Summary

A new decomposition method for bounding the MEU
- **Join graph decomposition for IDs (JGDID)**
 - Approximate inference algorithm for influence diagrams
 - Proposed method is based on the valuation algebra
 - Exploits local structure of influence diagrams
 - Extends dual decomposition for MMAP

Significant improvement in upper bounds compared with earlier works

- Translation-based methods
 - Pure/interleaved MMAP translation + MMAP inference
 - Direct relaxation methods
 - mini-bucket scheme with valuation algebra
 - Relaxing non-anticipativity constraint

Decomposition Bounds for IDs

- **(Definition) Power-sum elimination for a valuation algebra**
 - generalize elimination operator by L-norm

 \[
 \psi(x) = \sum_{x} \psi(x) P(X|Y) \quad \text{over} \quad X
 \]

 \[
 \sum_{x} f(x) = \sum_{x} \psi(x) P(X|Y) \leq \psi(x) P(X|Y) \quad \text{if} \quad \psi(x) P(X|Y) \leq 1
 \]

 with

 \[
 f(x) = \sum_{x} \psi(x) \quad \text{if} \quad \psi(x) P(X|Y) > 1
 \]

 \[
 \psi(x) P(X|Y) = \sum_{x} \psi(x) \quad \text{otherwise}
 \]

- **(Theorem) Decomposition Bounds for IDs**
 - decomposition bounds interchange elimination and combination

 Given an ID \(M \mid (X, \Theta, \Psi) \), the MEU can be bounded by

 \[
 \psi(x) = \sum_{x} \psi(x) \quad \text{over} \quad X
 \]

 \[
 \theta(x) = \sum_{y} \theta(x, y) \quad \text{for} \quad y \in Y
 \]

 \[
 \Delta = \{ \theta(x) \mid x \in X \}
 \]

Message Passing Algorithm (JGDID)

- **Algorithm**
 - Input: Influence diagram \(M = (X, \Theta, \Psi) \), initial weights on arcs, and variables \(X \)
 - Output: Upper bounds on the maximum expected utility

Background – Influence Diagrams

- A graphical model for sequential decision-making under uncertainty with perfect recall

Background – Value and Utility

- Algebraic framework for computing expected utility value (a.a. potential)

Background – Value and Utility

- Approximation scheme that decomposes a Join tree by limiting the maximum cluster size

Experiment

- **Benchmarks**
 - Proposed methods
 - **GODD**
 - **JGDID**
 - Non-benchmarked methods
 - **WBMIM**
 - **MBE-VA**
 - **MBE-VA-IA**

Earlier Works

- **MMAP translation + approximate MMAP inference**
 - Reduction of ID to MMBP
 - **WMBM (Weighted Mini-Bucket with Moment Matching)**

- **Direct methods for bounding IDs**
 - Reduction of ID to Interpreted MMBP
 - **GODD (Generalized Dual Decomposition)**

Parameters & Acknowledgement

- **References & Acknowledgement**

Note:

- This work was supported in part by NSF grants IIS-1528440 and IIS-1528445, and the US Air Force Contract F46722-16-C-0064 and DARPA (Contract #N66001-16-C-40115).