.a., closed world assumption.

12

<domain> ::= <predictes> <actions>
<predicates> ::= list of <predicate>
<predicate> ::= (<name> <list of variables>*)
<actions> ::= list of <action>
<action> ::= (<name> <list of variables>* <action body>)
<action body> ::= [<precondition>] [<effect>]
<precondition> ::= <ground expression>
<ground expression> ::= <predicate> <list of variables>* |

equality on two predicates |
negation of a precondition |
existentially quantified precondition |
universally quantified precondition |
conjunction of preconditions |
disjunction of preconditions |

<effect> ::= <simple effect> |
<conditional effect> |
conjunction of effects

<simple effect> ::= predicate literal
<conditional effect> ::= when <precondition> <effect>
<problem> ::= <ground terms> <init state> <goal>
<ground terms> ::= list of ground objects
<init state> ::= conjunction of ground predicates
<goal> ::= <ground expression>

Figure 2.1: Informal PDDL Syntax with core parts of the language.

Probabilistic Planning Domain Definition Language (PPDDL 1.0) [24] is a probabilistic

extension from PDDL 2.1, and it was introduced at the 4th IPC probabilistic planning track.

It extended PDDL by adding probabilistic effects, and rewards to express MDP planning.

The MDP planning is out of our scope in this thesis, so only the syntax for the probabilistic

effect is shown in Figure 2.2.

The probabilistic effect is a list of effects quantified by probability values. If the sum of

<effect> ::= <simple effect> |
<conditional effect> |
<prob. effect> |
conjunction of effects

<prob. effect> ::= list of pairs (p, <effect>)

Figure 2.2: Extending PDDL to PPDDL by Adding Probabilistic Effect

13

values is less than 1.0, the PPDDL semantics assumes that there exits an additional prob-

abilistic outcome that is null effect with the deficient probability value. The effect syntax

in PPDDL also allows arbitrary nested effects, but such nested effects can be flattened by

normal forms proposed by [20].

2.3 Compiling PPDDL into Mixed DBN

The process of compiling a PPDDL instance into a mixed Dynamic Bayesian Network

(DBN) is explained in this section. We obtain a DBN by replicating the structure of 2 time

stage Dynamic Bayesian network (2TDBN) up to desired time horizon since the proba-

bilistic inference query for the probabilistic conformant planning was formulated based on

the state transition model with a fixed time length. The term mixed emphasizes that the re-

sult of the compilation is DBN augmented with deterministic constraints encoded by CNF

clauses.

The overall process of compiling a PPDDL instance into a mixed DBN is illustrated in

Figure 2.3. The first step is to encode the original PPDDL instance as CNF clauses that

separte the planning constraints and probabilistic state transitions. In practice, a PPDDL

instance contains a lot of functional relations such as the frame axiom, the mutual exclu-

sivity axiom, and condition expressions that must be satisfied to activate the effect of some

action. If precondition of an action or condition of a conditional effect was not satisfied,

the effect of executing the action must be the null effect. SAT clauses are useful for identi-

fying such constraints on top of probabilistic state transitions triggered by an instantiation

of some action variable. In the PPDDL 1.0 specification, it is shown that a 2TDBN can

be obtained for an action without, but the 2TDBN did not combine all the possible state

transitions that can be instantiated by all possible combinations of action variables. One

could compile such many 2TDBNs into a single global 2TDBN by stacking them into a

14

Figure 2.3: Overall Process of Compiling PPDDL into Mixed DBN. The first step is en-
coding CNF clauses that extract deterministic constraints in a PPDDL instance, the second
step is compiling a mixed 2TDBN from the probabilistic effects and CNF clauses, and the
last step is extending 2TDBN to desired time horizon and encodes the initial belief state
and the goal constraints.

single 2TDBN by introducing action variables [2]. However, such a naive approach will

result in exponentially huge conditional probability tables that does not separate determin-

istic constraints inside the planning problem. Thus, our contribution is that we developed

a compilation process that explicitly separates and encodes deterministic constraints as a

mixed 2TDBN. The final mixed DBN can be obtained in a staright forward manner by

replicating the mixed 2TDBN up to desired time horizon.

2.3.1 SAT Encoding for PPDDL

The SAT encoding for a PPDDL instance that we introduce is a direct extension of the lin-

ear encoding for a PDDL instance[12]. Given a ground PPDDL instance, we have a set of

ground predicates S and ground action schemata A. We introduce a boolean state variable

for each ground predicate si ∈ S, and a boolean action variable for each action schemata

15

aj ∈ A. A ground action schema aj consists of an action precondition φ, where the φ can

be regarded as a CNF clause over the state variables, and a nested ground effect ewhich can

be flattend to one of the normal forms in [20]. Without loss of generality, we assume that

an effect e is expressed by the unary nondeterminism normal form, where a nested effect

is reduced to a list of conjunctions of conditional effects, each of them is annotated with

a probability value. Thus, an effect can be written as e = ((p0, c0), (p1, c1), · · · , (pn, cn)),

where the sum of the probability is normalized to 1,
∑

i=0..n pi = 1, and each ci is con-

junction of conditional effects, ∧j(φj B ωj), with CNF clauses φj and conjunction of state

variables ωj . Note that conjunction of state variables is deterministic simple effect. For

simplicity, the time indices are dropped, and CNF clauses for single time stage transition is

described as follows.

• For each ground predicate/action, introduce a boolean state/action variable si/ai.

• For each action ai, introduce a multi-valued effect variable eai which has n+1 values

if the effect had n outcomes. The first value of an effect variable eai is no-op, which

means that the result of the effect will be null effect, and the rest of the values refer

to conditional effects cj defined earlier.

• For each ground action ai, let φi be a CNF clause for a action precondition, then

ai ∧ φi ⇔ (eai 6= no-op), where the (eai = v) is an equality predicate that is true if

the value of the multi-valued variable eai equals v.

• For each state variable si, we introduce two auxiliary boolean variables for state

transition, +si and -si. The +si is true if any one of the action that could add the state

variable si at the next time stage was executed. Similary the -si is true if disjunction

of actions that could delete the state variable si was true. Note that the v-th value

of an effect variable eai refers to a conjunction of deterministic conditional effects

∧j(φj B ωj). Assuming that the v-th outcome of an effect eai was occured, the state

16

variable si must be true if the si appreared as a positive literal in one of the simple

effects ωj of the ci, and if the condition φj was satisfied by current state variables. For

simplicity, we illustrate a CNF cluase for the case where the conditions φj are always

true, for all eai s.t. ∃v ∈ Dom(eai) s.t. si ∈ add(eai = v), ∨eai (eai = v)⇔ +si. The

add(eai = v) is the add list of the simple effect of the v-th outcome of the effect. The

delete effect for the -si can be defined in the same way.

• Since our scope is limited to the linear encoding, only single outcome can be acti-

vated at each time stage. Hence, if si ∈ add(eai = vi) and si ∈ add(eaj = vj),

∀ai,aj(eai = vi) ∧ (eaj = vj)→ ¬+si. We have the same clause for the delete effect,

if si ∈ del(eai = vi) and si ∈ del(eaj = vj), ∀ai,aj(eai = vi) ∧ (eaj = vj)→ ¬-si.

• Similary only a single action can be selected, ∀j ∨ aj , ∀j 6=kaj → ¬ak.

• Finally, we encode the frame axioms with auxiliary variables with the state variable

at the next time stage s′i, ¬+si ∧ -si → (si ∧ s
′
i) ∨ (¬si ∧ ¬s

′
i).

In summary, the extended SAT encoding introduces multi-valued effect variables to encode

multiple outcomes for a probabilistic effects, and two auxiliary variables to encode the

state transition resulting from the add effect and delete effect of some action. We used

equality predicates for multi-valued effect variables to express a PPDDL instance with

CNF clauses. The frame axioms, the mutual exclusive action constraint is the same as that

of linear encoding of a PDDL instance. Translation of the initial belief state and multiple

goal state will be discussed in the following section.

17

Figure 2.4: Example of a CPT Converted From a Flat Probabilistic Effect. The nodes x, y,
z are state variables, the node a is an action variable, φ is a CNF clause defined over three
state variables, the node e is the effect variable that has two probabilistic outcomes with two
conjunction of simple effects v1 and v2 with p1 + p2 = 1. The CPT for the action variable
and the effect varialbes are presented next to the graph. The values for the action variables
are normalized to 1 because the probabilistic query is conditioned on action variables. If an
action was not chosen or the precondition was false, the effect must be no-op. Otherwise,
the outcomes v1 and v2 are quantified by probability values.

2.3.2 Converting CNF clauses into Mixed DBN

The SAT encoding proposed in the previous section separates deterministic constraints

explicitly from the probabilistic transitions. As the third step of compilation process in

Figure 2.3, we present the conversion from CNF clauses into a mixed 2TDBN. The mixed

2TDBN G =< V, F > is a directed graph with a set of variables V and a set of factor

tables F that are either a conditional probability table or deterministic factor table. The

set of variables V is simply the union of all variables introduced by SAT encoding, V =

S ∪ A ∪ {+/-si} ∪ {eai}.

First of all, we identify the conditional probability tables in a PPDDL instance. The prob-

abilistic information is only represented by the probabilistic effects. Assuming that all the

18

Figure 2.5: Example of CPT Converted From Nested Probabilistic Effect. (a) a probabilis-
tic effect having conditional effects as outcomes, where φ1 is the precondition variable that
is 1 if the action precondition was satisfied, φ2 and φ3 are additional node for the conditions
for the conditional effects, (b) conjunction of a conditional effect and a probabilistic effect,
where two effect nodes were introduce to compile conjunction of two effects.

effects are expressed in the unary nondeterminism normal form, the possible outcome of

an effect is no-op or conjunction of deterministic conditional effects that are annotated by

probability values. In practice, it is beneficial to directly embed the tree structure of a

nested effect inside the mixed 2TDBN with additional effect variables , which is shown in

Figure 2.5. For simplicity, we assume that an action ai = (φ, eai) has a precondition φ and

a list of conjunction of simple effects eai with n outcomes. In figure 2.4, a small example

illustrates compiling probabilistic transitions from CNF clause, ai ∧ φi ⇔ (eai 6= no-op).

Clearly, the deterministic factor table enumerates boolean assignments to the state vari-

ables and the value of the φ is 1 if the assignment satisfies the CNF clause. Introducing

the additonal node for φ is a choice of modeling, and the effect node could have the state

variables as its parents. Two more examples for compiling probabilistic effect are given

in figure 2.5. The first example shows the case where each outcome of the probabilsitic

effect is deterministic conditional effect. Therefore, two additional nodes for condition

19

expressions are introduced and connected as parent nodes of the effect node. The second

example is another case where the effect of an action is conjunction of a conditional effect

and a probabilistic effect. The effect was not transformed to the unary nondeterminism

normal form, but additional effect node is introduced to compile each effect separately.

The conditional probability tables for both examples are not shown here but the idea is the

same.

The next task is to compile deterministic constraints that are enforced implicitly by the

PPDDL syntax. We can divide such deterministic constraints into three groups:

• 1. the state transitions clauses resulting from each outcome of an effect:

(c1). for all eai s.t. ∃v ∈ Dom(eai) s.t. si ∈ add(eai = v), ∨eai (eai = v)⇔ +si,

(c2). for all (eai = v), (eaj = w) s.t. si ∈ add(eai = v), si ∈ add(eaj = w),

(eai = v) ∧ (eaj = w)→ ¬+si,

(c3). for all eai s.t. ∃v ∈ Dom(eai) s.t. si ∈ del(eai = v), ∨eai (eai = v)⇔ -si, and

(c4). for all (eai = v), (eaj = w) s.t. si ∈ del(eai = v), si ∈ del(eaj = w),

(eai = v) ∧ (eaj = w)→ ¬-si

• 2. the frame axioms for each state variable,

¬+si ∧ -si → (si ∧ s
′
i) ∨ (¬si ∧ ¬s

′
i),

• 3. the mutual exclusivity constraint on action variables,

∀j ∨ aj , ∀j 6=kaj → ¬ak,

The deterministic factor tables can be expressed in tabular format from the CNF clauses.

They could have been stored in a compact CNF representation format like DIMACS format

if the UAI format had allowed it. The auxiliary network for each type of the deterministic

factors are illustrated by the examples in Figures 2.6-2.7. Figure 2.6 shows the auxiliary

network for the state transition clauses. An effect node e is parent node of the +s node if

20

Figure 2.6: Auxiliary Network for the State Transition Clauses. Three effect nodes, e1,
e2, and e3, auxiliary variables, +s, -s, and state variable node s is shown in the graph. For
brevity, the effect e1 and e2 are deterministic effects, and each of them has a single outcome
s∧x and s∧y respectively. Since the positive literal s is shown in one of the outcomes of the
effects e1 and e2, both nodes are connected to the auxiliary variable +s. The deterministic
factor table for the node +s is shown next to the graph.

one of the outcomes of the effect variables contain positive literal of the state variable s.

The parents of the -s node can be identified in similar way. As shown in the Figure 2.6,

deterministic factor table can be obtained by simply rewriting each CNF clause in tabular

format. Figure 2.7 illustrates the auxiliary network for the rest of the two constraints. The

frame axioms are defined for each state variables, and the deterministic factor table is also

tabular representation of the clause. The mutual exclusivity action constraint can be defined

by introducing auxiliary variable c. As a whole, a PPDDL instance can be compiled into

mixed 2TDBN.

In practice, auxiliary networks that are compiled from the state transition constraints or the

mutual exclusivity axiom introduces large scope sized factor tables. For example, if there

were m action variables, the factor table for the constraint has 2m+1 rows. In such cases,

additional hidden variables are used to bound the maximum number of parent nodes as

shown in Figure 2.8.

The final compilation task is to replicate the mixed 2TDBN up to desired time horizon, and

21

Figure 2.7: Auxiliary Network for the Frame Axioms and the Mutual Exclusivity Axiom.
(a) the frame axiom. The deterministic factor table is presented next to the graph. If two
auxiliary variables were false, then the value of the future state variable must be the same
as current value of the state variable. If one of the add effect or delete effect was true, then
the future state variable will be true or false. Finally, the value of the last two rows are 0
since add effect and delete effect cannot occur simultaneously. (b) the mutual exclusivity
constraint. The deterministic factor table for the node c is tabular representation of the
mutual exclusivity constraint.

encode the initial belief state and the goal states. If the initial belief state was independently

defined over the state variables, Pr(s00, s
0
1, · · · , s0n) = Pr(s00)Pr(s

0
1) · · ·Pr(s0n), each table

for the state variable s0i can be replaced with the initial probability distribution Pr(s0i).

On the other hand, if the initial belief state is defined jointly over the state variables, the

joint distribution needs to be encoded by adding additional layer that relating the joint

configuration of state variables. Similarly, the goal states can be quantified by adding

additional layer that clipping the value of the inconsistent goal state to be 0. In case of

having a single goal state, the additional layer can be absorbed into each table for state

variables at the final stage.

22

Figure 2.8: Bounding the Maximum Number of Parent Nodes. The hidden variable t was
introduced to bound the maximum number of parent nodes.

2.3.3 Complexity of the Translation

In this section, the complexity of the tranlation is explained based on the input parameters

that can be specified by the original PPDDL instance. Let |AS| be the number of action

schemata, |PRE| be the number of predicates, p be the maximum number of parameters

in the action schemata, q be the maximum number of variables in a predicate, and k be

the number of ground object. The total number of ground state variables is O(|PRE|kq),

and the total number of ground action variable is O(|AS|kp). Assuming that we have only

flat effects, the number of effect variables are the same as the number of action variables.

In addition, we introduce two auxiliary variables +si and -si for each state variable si.

Thus, the total number of variables in a 2TDBN is O(2|AS|kp + 3|PRE|kq). In case of

introducing hidden variables to bound the maxmum in-degree of the mutual exclusivity

constraint, we would introduce |AS|kp − 1 hidden variables to bound the maximum in-

degree of the constraint variable to be 2. Similarly, if the maximum number of parent nodes

for the auxiliary variables was |E|, we would introduce |E| − 1 hidden variables. In such

a case, the maximum arity of the CPTs is max(3, |φ| + 1), where the |φ| is the maximum

number of state variables shown in the precondition which contributes to the arity of the

effect variable CPT. The maximum domain size is v + 1, where the v is the maximum

23

number of outcomes of a probabilistic effect. Finally, the total number of variables in the

mixed 2TDBN is O(3|AS|kp + (1 + 2|E|)|PRE|kq).

2.3.4 Compiling Slippery Gripper Problem

In this section, we demonstrate the compilation result of the slippery gripper problem [13]

to provide a complete picture of the compliation process. Figure 2.9 is the slippery gripper

problem expressed in PPDDL. Since the original PPDDL syntax does not allow the belief

state, we added additional syntax for expressing the probability value for each state.

(define (domain ext-slippery-gripper)
(:requirements :negative-preconditions :conditional-effects

:probabilistic-effects)
(:predicates (gripper-dry) (holding-block) (block-painted)

(gripper-clean))
(:action pickup

:effect (and (when (gripper-dry)
(probabilistic 0.95 (holding-block)))

(when (not (gripper-dry))
(probabilistic 0.5 (holding-block)))))

(:action dry
:effect (probabilistic 0.8 (gripper-dry)))

(:action paint
:effect (and (block-painted)

(when (not (holding-block))
(probabilistic 0.1 (not (gripper-clean))))

(when (holding-block)
(not (gripper-clean))))))

(define (problem ext-slippery-gripper)
(:domain ext-slippery-gripper)
(:init (gripper-clean)

(probabilistic 0.7 (gripper-dry)))
(:goal (and (gripper-clean) (holding-block) (block-painted))))

Figure 2.9: Slippery Gripper Problem Expressed in PPDDL. The PPDDL 1.0 cannot spec-
ify the initial belief state. Therefore, the syntax for specifying the initial belief is added to
PPDDL.

The slippery gripper domain consists of four state variables, gripper-dry (gd), holding-

24

Figure 2.10: 2TDBN for the Slippery Gripper Problem. Shaded nodes indicates variables
introduced by SAT encoding, and non-shaded nodes are directly mapped from ground pred-
icates and ground actions.

block (hb), block-painted (bp), and gripper-clean (gc), and three actions, “pick up”, “dry”,

and “paint”. Initially, the gc is true, the gd is true with probability 0.7, and other two

state variables are false. The goal is conjunction of lieterals, gd ∧ hb ∧ bp. If gripper-dry

were true, the “pick up” action would add hold-block with probability 0.95. Otherwise

hold-block would be added with probability 0.5. The “dry” action would add gripper-dry

with probability 0.8. Lastly, If holding-block were true, gripper-clean will be deleted by

“paint” action, and if it were false, gripper-clean would be deleted with probability 0.1.

The “paint” action also adds block-painted. The compilation result of the slippery gripper

problem into a mixed 2TDBN is presented in figure 2.10. The four state variables and three

action variables are mapped to unshaded nodes in the mixed 2TDBN. The shaded nodes

are introduced by the SAT encoding. Figure 2.11 presents all the conditional probability

tables and deterministic tables in the mixed 2TDBN.

25

Figure 2.11: Slippery Gripper: Tables for its Mixed 2TDBN.

26

Figure 2.12: Tables for the Initial Belief State and the Goal State. The superscript next
to the name of the state variable denotes the time step. The probability distribution over
the initial state variables, gd0, hb0, bp0, gc0, was factored into four separate tables, and the
constraints for qualifying the goal state for each state variable at time step L is presented
next to the table for each initial state variable. Since each goal constraint is a single variable
function, the deterministic factor table at the L stage can aborb it as shown above.

The first three tables at the top of Figure 2.11 are conditional probability tables for the ac-

tion variables, where the values were normalized to 1. It is possible to incorporate action

prior. In such a case, the semantics of the planning problem and the probabilistic inference

query must be properly addressed. The next three tables represent the probabilistic infor-

mation in the slippery gripper domain. Note that if an action was not chosen, the effect

of such choice would lead to no-op. The null effect of an action was introduced by the

semantics the probabilistic effect of PPDDL specification. The next four tables compiles

the CNF clauses stating the state transition axioms. The value of each effect shows the

corresponding simple effect for each outcome. Considering the deterministic factor table

for the auxiliary variable +gd, each row can be read as follows. The first row corresponds

to the CNF clause that the add effect of the state variable gd is false if and only if the out-

come of “dry” action was no-op. The fourth row correspondsto the CNF cluase that the add

effect of the state variable gd is true if and only if the outcome of “dry” action was gd. The

rest of the tables can be interpreted in the same way. The next four tables are truely tabular

representation of the CNF clauses for the frame axioms, and the last two tables are also the

27

mutual exclusivity constraint rewritten in tabular format.

To find a length L probabilistic conformant plan, the mixed 2TDBN in Figure 2.10 needs to

be extended up to L time horizon by simply replicating the same structure. At the final step

of the compilation process, the initial belief state and the goal state need to be compiled to

the extended mixed DBN. The tables for initial belief state and the goal state for the slippery

gripper problem is presented in Figure 2.12. To incorporate the probability distributtion

over the inital state variable, we replace tables at the first time step with the tables shown

in Figure 2.12. The goal state can be encoded by the tables shown in Figure 2.12.

28

Chapter 3

Empirical Evaluation

In this chaper, we present expreimental results. The benchmark problems were selected

from the past international planning competitions: slippery gripper, comm, and blocks

world. Since the marginal MAP solver we applied can only read the UAI format, the prob-

lem instances were translated from PPDDL format into the UAI format by the compilation

process explained in chapter 2. The experiment can be divided into two parts. The first part

compares three marginal MAP algorithms, and the second part compares AOBB-JG, one

of the marginal MAP algorithms we used, and Probabilistic-FF.

3.1 Benchmark Setup

We obtained the PPDDL domain definition files and problem instance files from the IPC

2004, 2006 website. The slippery gripper problem has only single instance definition file,

but the comm problem has 25 instance definition files, where we converted the first in-

stances for the experiment. The blocks world domain definition file was modified from the

original version. In addition, we created a new instance definition files that is different from

29

PPDDL Domain Source Instance Init. State State Transition Goal
Slippery Gripper IPC 04 sg Probabilistic Probabilistic Single state
Comm IPC 06 p01 Nondeterministic Deterministic Single state
Blocks World IPC 06 bw224 Deterministic Probabilistic Single state

Table 3.1: Overview of Benchmark Sets. Three PPDDL domain files were used for exper-
iment. All the three problems have a single goal state that is expressed by a conjunction of
state variables.

the instances used at the IPC 2006 probabilistic track. Since we formulated the probabilis-

tic conformant planning task from the state transition model with a fixed time horizon, the

UAI files were produced by incrementally increasing the time horizons from the shortest

time horizon to a desired length.

• Slippery Gripper: This problem contains the probabilistic initial states and proba-

bilistic state transition. The optimal plan for the slippery gripper problem should

satisfy two partial order relations: the “paint” action precedes the “pick up” action,

and the “dry” action precedes the “pick up” action. One such valid plan is (paint,

dryi, pick-upj), where the i ≥ 0 and the j ≥ 1 denotes the number of “dry” and

“pick up” actions executed in the plan, and T = 1 + i+ j. The probability of success

for the plans satisfying above partial order relations is 0.9(dipj + (1− di)qj), where

d0 = 0.7, di = di−1 +0.8(1−di−1), p1 = 0.95, pj = pj−1 +0.95(1−pj−1), q1 = 0.5,

and qj = qj−1 + 0.5(1− qj−1). For example, the optimal length 3 plan is (paint, pick

up, pick up) with the probability 0.830925. Thus, we can partly assure that the plans

found by marginal MAP search algorithms were truely optimal by checking above

equations on various i and j values.

• Comm: This class of problems is heavily deterministic, and it was used at the IPC

2006 conformant track. The state transition is deterministic and the uncertainity in

the initial state is quantified by one-of clauses that we treated as a uniform distribu-

tion.

30

• Blocks World: The blocks world problem has many different versions, and we used

the domain definition file released at the IPC 2006 probabilistic track. The original

domain contains 7 action schemata, but we removed 3 action schemata. The removed

action schemata is so called tower actions manipulating more than 1 blocks at once.

The instance we used for the benchmark has 2 blocks.

3.2 Results from Marginal MAP Algorithms

In this section, we present the results from 3 marginal MAP algorithms developed recently

[25, 15]: 1. AND/OR branch and bound search algorithm using weighted mini bucket

heuristic with join graph cost shifting scheme (AOBB-JG) [6, 16, 14, 19, 15], 2. Branch and

bound search algorithm using incremental mini cluster tree elimination heuristics (BBBTi)

[15], and 3. Depth first branch and bound search algorithm using incremental joint tree

upper bound with unconstrained variable orderings (Yuan) [25].

The algorithmic parameters are summarized as follows. The AOBB-JG has 3 parame-

ters (i, c, j), where the i is the bound for mini bucket elimination, the c is the bound for

AND/OR search space caching, and the j is the number of message passing iterations for

join graph cost shifting scheme. We allowed 10 iterations for all experiments. In addition,

AOBB-JG is equipped with a constraint propagation routines that exploits determinism

inside the model by encoding the zero valued rows as a CNF clause and detect zero prob-

ability assignments by unit resolution. The BBBTi has 2 parameters the i bound and the c

bound, and the Yuan’s algorithm does not take any parameter. For AOBB-JG and BBBTi,

we provided a topological variable ordering as a valid MAP ordering. The topological vari-

able ordering was obtained as follows. The action variables are enumerated at the beginning

of the ordering. Starting from the initial time stage, state variables, effect variables, hidden

variables, and auxiliary variables are enumerated by following the directed edge between

31

nodes in the mixed DBN. All the algorithms were terminated after 6 hour (21,600 seconds)

time limit and 4 GB memory limit. We tried various i-bound parameters for AOBB-JG

and BBBTi, only the best result will be presented. The c-bound parameter was fixed to the

same as the i-bound.

3.2.1 Slippery Gripper

Table 3.2 presents the problem statistics and results reported by each algorithm; L is the

length of the plan, n is the total number of variables, m is the number of MAP variables,

f is the number of factors, k is the maximum domain size, s is the maximum scope size,

w∗ is the induced width of the topological variable ordering, uw∗ is the induced width of

an unconstrained ordering found by minfill, h is the height of the pseudo tree from the

constrained ordering, uh is the height from the unconstrained ordering, sat vars is the

number of SAT variables encoded by the constraint processing routine, sat clauses is the

number of SAT clauses, i.e., the number of zero valued rows. i-bd is the i-bound, c-bd is

the cache bound , OR is the number of OR nodes explored by search, AND is the number

of AND nodes explored, pre time is the processing time, total time is the total time,

Solution is the maximum probability of success, and Bound is the initial upper bound.

The problem statistics shows that the size of the input problem is proportional to the length

of the time horizon. Whereas the induced width of the unconstrained variable ordering

remains around 6, the induced width of the constrained variable ordering increases with

increase in the time horizon. Yuan’s algorithm was the fastest overall and the BBBTi was

at the second place. Considering the quality of the initial upper bound, AOBB-JG produced

the best initial upper bound, and it solved problems up to 7 time horizon by inference.

32

Stats L n, m f k s w*, uw* h, uh sat vars sat clauses
2 42, 6 42 3 3 6, 4 13, 43 93 245
3 61, 9 61 3 3 10, 5 18, 62 135 370
4 80, 12 80 3 3 14, 6 22, 81 177 495
5 99, 15 99 3 3 17, 6 27, 100 219 620
6 118, 18 118 3 3 20, 6 30, 119 261 745
7 137, 21 137 3 3 23, 6 34, 138 303 870
8 156, 24 156 3 3 27, 6 38, 157 345 995
9 175, 27 175 3 3 29, 7 43, 176 387 1120

10 194, 30 194 3 3 32, 7 45, 195 429 1245
Algorithm L i-bd c-bd OR AND pre time total time Solution Bound
AOBB-JG 2 28 28 0 0 0.01 0.01 0.7335 0.7335

3 28 28 0 0 0.02 0.02 0.830925 0.830925
4 28 28 0 0 0.14 0.14 0.884385 0.884385
5 30 30 0 0 0.97 0.97 0.895077 0.895077
6 28 28 0 0 8.33 8.33 0.898539 0.898539
7 30 30 0 0 66.23 66.23 0.899618 0.899618
8 20 20 14080 17119 3.38 4.16 0.899859 1.93198
9 22 22 15188 19312 4.27 5.19 0.899967 1.43451

10 28 28 29025 38468 46.94 49.29 0.899989 1.52619
BBBTi 2 28 28 47 49 0 0 0.7335 0.7335

3 28 28 128 138 0 0.01 0.830925 2.26485
4 28 28 119 127 0 0.01 0.884385 7.31411
5 28 28 196 214 0.01 0.03 0.895077 11.6908
6 28 28 330 367 0.02 0.08 0.898539 24.5902
7 30 30 453 519 0.02 0.15 0.899618 71.3144
8 28 28 405 451 0.02 0.29 0.899859 90.8221
9 20 20 445 497 0.03 0.8 0.899967 138.556

10 26 26 737 840 0.03 1.96 0.899989 371.314
Yuan 2 - - 7 - 0 0 0.7335 0.7335

3 - - 12 - 0 0 0.830925 1.66162
4 - - 49 - 0.01 0.01 0.884385 7.60698
5 - - 146 - 0.01 0.01 0.895077 11.6908
6 - - 381 - 0.01 0.03 0.898539 34.2711
7 - - 1043 - 0.02 0.06 0.899618 71.55
8 - - 2210 - 0.02 0.11 0.899859 90.8221
9 - - 5190 - 0.03 0.26 0.899967 194.283

10 - - 15030 - 0.03 0.65 0.899989 521.865

Table 3.2: Empirical Evaluation with Sippery Gripper Problem. The number of state vari-
ables was 4, the number of action variables was 3, the total number of nodes was 23 in
2TDBN.

33

Stats L n, m f k s w* h sat var sat clauses
2 653, 94 653 2 5 103 140 1307 3671
3 957, 141 957 2 5 155 198 1915 5826
4 1261, 188 1261 2 5 207 270 2523 7981
5 1565, 235 1565 2 5 259 324 3131 10136
6 1869, 282 1869 2 5 311 375 3739 12291
7 2173, 329 2173 2 5 363 436 4347 14446
8 2477, 376 2477 2 5 415 488 4955 16601
9 2781, 423 2781 2 5 467 540 5563 18756

Algorithm L i-bd c-bd OR AND pre time total time Solution Bound
AOBB 2 2 2 0 0 1.18 1.18 0 0.00E+00

JG 3 4 4 0 0 3.07 3.07 0 0.00E+00
4 4 4 0 0 7.13 7.13 0 4.50E+47
5 6 6 0 0 11.09 11.09 0 0.00E+00
6 2 2 2208 2234 17.8 19.06 0.25 1.09E+98
7 2 2 79776 81574 25.83 74.81 0.25 3.15E+133
8 2 2 2478 2480 34.98 36.96 0.25 2.13E+139
9 2 2 6283 6641 49.04 54.87 0.25 1.86E+153

Table 3.3: Empirical Evaluation with Comm Problem. The number of state variables was
45, the number of action variables was 46, the total number of nodes was 349 in 2TDBN.

3.2.2 Comm

Table 3.3 presents the problem statistics and results reported by each algorithm. The

AOBB-JG was the only algorithm that could solve the comm problem up to 9 time hori-

zon. The induced width of the constrained ordering is 103 for the length 2 plan problem

and 467 for the length 9 plan problem, which implies that heuristics generated by graph

based algorithms may be uninformative. Furthermore, the only probabilistic tables in the

problem are two state variables at the initial state, which means that AOBB-JG could solve

the problem efficently by detecting the zero probability subplans early by constraint pro-

cessing routines. The comm problem does not have solution up to 5 time horizon, thus

AOBB-JG didn’t search the problem because any plan leads to zero probability. The large

induced width of the problem not only makes the heuristic inaccurate but also consumes

huge amount of memory, so the i-bound was limited by 2 up to 9 time horizon and the

solver was terminated due to memory from 10 time horizon.

34

3.2.3 Blocks World

Stats L n, m f k s w*, uw* h, uh sat var clauses
BW224 3 201, 24 201 3 5 32, 17 54, 202 421 1719

4 265, 32 265 3 5 40, 17 66, 266 555 2353
5 329, 40 329 3 5 48, 17 78, 330 689 2987
6 393, 48 393 3 5 57, 17 90, 394 823 3621
7 457, 56 457 3 5 67, 17 99, 458 957 4255
8 521, 64 521 3 5 73, 17 111, 522 1091 4889
9 585, 72 585 3 5 85, 17 129, 586 1225 5523

10 649, 80 649 3 5 88, 17 132, 650 1359 6157
algorithms L i c OR AND pre time total time Solution Bound

AOBB 3 10 10 201 202 0.56 0.57 0.140625 1.410625
JG 4 10 10 2264 2294 0.9 1.06 0.5625 1.51E+09

5 10 10 33601 34166 1.28 4.99 0.703125 1.16E+08
6 12 12 441711 450030 3.62 66.91 0.808594 7.68E+16
7 16 16 4767559 4872884 55.59 879.03 0.870117 1.45E+18
8 18 18 46897433 48117132 224.61 9390.6 0.91626 3.04E+15
9 10 10 80960476 81880618 2.57 out nan 8.72E+19

10 10 10 70629254 71552310 2.82 out nan 1.09E+21
BBBTi 3 12 12 177 178 0.24 0.35 0.140625 5.13E+06

4 12 12 846 875 0.38 1.95 0.28125 3.79E+10
5 10 10 5181 5660 0.32 8.93 0.28125 1.46E+13
6 12 12 80184 87724 0.64 242.19 0.808594 2.49E+17
7 26 26 947040 1036077 1.86 18231.2 0.870117 1.83E+02
9 22 22 4074 4169 29.95 out 0.943176 2.02E+03

10 28 28 2024 2068 31.67 out 0.990327 1.80E+04
Yuan 3 - - 25 - 5.51 7.53 0.140625 0.140625

4 - - 62 - 7.55 10.81 0.5625 1.47656
5 - - 1148 - 12.1 92.88 0.703125 8.96484
6 - - 11982 - 13.46 1029.82 0.808594 49.533
7 - - 209726 - 17.55 18809.1 0.870117 296.851
8 - - 247596 - 21.31 out 0.870117 702.582
9 - - 380441 - 23.08 out 0.885498 2691.55

10 - - 245637 - 27.55 out 0.931504 20239.9

Table 3.4: Empirical Evaluation with Blocks World Problem with 2 Blocks. If the algo-
rithms was terminiated due to 6 hour time out, the best anytime solution is reported. The
number of state variables was 9, the number of action variables was 8, the total number of
nodes was 73 in 2TDBN.

Table 3.3 presents the problem statistics and results reported by each algorithm. The overall

results show that AOBB-JG performed best, and BBBti was at the second place. Both

AOBB-JG and BBBTi were able to find plans up to legth 8, and Yuan was out of time after

35

7 time horizon.

3.3 Comparion with Other Planners

In this section, we compare the marginal MAP search algorithms with COMPLAN and

Probabilistic-FF. The performance of Probabilistic-FF was evaluated on the same bench-

mark envrionment, and we comapred the results with AOBB-JG.

To the best of our knowledge, COMPLAN is the most recent probabilistic conformant plan-

ning algorithm that maximizes the probability of success for a plan with a fixed time hori-

zon. COMPLAN extends linear encoding of SATPLAN with chance variables that encode

the uncertainity of a planning problem, and compiles CNFs into deterministic decompos-

able negation normal form [3], and then apply the marginal MAP query. The conformant

plan is found by depth first branch and bound search guided by heuristics generated by a

relaxed marginal MAP query on the d-DNNF compilation. Note that the induced width

of constrained variable orderings for a planning problem is usually prohibited as shown in

the previous section. AOBB-JG relaxes the problem based on the weighted mini-buckets

with cost shifting, whereas COMPLAN allows an unconstrained variable ordering to yield

lower induced width.

Probabilistic-FF finds a conformant plan that achieves the goal higher than a desired thresh-

old by heuristic forward search in a belief state space. The belief states are a probability

distribution over states reachable from initial belief state by applying a sequence of actions.

Probabilistic-FF represents belief states by DBN proposed by [2], and the DBN is further

compiled into weighted CNFs, to retrieve probabilitic queries via weigthed model count-

ing [22]. In our compilation, all the action variables were nodes of the DBN such that the

probabilistic inference directly query over the action variables after marginalizing the rest

36

of the variables. On the other hand, each DBN for the belief states of the Probabilistic-FF

unrolls only small portion of the entire DBN that can be instantiated by applying a specific

sequence of actions, and the weighted model counting computes only posterior probability

so that the heuristic function evaluates the probability of achieving the goal.

slippery gripper
pff θ 0.7335 0.830925 0.884385 0.895077 0.898539

(h1, w0) time 0.04 0.03 0.04 0.05 0.04
length 3 4 5 6 8

θ 0.899618 0.899859 0.899967 0.899989 0.899999
time 0.05 0.04 0.07 0.11 out

length 10 11 13 15 -
pff θ 0.7335 0.830925 0.884385 0.895077 0.898539

(h2, w1) time 0.03 0.19 0.42 1.22 1.27
length 2 4 5 6 6

θ 0.899618 0.899859 0.899967 0.899989 0.899999
time 3.05 6.29 13.89 31.56 156.86

length 7 8 9 10 12
AOBB θ 0.7335 0.830925 0.884385 0.895077 0.898539

JG time 0.01 0.02 0.13 0.98 8.33
length 2 3 4 5 6

θ 0.899618 0.899859 0.899967 0.899989 0.899999
time 66.23 4.13 5.19 49.29 37.23

length 7 8 9 10 12
blocks world - bw224

pff θ 0.14065 0.5625 0.703125 0.808594 0.870117
(h1, w0) time 0.04 0.05 oom oom oom

length 4 4 - - -
AOBB θ 0.14065 0.5625 0.703125 0.808594 0.870117

JG time 0.57 1.06 5 67 879
length 3 4 5 6 7

Table 3.5: Comparison Between Probabilistic-FF and AOBB-JG. Algorithms were evalu-
ated in two planning problmes, slippery gripper and blocks world with 2 blocks. The θ is
the threshold value for the probability of success.

Table 3.5 compares Probabilistic-FF and AOBB-JG on the planning problems: slippery

gripper, and blocks world. We set threshold values of the Probabilistic-FF from optimal

conformant planning solutions for comparison. For the Probabilistic-FF we present the best

result from 2 heuristic functions and 3 weight propagation schemes. For the detail about

Probabilistic-FF planner, we refer to the Probabilistic-FF codes available at the author’s

37

website. For the AOBB-JG, we present the total time and the plan length, and the problem

statistics are the presented in Table 3.4.

• Slippery gripper: Probabilistic-FF solved all the instances around 0.1 seconds except

the one with threshold 0.9. The length of the plan is typically longer than the optimal,

but plans that are closer to the optimal could be found with increased time. For the

slippery gripper problem, the threshold 0.9 is the maximum probability of success

achievable. Considering the length of the plan, the performance of AOBB-WMB-JG

is comparable to Probabilistic-FF in many problem instances. The WMB relaxation

was exact, i.e., the i-bound was same as the induced width when the time horizon

was less than 7. Thus, AOBB-JG was solved by inference.

• Blocks World: Probabilistic-FF was not able to find a plan longer than 4 due to the

4GB memory limit. As we discussed in previous sections, AOBB-WMB-JG ran out

of the time when the time horizon grows higher than 8.

38

Chapter 4

Conclusions

In this thesis, we applied state of the art marginal MAP algorithms to solve probabilistic

conformant planning problems. First, we formulated the task of finding the optimal prob-

abilistic conformant plan as the marginal MAP probabilistic inference. Since probabilis-

tic planning problems are expressed in PPDDL which is extended from de-facto standard

PDDL for classical planning, we developed a translation that compiles a PPDDL instance

into a mixed dynamic bayesian network. The compilation process can be divided into two

parts. The first part encodes a PPDDL instance as CNF clauses that extract functional re-

lationships in planning problems. Our SAT encoding is based on the linear encodings of

PDDL with multi-valued effect variables that incorporate probabilistic outcomes of actions.

The next part is to compile such CNF clauses into mixed DBN.

We selected three probabilistic planning problems to evaluate the performance of marginal

MAP algorithms. The slippery gripper, comm, blocks world problem was taken from the

international planning competition website. However, the comm problem is the only prob-

lem actually used in the planning competition. The marginal MAP algorithms applied to

the empirical evaluation are AOBB-JG, BBBTi, and Yuan. The AOBB-JG algorithm refers

39

to AND/OR branch and bound search algorithm using weighted mini bucket heuristic with

join graph cost shifting scheme, the BBBTi algorithm refers to branch and bound search

algorithm using incremental mini cluster tree elimination heuristics, and the Yuan’s algo-

rithm refers to depth first branch and bound search algorithm using incremental joint tree

upper bound with unconstrained variable orderings.

The empirical evaluation showed that the marginal MAP algorithms were able to find op-

timal probabilistic conformant plans given fixed time horizon. It is not conclusive to state

what is the best algorithm based on current results since the algorithmic parameters such as

the number of message passing iterations for AOBB-JG and the cache bound for AOBB-

JG and BBBTi are not fully covered by the experiment. We also compared AOBB-JG

and Probabilistic-FF. It is shown that Probabilistic-FF performed better than AOBB-JG for

finding a plan that exceeds given threshold, but AOBB-JG was able to find the shortest plan

faster than Probabilistic-FF.

It is worth mentioning several downsides of our compilation.

• Direct mapping from ground predicates and action schemata to binary variables gives

large number of state and action variables. Therefore, the compilation is not scalable

if the problem instance has many ground objects. In addition, the compiled graphs

usually have by a large induced width not only due to the constrained variable or-

dering but also due to the large scope sized factors introduced by deterministic con-

straints. Clearly, we need compact compilation that scales better.

• The probabilsitic planning problems contains a huge number of deterministic con-

straints that could be exploited further. AOBB-JG was the only marginal MAP

algorithm that sovled the comm problem. When the constraint processing did not

employed, AOBB-JG was not able to solve any of the instances as other algorithms.

• The compiled network was stored as tables in the UAI format since it is the only

40

option for current marginal MAP algorithms. The size of the table is exponential in

the scope size. Since the large scope sized constraints introduce such exponentially

large tables, hidden variables were introduced to bound the maximum scope size.

Nevertheless, the number of new hidden variables are also exponential in the number

of ground objects.

We conclude this thesis with several proposals for future directions.

• Benchmark on harder problems: The three planning problems we addressed are easy

problems; slippery gripper was already defined at the propositional level and it con-

tains 4 state variables and 3 action variables. Blocks world were simpified by re-

moving three action schemata in the orginal release to bound the number of ground

variables at each time stage. The problem instances solved by marginal MAP algo-

rithms were limited to contain at most three blocks and 7 time horizon. Therefore,

our goal is to compile the planning domains in more compact way, and improve the

probabilistic inference algorithms to exploit symmetry and determinism further. In

addition, it is desired to evaluate the marginal MAP algorithms with a more compre-

hensive set of algorithmic parameters.

• Compact translation: More compact translation at the propositional level is desired to

push the marginal MAP search algorithms to solve planning instances leaving a larger

number of constant objects and longer time horizon at the ground level. The SAS+

based SAT encoding for the classical planning is known to produce more compact

translation compared to the linear encoding of SATPLAN. Thus, the straightforward

future work is to convert a STRIPS like PPDDL domain into finite domain represen-

tation (FDR) [9], and translate the new SAT encoding into the graphical model with

proper extension.

• Compact representation: We were able to translate a PPDDL instance into the UAI

41

format. However, the potential of the mixed network was not fully exploited because

all the contraints were stored as conditional probability tables. It is desired to extend

current solvers to read input file formats other than the UAI format. This requirement

will eventually call for the new input file format that subsumes existing formats for

the constraint programming as well as decision diagrams.

• Need for lifting: Planning problems have two source of lifting. The time horizon

which implies replicated structure over the time axis, and the state/action represen-

tation parameterized by obejct variables. It was shown that MDP/POMDP planning

can be reformulated as a mixture model of unbounded number finite length DBNs

[23] with flat state variables. Still, lifted inference for the parameterized random

variables declared in both STRIPS like PPDDL and SAS+ based FDR has not gained

much attention in the literature. We leave improving current algorithms in conjunc-

tion with lifted inference on parfactor graphs possibly translated from lifted planning

probelm representations as future work.

• Extending the Probabilistic Queries to Other Planning Problems: First of all, the

reward was ignored in our formulation. In practice, most planning problems are

formulated with the probabilistic transition as well as reward function. Therefore

it is desired to extend current probabilistic query to embrace the reward functions

as MDP planning. In addition, other classes of probabilistic planning problems like

partially observable probabilistic planning problems needs to be addressed.

42

Bibliography

[1] The 2008 UAI Probablistic Inference Evaluation. http://graphmod.ics.
uci.edu/uai08/.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, 1:1–93,
1999.

[3] A. Darwiche. New advances in compiling CNF to decomposable negation normal
form. In Proc. of ECAI, pages 328–332. Citeseer, 2004.

[4] R. Dechter. Reasoning with probabilistic and deterministic graphical models: Ex-
act algorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning,
7(3):1–191, 2013.

[5] R. Dechter and D. Larkin. Hybrid processing of beliefs and constraints. In Proceed-
ings of the Seventeenth conference on Uncertainty in artificial intelligence, pages
112–119. Morgan Kaufmann Publishers Inc., 2001.

[6] R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference.
Journal of the ACM (JACM), 50(2):107–153, 2003.

[7] C. Domshlak and J. Hoffmann. Probabilistic planning via heuristic forward search
and weighted model counting. J. Artif. Intell. Res.(JAIR), 30:565–620, 2007.

[8] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3):189–208, 1972.

[9] M. Helmert. Concise finite domain representations for PDDL planning tasks. Artifi-
cial Intelligence, 173(5):503–535, 2009.

[10] J. Huang. Complan: A conformant probabilistic planner. ICAPS 2006, page 63, 2006.

[11] N. Hyafil and F. Bacchus. Utilizing structured representations and CSPs in confor-
mant probabilistic planning. In ECAI, volume 16, page 1033, 2004.

[12] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. KR,
96:374–384, 1996.

43

http://graphmod.ics.uci.edu/uai08/
http://graphmod.ics.uci.edu/uai08/

[13] N. Kushmerick, S. Hanks, and D. S. Weld. An algorithm for probabilistic planning.
Artificial Intelligence, 76(1):239–286, 1995.

[14] R. Marinescu. AND/OR Search Strategies for Combinatorial Optimization in Graph-
ical Models. PhD thesis, University of California, Irvine, 2008.

[15] R. Marinescu, R. Dechter, and A. Ihler. Improving marginal MAP search in graphical
models. In submitted to UAI, 2014.

[16] R. Mateescu. AND/OR Search Spaces for Graphical Models. PhD thesis, University
of California, Irvine, 2007.

[17] R. Mateescu and R. Dechter. Mixed deterministic and probabilistic networks. Annals
of mathematics and artificial intelligence, 54(1-3):3–51, 2008.

[18] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL: the planning domain definition language. 1998.

[19] L. Otten. Extending the Reach of AND/OR Search for Optimization in Graphical
Models. PhD thesis, University of California, Irvine, 2013.

[20] J. Rintanen. Expressive equivalence of formalisms for planning with sensing. In
ICAPS, pages 185–194, 2003.

[21] S. Russell and P. Norvig. AI a Modern Approach. Learning, 2(3):4, 2005.

[22] T. Sang, P. Beame, and H. Kautz. Solving bayesian networks by weighted model
counting. In Proceedings of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05), volume 1, pages 475–482, 2005.

[23] M. Toussaint. Probabilistic inference as a model of planned behavior. Künstliche
Intelligenz, 3(9):23–29, 2009.

[24] H. L. Younes and M. L. Littman. PPDDL 1.0: The language for the probabilistic part
of ipc-4. In Proc. International Planning Competition, 2004.

[25] C. Yuan and E. A. Hansen. Efficient computation of jointree bounds for systematic
map search. In IJCAI, pages 1982–1989, 2009.

44

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Probabilistic Conformant Planning
	Graphical Models and Probabilistic Inference Queries

	Compiling Probabilistic Conformant Planning into Mixed DBN
	Conformant Planning as Marignal MAP
	Planning Problem Formalisms and Languages
	Compiling PPDDL into Mixed DBN
	SAT Encoding for PPDDL
	Converting CNF clauses into Mixed DBN
	Complexity of the Translation
	Compiling Slippery Gripper Problem

	Empirical Evaluation
	Benchmark Setup
	Results from Marginal MAP Algorithms
	Slippery Gripper
	Comm
	Blocks World

	Comparion with Other Planners

	Conclusions
	Bibliography

