A New Bounding Scheme for Influence Diagrams

Radu Marinescu, Junkyu Lee and Rina Dechter

AAAII-2021
Motivation

- Influence diagrams are a powerful formalism for reasoning with sequential decision-making problems under uncertainties
 - Involve random (or chance) variables, decision variables and utility functions

- Task: find the maximum expected utility (MEU) and the corresponding optimal policy
 - Notoriously difficult to solve exactly in practice

- Recent work focused on bounding the MEU
 - E.g., information relaxation, reformulation to Marginal MAP, partitioning over join-trees

- **Contribution:**
 - Revisit multi-operator cluster DAG (MCDAG) decompositions for influence diagrams
 - Partitioning-based (mini-bucket) approximation for MCDAGs to upper bound the MEU
 - Apply cost-shifting to tighten the upper bounds further
 - Show empirically that the new scheme produces bounds that are several orders of magnitude tighter than those obtained with existing bounding schemes
Outline

- Motivation
- Preliminaries
- MCDAG decompositions
- Weighted mini-buckets over MCDAGs
- Experimental results
- Conclusion
Influence Diagrams

- An ID is a tuple \((X, D, P, U)\) where:
 - \(X = \{X_1, ..., X_n\}\) are chance variables
 - \(D = \{D_1, ..., D_m\}\) are decision variables
 - \(P = \{P_1, ..., P_n\}\), s.t. \(P_i = \Pr(X_i | pa(X_i))\) are conditional probability tables (CPTs)
 - \(U = \{U_1, ..., U_r\}\) are local utility functions defining global utility \(\mathcal{U} = \sum_{i=1}^r U_i\)

- No-forgetfulness and regularity imply a partial ordering: \(I_0 < D_1 < I_1 < \cdots < D_m < I_m\)

- MEU: \(\sum_{I_0} \max_{D_1} \cdots \sum_{I_m} \max_{D_m} (\prod P_i \sum U_j)\)

- Variable elimination [Schachter, 1986], [Jensen et al., 1994], [Dechter, 2000] ...
Multi-operator Cluster DAGs (MCDAGs)

- Recent decomposition for IDs with smaller induced widths than traditional strong join-tree decompositions [Pralet et al., 2006]
- Refines the MEU expression to exploit reordering freedom and normalization conditions on CPTs
- A DAG where each vertex (cluster) c has:
 - Variables $V(c)$, functions $\Psi(c)$
 - Child clusters $ch(c)$
 - Operators $\oplus \in \{\Sigma, \max\}$ and $\otimes \in \{+, \times\}$ such that $(\oplus, \otimes, \mathbb{R})$ is commutative semiring
 - \oplus: elimination operator
 - \otimes: combination operator

\[
\begin{align*}
V(n_4) &= \{D_2, D_4\}; \Psi(n_4) = \emptyset; ch(n_4) = \{n_5, n_6, n_7\}; \oplus &= \max; \\
\otimes &= +
\end{align*}
\]
Variable Elimination over MCDAGs

- Compute the MEU via message passing over the MCDAG, from leaves to the root:

\[MEU = \max_{D_0} \lambda_2 + \lambda_3 \]

\[\lambda_2 = u_1(D_0) \]

\[\lambda_3 = \sum_{C_1} \lambda_4 \]

\[\lambda_4 = \max_{D_2} \max_{D_4} (\lambda_5 + \lambda_6 + \lambda_7) \]

\[\lambda_5 = \lambda_8 \cdot u_4(D_2, D_4) \]

\[\lambda_6 = \lambda_8 \cdot u_2(D_0, C_1, D_4) \]

\[\lambda_7 = \sum_{C_3} P(C_3) \cdot P(C_1|C_3) \cdot u_3(D_2, C_3) \]

\[\lambda_8 = \sum_{C_3} P(C_3) \cdot P(C_1|C_3) \]
Weighted Mini-Buckets for MCDAGs

- Complexity of VE is time and space exponential in the size of the largest message
 - i.e., exponential in the induced width of the MCDAG

- The idea is to approximate the \(\lambda \)-messages by sets of smaller messages (called *compound messages*) via a partitioning-based (or mini-bucket) approximation
 - Compound messages are propagated along the edges of the MCDAG
 - Compound messages must be combined in different ways, either by multiplication or summation depending on whether the sending cluster is a sum or a max one

- Formally, we define two types of compound messages:
 - \(\pi \)-messages: product of functions (i.e., \(\pi = \prod_i f_i \))
 - \(\sigma \)-messages: sum of \(\pi \)-messages (i.e., \(\sigma = \sum_j \pi_j \))

- The approximation scheme is guaranteed to output an *upper bound* on the MEU value

- Complexity is exponential (time and space) in the \(i \)-bound that controls the mini-bucket partitioning (i.e., \(i \)-bound dictates the number of distinct variables allowed in a mini-bucket)
Processing a SUM Cluster

i-bound is 2, therefore we generate mini-buckets with at most 2 distinct variables

Generate a σ-message:

$\sigma = \{\pi_1, \pi_2\}$, where
$\pi_1 = \{\lambda_1(B), \lambda_2(C)\}$,
$\pi_2 = \{\lambda_3(B), \lambda_4(C)\}$

$\pi(A, B, C) = h_1(A, B) \cdot h_2(A, C)$
$\sigma(A, B, C) = g_1(A, B) \cdot g_2(A, C) + g_3(A, B) \cdot g_4(A, C)$

$\lambda = \sum_A f_1(A, B) \cdot h_1(A, B) \cdot g_1(A, B) + \sum_A f_1(A, B) \cdot h_1(A, B) \cdot g_3(A, B) + \sum_A f_1(A, B) \cdot h_1(A, B) \cdot g_4(A, C)$

$= \lambda_1(B) \cdot \lambda_2(C) + \lambda_3(B) \cdot \lambda_4(C)$
Processing a MAX cluster

i-bound is 2, therefore we generate mini-buckets with at most 2 distinct variables

Generate a σ-message:

$\sigma = \{\pi_1, \pi_2, \pi_3, \pi_4\}$, where

$\pi_1 = \{\lambda_1^1(B, C)\}$,

$\pi_2 = \{\lambda_1^2(B), \lambda_2(B, C, D)\}$,

$\pi_3 = \{\lambda_3^1(B, C)\}$,

$\pi_4 = \{g_4(C, D), \lambda_3^2(B)\}$

For MAX clusters, the max operator is pushed both inside summation as well as multiplication (unlike SUM case)

$\sigma(B, C, D) = \lambda_1^1(B, C) + h_2(C, D) \cdot \lambda_2^1(B) + \lambda_3^1(B, C) + g_4(C, D) \cdot \lambda_3^2(B)$
Tightening the Bounds by Cost-Shifting

- The upper bounds obtained can be tighten further using cost-shifting
 - Use weighted elimination instead of regular elimination
 \[
 \sum_X^w f = \left(\sum_X f \frac{1}{w} \right)^w
 \]
 - Moment-matching between mini-buckets for SUM clusters [Marinescu et al., 2014]
 - Let \(Q = \{Q_1, \ldots, Q_R\} \) be a mini-bucket partitioning such that \(\psi_r = \prod_{f \in Q_r} f \) and assign weight \(w_r > 0 \) to each mini-bucket \(Q_r \) such that \(\sum_r w_r = 1 \) (\(X \) is the eliminated)
 - Re-parameterize \(\psi_r = \psi_r \left(\frac{\mu}{\mu_r} \right)^{w_r}, \mu_r = \sum_{Y_r} \psi_r^{1/w_r}, \mu = \prod_r \mu_r^{w_r}, Y_r = vars(Q_r) \setminus X \)
 - Moment-matching between mini-buckets for MAX clusters
 - Let \(Q = \{Q_1, \ldots, Q_R\} \) be a mini-bucket partitioning
 - If \(\psi_r = \prod_{f \in Q_r} f \) then re-parameterize \(\psi_r = \psi_r \left(\frac{\mu}{\mu_r} \right), \mu_r = \max_{Y_r} \psi_r, \mu = (\prod_r \mu_r)^{1/R} \)
 - If \(\psi_r = \sum_{f \in Q_r} f \) then re-parameterize \(\psi_r = \psi_r - \mu_r + \frac{1}{R} \mu, \mu_r = \max_{Y_r} \psi_r, \mu = \sum_r \mu_r \)
Experimental Results

- **Algorithms for IDs**
 - MBE [Dechter, 2000]
 - Mini-bucket approximation over a join-tree
 - WMB [Lee et al., 2019]
 - Weighted mini-buckets using a valuation algebra for influence diagrams
 - MCDAG-MBE
 - Mini-buckets over MCDAGs
 - MCDAG-WMB-MM
 - Weighted mini-buckets over MCDAGs with moment-matching

- **Benchmarks**
 - Random: grids, random graphs, POMDPs
 - Planning: system administrator [Guestrin et al., 2003]
Results: random influence diagrams

\[
\text{Gap } \rho = \frac{(U - U^*)}{U}, \text{ relative to the tightest upper bound } U^*
\]

\[w^*\text{- induced width (join-tree); } s^*\text{- induced width (MCDAG)}\]

Lower (closer to 0) is better
Results: planning instances (sysadmin)

<table>
<thead>
<tr>
<th>instance</th>
<th>algorithm</th>
<th>i=2</th>
<th>i=10</th>
<th>i=18</th>
</tr>
</thead>
<tbody>
<tr>
<td>sys1_s=10_t=3</td>
<td>MBE</td>
<td>2.09E+34</td>
<td>2.38E+18</td>
<td>7.70E+13</td>
</tr>
<tr>
<td></td>
<td>MCDAG-MBE</td>
<td>2.82E+24</td>
<td>2.88E+09</td>
<td>2.60E+06</td>
</tr>
<tr>
<td></td>
<td>WMB</td>
<td>1.02E+10</td>
<td>8.37E+07</td>
<td>4.34E+06</td>
</tr>
<tr>
<td></td>
<td>MCDAG-WMB-MM</td>
<td>3.44E+07</td>
<td>8.79E+03</td>
<td>4.31E+02</td>
</tr>
<tr>
<td>sys1_s=10_t=4</td>
<td>MBE</td>
<td>1.72E+46</td>
<td>3.01E+26</td>
<td>1.11E+19</td>
</tr>
<tr>
<td></td>
<td>MCDAG-MBE</td>
<td>1.93E+35</td>
<td>3.79E+14</td>
<td>1.39E+10</td>
</tr>
<tr>
<td></td>
<td>WMB</td>
<td>6.59E+13</td>
<td>2.87E+11</td>
<td>3.04E+08</td>
</tr>
<tr>
<td></td>
<td>MCDAG-WMB-MM</td>
<td>1.18E+11</td>
<td>2.68E+06</td>
<td>3.98E+04</td>
</tr>
<tr>
<td>sys1_s=10_t=5</td>
<td>MBE</td>
<td>1.38E+58</td>
<td>5.43E+30</td>
<td>6.27E+22</td>
</tr>
<tr>
<td></td>
<td>MCDAG-MBE</td>
<td>1.33E+46</td>
<td>3.18E+19</td>
<td>9.12E+13</td>
</tr>
<tr>
<td></td>
<td>WMB</td>
<td>1.80E+17</td>
<td>7.67E+13</td>
<td>4.34E+11</td>
</tr>
<tr>
<td></td>
<td>MCDAG-WMB-MM</td>
<td>4.09E+14</td>
<td>1.36E+09</td>
<td>1.46E+07</td>
</tr>
</tbody>
</table>

Smaller values are better
Conclusion

- Revisit MCDAG decompositions for influence diagrams and develop a partitioning-based approximation scheme for bounding the maximum expected utility.

- MCDAGs are more sensitive to the underlying problem structure than strong join-trees
 - Smaller induced width led to a partitioning that yields more accurate bounds.

- Apply cost-shifting by moment-matching to tighten the bounds further.

- Experiments on difficult benchmark problem instances demonstrate the effectiveness of our proposed bounding scheme compared with existing state-of-the-art approaches.

- **Future work**: using these bounds as heuristics for guiding search algorithms for finding optimal policies, as well as developing a more powerful iterative cost-shifting scheme between the clusters of the MCDAG decomposition.