Summary

Tree Decomposition for Influence Diagrams and Limited Memory Influence Diagrams
- Graph separation criteria for identifying single-stage decision problems
- Valuation algebra over submodels using graph-based operations
- Submodel-Tree Clustering and Elimination Scheme

Submodel Decomposition Bounds
- Bounding MEU by exponentiating utility functions
- Re-use decomposition bounds in Marginal MAP inference

Contributions
- Generate submodel-tree with lower tree-width by removing irrelevant variables and functions in each submodel
- Scalable convex upper bounds for MEU

Influence Diagrams

\[\mathcal{M} := (X, \mathbf{D}, \mathbf{P}, U, O) \]

- **Chance variables** \(X = \{X_1, X_2, \ldots, X_n\} \)
- **Decision variables** \(\mathbf{D} = \{D_1, D_2, \ldots, D_m\} \)
- **Probability functions** \(\mathbf{P} = \{P_1, P_2, \ldots, P_n\} \)
- **Utility functions** \(U = \{U_1, U_2, \ldots, U_n\} \)
- **Policy functions** \(\Delta = \{\Delta_1, \Delta_2, \ldots, \Delta_n\} \)

Optimal strategy \(\Delta^* = \arg \max \mathbb{E} \left[\sum_{U_i \in \mathbf{U}} U_i \right] \)

Maximum expected Utility \(\max \Delta \mathbb{E} \left[\sum_{U_i \in \mathbf{U}} U_i \right] \)

Graph-based Submodel Identification
- \(\text{REL}(D', U') \) is the backdoor\(^*\) set between \(D' \) and \(U' \)
 - \(\text{Backdoor} \) (p. 2009)
 - a set \(Z \) satisfies the backdoor criterion relative to \((X, Y) \)
 - (1) None of the nodes in \(Z \) is a descendant of \(X \)
 - (2) \(Z \) blocks every path between \(X \) and \(Y \) that contain arrow into \(X \)
- \(\text{REL}(D', U') \) is the union of all frontdoor\(^*\) set between \(pa(D') \) and \(ch(U') \)
 - \(\text{Frontdoor} \) (p. 2009)
 - a set \(Z \) satisfies the frontdoor criterion relative to \((X, Y) \)
 - (1) \(Z \) intercept all directed paths from \(X \) to \(Y \)
 - (2) There is no backdoor path from \(X \) to \(Z \)
 - (3) All backdoor paths from \(Z \) to \(Y \) are blocked by \(X \)

Partial Evaluation and Local MEU

LMEU

\[\text{LMEU}_{\mathcal{M}(D', U')} := \max \Delta \mathbb{E} \left[\sum_{U_i \in \mathbf{U}} U_i \right] \]

Evaluate MEU over the subset of decision variables and utility functions
- Maximize expected utility \(U_2 + U_3 \) over two decision variables \(D_2 \) and \(D_3 \)

\[\max \Delta (D_2, D_3, C_4, C_5, C_6) \mathbb{E} [P(X, D)] \]

Submodel in IDs

- (Definition) Submodel \(\mathcal{M}'(D', U') \) is a relevant subset of model \(\mathcal{M} \) for computing LMEU on \(D' \subseteq D, U' \subseteq U \)

Graphical Models

Submodel-Tree Decomposition
- Process decision nodes in reverse topological order
- Partial decision order \(\mathcal{O}_P = (D_1 < D_2 < D_3) \)

\[\mathcal{M}(D_1, D_2, D_3, U_1, U_2, U_3) \]

Identify 2nd Stable submodel
- Eliminate submodel from ID

Identify 1st Stable Submodel
- Given an ID \(\mathcal{M} \) and the set of stable submodels \(\mathcal{M}_{O_D} \), relative to \(O_D \)
- submodel-tree decomposition is a tuple \(\mathcal{T}_{FT} := (T(C, S), \chi, \psi) \)

Tree-clustering scheme

Bounding MEU of Each Submodel
- Exponentiated Utility Bounds for MEU

\[\max \Delta \left[\sum_{U_i \in \mathbf{U}} U_i \right] \leq \log \max \Delta \left[\prod_{U_i \in \mathbf{U}} e^\mathbb{E} (X_{U_i}) \right] \]

Experiments

Synthetic ID Benchmarks

Domain	n	m	p	q	r	s	t	u	v	w	x	y	z	n	m	p	q	r	s	t	u	v	w	x	y	z			
ID-BN	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
ID-DNN	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

- **ST-GDD**: submodel-free decomposition + GGD for MMAP
- **ST-WMD**: submodel-free decomposition + WMD for MMAP
- **ST-WMD-B**: submodel-free decomposition + WMD for MMAP
- **ST-WMD-B+B**: submodel-free decomposition + WMD for MMAP

Synthetic ID Benchmarks

<table>
<thead>
<tr>
<th>Instance</th>
<th>c</th>
<th>d</th>
<th>p</th>
<th>n</th>
<th>k</th>
<th>s</th>
<th>u</th>
<th>w</th>
<th>stime (sec)</th>
<th>ubtime (sec)</th>
<th>pbngb</th>
<th>gap (pbngb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdp10-s0-13</td>
<td>218</td>
<td>150</td>
<td>218</td>
<td>300</td>
<td>3</td>
<td>11</td>
<td>112</td>
<td>149</td>
<td>162.368</td>
<td>240</td>
<td>142.731</td>
<td>240</td>
</tr>
<tr>
<td>mdp10-s0-14</td>
<td>274</td>
<td>200</td>
<td>274</td>
<td>400</td>
<td>3</td>
<td>11</td>
<td>112</td>
<td>184</td>
<td>217.515</td>
<td>328</td>
<td>183.650</td>
<td>328</td>
</tr>
<tr>
<td>mdp10-s0-15</td>
<td>330</td>
<td>250</td>
<td>330</td>
<td>500</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>257</td>
<td>273.323</td>
<td>400</td>
<td>221.450</td>
<td>400</td>
</tr>
<tr>
<td>mdp10-s0-16</td>
<td>386</td>
<td>300</td>
<td>386</td>
<td>600</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>191.31</td>
<td>327.208</td>
<td>480</td>
<td>358.294</td>
<td>480</td>
</tr>
<tr>
<td>mdp10-s0-17</td>
<td>442</td>
<td>442</td>
<td>700</td>
<td>11</td>
<td>113</td>
<td>28013</td>
<td>383.312</td>
<td>560</td>
<td>291.988</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mdp10-s0-18</td>
<td>498</td>
<td>498</td>
<td>498</td>
<td>800</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>41789</td>
<td>439.826</td>
<td>630</td>
<td>316.600</td>
<td>630</td>
</tr>
<tr>
<td>mdp10-s0-19</td>
<td>554</td>
<td>554</td>
<td>554</td>
<td>900</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>34789</td>
<td>494.662</td>
<td>720</td>
<td>345.414</td>
<td>720</td>
</tr>
<tr>
<td>mdp10-s0-10</td>
<td>610</td>
<td>610</td>
<td>610</td>
<td>1000</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>58270</td>
<td>549.867</td>
<td>800</td>
<td>364.569</td>
<td>800</td>
</tr>
</tbody>
</table>

SysAdmin MDP Probabilistic Planning Problem

- **ST-GDD**: submodel-free decomposition + GGD for MMAP
- **ST-WMD**: submodel-free decomposition + WMD for MMAP
- **ST-WMD-B**: submodel-free decomposition + WMD for MMAP
- **ST-WMD-B+B**: submodel-free decomposition + WMD for MMAP