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• Consider a probabilistic model on string-valued variables:

• Exact graphical models algorithms typically iterate over values of 
each variable, but here they are infinite

• Sampling has its own set of disadvantages

Motivation

P(announcement | title, speaker, venue, abstract) =

if announcement = title + speaker + venue + abstract

then 0.7 else

if announcement = title + venue + speaker + abstract  

then 0.3 else 0

P(speaker | name) =

if speaker = "Prof." + name

then 0.1 else

if speaker = name then 0.9 else 0

... // more statements, defining knowledge about

// names, titles etc.



Probabilistic inference with Integers
(polynomials and inequalities)

• Consider the following model:

𝑃(𝑧 ∈ 1. . 1000) ∝ 𝑧2

𝑃(𝑥 ∈ 1. . 1000 | 𝑧) ∝ if 𝑥 = 𝑧 then 𝑥 else 0.6

𝑃(𝑦 ∈ 1. . 1000 | 𝑥) ∝ if 𝑥 > 𝑦 ∧ 𝑦 ≠ 5 then 𝑥2 − 𝑦 else 0.9

𝑃 𝑥, 𝑦, 𝑧 ∝ 𝑧2× (if 𝑥 > 𝑦 ∧ 𝑦 ≠ 5 then 𝑥2 − 𝑦 else 0.9) × if 𝑥 = 𝑧 then 𝑥 else 0.6

Marginal 𝑃 𝑦 =  𝑧,𝑥𝑃 𝑥, 𝑦, 𝑧

∝ 

𝑧

𝑧2 

𝑥

if 𝑥 > 𝑦 ∧ 𝑦 ≠ 5 then 𝑥2 − 𝑦 else 0.9

× if 𝑥 = 𝑧 then 𝑥 else 0.6

• How can we compute this sum without iterating over all the values?



Example



Background - Satisfiability

• We want to compute

 

𝑥

if 𝑥 > 𝑦 ∧ 𝑦 ≠ 5 then 𝑥2 − 𝑦 else 0.9 × if 𝑥 = 𝑧 then 𝑥 else 0.6

• The Davis-Putnam-Logemann-Loveland (DPLL) algorithm 
solves the problem of satisfiability:

pqr(p q)(pqr)

• This is similar to what we need, but for

– Existential quantification instead of summation

– Propositional variables (no theories)

– Total quantification (no free variables)



Background - DPLL



Background –
Satisfiability Modulo Theories (SMT)

• Satisfiability modulo theories generalizes 
satisfiability to non-propositional logic
(includes arithmetic, inequalities, lists, 
uninterpreted functions, and others)

∃𝑥 ∃𝑦∃𝑧 ∃𝑙(𝑥 ≠ 5𝑦 ∨ 𝑦 > 𝑧) ∧ 𝑐𝑜𝑛𝑠 𝑥, 𝑛𝑖𝑙 ≠ 𝑐𝑑𝑟(𝑙)

• This is closer to what we need (since it works 
on theories), but for
– Existential quantification instead of summation

– Total quantification (no free variables)



First Contribution:
Symbolic Generalized DPLL(T)

• Similar to SMT, but based on
– Summation (or other quantifiers), besides 

– Partial quantification (free variables)

x1..10000 z1..10000 (if x > yy Í 5   then 0.1 else 0.9) 

 (if  z < y y < 3  then 0.4 else 0.6) 

• Note that y is a free variable

• Summed expression is not Boolean

• Language is not propositional (≠, <, …)



Symbolic Generalized DPLL(T) – SGDPLL(T)

xyz (x  y)  ( x  y  z)

yz y yz y  z

z true z false z z z true

x = false x = true

y = false y = true y = false y = true



 

false true

z = false z = true

Χ

x 1..10000z 1..10000[ (if x > yy Í 5   then 0.1 else 0.9) 

(if  z < y y < 3  then 0.4 else 0.6) ]

x z (if y Í 5 then 0.1 else 0.9) 

: x > y (if  z < y  y < 3 then 0.4 else 0.6)

x Ò y+

x z 0.1  if  z < y  y < 3 then 0.4 else 0.6

: x > y

+ΧΧ

x z 0.9  

: x Ò  y         (if  z < y y < 3 then 0.4 else 0.6)

x > y

else
then

if y Í 5

x    z 0.04
: x > y : z< y

= x: y < x Ò100 z: 1Ò  z < y 0.04

= x: y < x Ò100 (y ï1) 0.04

= (100 ïy) (y ï1) 0.04

= ï0.04y2 + 4.04y ï4

Χ

Condition on literals 
until
base case with no 
literals in main 
expression:



Symbolic Generalized DPLL(T)

= x: y < x Ò100 z: 1Ò  z < y 0.04

= x: y < x Ò100 (y ï1) 0.04

= (100 ïy) (y ï1) 0.04

= ï0.04y2 + 4.04y ï4

Χ

x 1..10000z 1..10000 [ (if x > yy Í 5   then 0.1 else 0.9) 

(if  z < y y < 3  then 0.4 else 0.6) ]

x z (if y Í 5 then 0.1 else 0.9) 

: x > y (if  z < y  y < 3 then 0.4 else 0.6)

x Ò y+

x z 0.1  if  z < y  y < 3 then 0.4 else 0.6

: x > y

+ΧΧ

x z 0.9  

: x Ò  y         (if  z < y y < 3 then 0.4 else 0.6)

x > y

else
then

if y Í 5

x    z 0.04
: x > y : z < y

Χ
Generic

Specific solver



Second Contribution:
Solver for summation with

difference arithmetic on bounded integers theory
on polynomials

•  z : 1Ò  z < y 0.04
is an easy case:
– Constant body expression
– Single lower bound, single upper bound, no ≠

•  z : 1Ò  z    x Ò  z    z Í 5  z < y z2ï2z

is more complicated:
– Requires splitting on x < 1 to decide which is lower bound
– Requires splitting on 5 < y to decide if z Í 5 is relevant
– Requires a generalized Faulhaber’sformula to sum over polynomial

• This splitting needs to be carefully implemented
(simplifying at every split is too expensive)



Since paper’s final version…

• … linear real arithmetic added as a separate 
theory

• Theories are automatically combined, so now 
we can define hybrid models on discrete and 
continuous variables and solve them 
symbolically
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Relation to Lifted Inference

• Lifted First-order Probabilistic Inference (Poole 2003, 
de Salvo Braz 2005)
performs probabilistic inference on first-order 
predicates, without iterating over all values of their 
arguments

X   P( cancer(X)    | smoker(X) ) = 0.6
P( smoker(mary) )                          = 0.01

• In the SMT vocabulary, that can be seen as a theory 
solver for uninterpreted functions

• This paper can be seen as lifted inference on 
interpreted functions

• Traditional lifted inference can be incorporated as
a solver for uninterpreted functions in SGDPLL(T)



Proof-of-concept Experiment

• Grounded the elections example into a regular 
graphical models and using VEC (Gogate & 
Dechter, 2011)

• Had to decrease domain size to 180 to keep it 
manageable, and VEC was still 20 times slower



Conclusion

• This is graphical models, but defined with richer 
representations (theories)

• Similar to SMT, but with summation and free 
variables

• Symbolic: result is a math expression on free 
variables

• Future work

– solvers for more theories

– unit propagation, clause learning from SAT literature

– bounded approximations for limiting the search



Thank you!


