Submodel Decomposition Bound for Influence Diagrams

Junkyu Lee
junkyul@uci.edu
University of California, Irvine
IBM Research AI

Radu Marinescu
radu.marinescu@ie.ibm.com
IBM Research Europe

Rina Dechter
dechter@ics.uci.edu
University of California, Irvine

35th AAAI Conference on Artificial Intelligence
Outline

• Backgrounds
 • Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 • Decomposition of IDs and LIMIDs
 • Bounding Schemes for Maximum Expected Utility (MEU)

• Submodel Decomposition for IDs and LIMIDs
 • Motivation and Contributions
 • A Submodel-Tree Clustering Scheme
 • A Bounding Scheme over Submodel-Tree

• Experiments and Case Study
 • Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain

• Conclusion and Future Directions
Outline

• Backgrounds
 • Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 • Decomposition of IDs and LIMIDs
 • Bounding Schemes for Maximum Expected Utility (MEU)

• Submodel Decomposition for IDs and LIMIDs
 • Motivation and Contributions
 • A Submodel-Tree Clustering Scheme
 • A Bounding Scheme over Submodel-Tree

• Experiments and Case Study
 • Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain

• Conclusion and Future Directions
Sequential Decision Making Under Uncertainty

\[R(s_t, a_t) \]
\[\mathbb{E}[\sum_{t=1}^{T} r_t] \]
\[\Delta(a_4|a_3, o_3) \]

agent

\[\mathbb{P}(s_{t+1}|s_t, a_t) \] stochastic dynamics over factored state variables
\[\mathbb{P}(o_t|s_t, a_{t-1}) \] stochastic partial observation
\[\Delta(a_4|a_3, o_3) \] stochastic, non-stationary, limited memory policy

system
Influence Diagrams

\[\mathcal{M} := \langle X, D, P, U, \mathcal{O} \rangle \]

Chance variables
\[X = \{X_1, X_2, \ldots, X_n\} \]

Decision variables
\[D = \{D_1, D_2, \ldots, D_m\} \]

Probability functions
\[P = \{P_1, P_2, \ldots, P_n\} \]

Utility functions
\[U = \{U_1, U_2, \ldots, U_r\} \]

Policy functions
\[\Delta = \{\Delta_1, \ldots, \Delta_m\} \]

\[\mathcal{O} = \{\text{pa}(D_1) \prec D_1 \prec \cdots \prec \text{pa}(D_m) \prec D_m\} \]

\[\Delta_i(D_i|\text{hist}(D_i)) \]

Maximum expected Utility
\[\max_\Delta \mathbb{E}_{P(X,D)} \left[\sum_{U_i \in U} U_i \right] \]

Optimal strategy
\[\Delta^* = \operatorname{argmax}_\Delta \mathbb{E} \left[\sum_{U_i \in U} U_i \right] \]
\[\mathcal{M} := \langle X, D, P, U, \mathcal{O} \rangle \]

Policy functions \[\Delta = \{ \Delta_1, \ldots, \Delta_m \} \]

\[\Delta_i(D_i|\text{pa}(D_i)) \]

[Lauritzen and Nilsson, 2001]
Graphical Models

$\mathcal{M} := \langle X, D, F \rangle$

Variables $X = \{X_1, X_2, \ldots, X_n\}$
Domains $D = \{D_1, D_2, \ldots, D_n\}$
Functions $F = \{F_1, F_2, \ldots, F_r\}$

Global Function $F(X) = \prod_{F_i \in F} F_i(X_{F_i})$
combination operator: $\otimes, \times, +, \bigotimes$

Inference Task $Z = \sum_X \prod_{F_i \in F} F_i(X_{F_i})$
elimination operator: \sum, max, min

Complexity $(\max |D_i|)^\text{tree-width}$ [Decther, 1999]

Bayesian Networks [Pearl 1998]

Primal Graph

Join-Tree

$P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)$

Primal Graph
Decomposition of IDs with Perfect Recall

- Constrained Junction-Tree for IDs [Jensen, 1994]
 - Transform influence diagram to primal graph
 - Use restricted elimination order to obtain constrained tree decomposition

- Decomposition of IDs [Nielsen and Jensen, 1999] [Nielsen, 2001]
 - Identify requisite observation in IDs
 - Extract required subset of variables and functions for each decision variable

- MC-DAG for IDs [Pralet, et. al. 2006]
 - Re-write MEU expression and identify the most relaxed variable elimination order for computing MEU
Decomposition of LIMIDs

- Soluble LIMIDs [Zhang and Poole, 1992] [Lauritzen and Nilsson, 2001]
 - Identify a subclass of LIMIDs that can be solved by variable elimination
 - Local search algorithm that improves single policy function at each iteration

- Local Search for LIMIDs [Detwarasiti and Shacter, 2005] [Maua, 2016]
 - Improve multiple policy functions at each iteration
 - Identify relevant subset of nodes for updating multiple policy functions
Upper bounds for MEU in IDs

- IDs with perfect recall
 - Information Relaxation [Nielsen and Hohle, 2001] [Yuan, et. al. 2010]
 - Join-Graph Decomposition Bounds [Lee, et. al. 2018]
 - Weighted Mini-bucket Decomposition Bounds [Lee, et. al. 2019]

- LIMIDs [Maua and Cozman, 2016]
 - Theoretical Bounds

- Translating IDs with perfect recall
 - Marginal MAP [Liu and Ihler, 2012] [Maua, 2016]
 - MILP Encodings [Parmentier et. al, 2020]
Outline

• Backgrounds
 • Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 • Decomposition of IDs and LIMIDs
 • Bounding Schemes for Maximum Expected Utility (MEU)

• Submodel Decomposition for IDs and LIMIDs
 • Motivation and Contributions
 • A Submodel-Tree Clustering Scheme
 • A Bounding Scheme over Submodel-Tree

• Experiments and Case Study
 • Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain

• Conclusion and Future Work
Motivations and Contributions

• Graph-based method for decomposing IDs and LIMIDs
 • Remove some restrictions in earlier approaches
 • 1 decision per 1 time step, regularity condition, perfect recall

 • Extend tree clustering framework for reasoning in graphical models
 • Identify subproblems from graph
 • Extract a cluster tree for exact algorithms
 • Characterize complexity

• Upper-Bounds for MEU in IDs and LIMIDs
 • Don’t inflate problem size by translation
 • Avoid difficult non-convex optimization formulations in earlier works
Partial Evaluation and Local MEU

• (Definition) Local Maximum Conditional Expected Utility

\[\text{LMEU}_{M(D', u')} := \max_{\Delta'} \mathbb{E} \left[\sum_{U_i \in u'} U_i | \text{pa}(D') \right] \]

\[\max_{\Delta(D_2|C_3,C_4), \Delta(D_3|C_6)} \sum_{X,D} \frac{P(X,D)}{P(C_3,C_4,C_6)} \left[U_2 + U_3 \right] \]
(Definition) Submodel $\mathcal{M}'(\mathbf{D}', \mathbf{U}')$ is a relevant subset of model \mathcal{M} for computing LMEU on $\mathbf{D}' \subseteq \mathbf{D}, \mathbf{U}' \subseteq \mathbf{U}$

Submodel

- **Relevant Observed Variables** $\text{REL}_O(\mathbf{D}', \mathbf{U}')$
- **Relevant Hidden Variables** $\text{REL}_H(\mathbf{D}', \mathbf{U}')$
Stable Submodel

• (Definition) Submodel $\mathcal{M}'(D', U')$ is stable when there is no decision variables in $\text{REL}_H(D', U')$

Unstable Submodel $\mathcal{M}'(\{D_3\}, \{U_3\})$

Stable Submodel $\mathcal{M}'(\{D_2, D_3\}, \{U_2, U_3\})$
Graph-based Identification of Submodels

- $\text{REL}_U(D')$ is descendant utility nodes of decision nodes [Nielsen and Jensen 1999]
Graph-based Identification of Submodels

- $\operatorname{REL}_O(D', U')$ is the backdoor* set between D' and U'

(Backdoor) [Pearl 2009]
a set Z satisfies the backdoor criterion relative to (X, Y)
1. None of the nodes in Z is a descendant of X
2. Z blocks every path between X and Y that contain arrow into X

\{C3, C6\} is a backdoor set relative to \{\{D2, D3\}, \{U2, U3\}\}

Removing C3 opens a backdoor path by $C1 \rightarrow C3 \rightarrow D2 \rightarrow C3 \rightarrow C5 \rightarrow U3$
Graph-based Identification of Submodels

- $\text{REL}_H(D', U')$ is the union of all frontdoor* set between $\text{pa}(D')$ and $\text{ch}(U')$

(Frontdoor) [Pearl 2009]
a set Z satisfies the frontdoor criterion relative to (X, Y)
1. Z intercept all directed paths from X to Y
2. There is no backdoor path from X to Z
3. All backdoor paths from Z to Y are blocked by X

C1, C2, D1, and C4 don’t belong to any frontdoor set
Submodel–Tree Clustering

- Process decision nodes in reverse topological order

 Partial decision order $\mathcal{O}_D = \{D_1 \prec D_2 \prec D_3\}$

 Process decision variables in the order of D3, D2, and D1

Submodel $\mathcal{M}'(\{D_3\}, \{U_3\})$ is unstable
Submodel–Tree Clustering

- Find a stable submodel

Next combine two submodels \(M'(\{D_3\}, \{U_3\}) \otimes M'(\{D_2\}, \{U_2, U_3\}) \)

and Try \(M'(\{D_2, D_3\}, \{U_2, U_3\}) \)

\(M'(\{D_2, D_3\}, \{U_2, U_3\}) \) is stable
Submodel–Tree Clustering

- Eliminate submodel $\mathcal{M}'(\{D_2, D_3\}, \{U_2, U_3\})$ from IDs \mathcal{M}

Remove D2, D3, U2, U3 and Add V(C3)

Remove barren chance nodes C4, C5, C6
Submodel–Tree Clustering

- Identify the next submodel and find a submodel-tree

\[\mathcal{M}'(\{D_1\}, \{U_1, V\}) \]

Submodel Cluster is a single-stage ID
Submodel Cluster Propagates Conditional MEU
Valuation Algebra over Stable Submodels

• Given an ID \mathcal{M}, $\Upsilon_{\mathcal{M}} = \langle \mathcal{M}_{\mathcal{O}_D}, \mathcal{D}_{\mathcal{O}_D}, \otimes, \downarrow \rangle$ is a valuation algebra

 \mathcal{O}_D Partial decision order read from ID

 $\mathcal{M}_{\mathcal{O}_D}$ A set of stable submodels in \mathcal{M} subject to \mathcal{O}_D

 \otimes Combination operator for a submodel

 \downarrow Projection operator for a submodel

 $\mathcal{M}_{\mathcal{O}_D}$ A closure of $\mathcal{M}_{\mathcal{O}_D}$ under the combination

 $\text{dom}(\mathcal{M}')$ Domain of a submodel (all variables in \mathcal{M}')

 $\mathcal{D}_{\mathcal{O}_D}$ A set of domains of submodels in $\mathcal{M}_{\mathcal{O}_D}$

[Shenoy 1997] [Kohlas and Shenoy, 2000]
Valuation Algebra over Stable Submodels

• Given an ID \mathcal{M}, $\Upsilon_{\mathcal{M}} = \langle M_{O_D}, D_{O_D}, \otimes, \downarrow \rangle$ is a valuation algebra [Kohlas and Shenoy, 2000]

 Semi-group of submodels: M_{O_D} is a semi-group with the combination operation

 Domain of combination: $\text{dom}(M'_1 \otimes M'_2) = \text{dom}(M'_1) \cup \text{dom}(M'_2)$

 Marginalization: $\downarrow_{X} M' = \downarrow_{X \cap \text{dom}(M')} M'$

 $\text{dom}(\downarrow_{X} M') = X \cap \text{dom}(M')$

 $\downarrow_{\text{dom}(M')} M' = M'$

 Transitivity of marginalization: $\downarrow_{X} (\downarrow_{Y} M') = \downarrow_{X \cap Y} M'$

 Distributivity of marginalization over combination: $\downarrow_{X} (M'_1 \otimes M'_2) = M'_1 \otimes (\downarrow_{X} M'_2)$

 Neutral elements: $M'_{0(X)} \otimes M'_{0(Y)} = M'_{0(X \cup Y)}$

• Valuation algebra satisfies axioms of local computation [Shenoy 1997]
Submodel–Tree Decomposition

• Given an ID M, and the set of stable submodels M_{OD} relative to OD, submodel-tree decomposition is a tuple $T_{ST} := \langle T(C, S), \chi, \psi \rangle$

 $T(C, S)$: Tree of submodel cluster nodes C and separator edges S

 $\chi : C \rightarrow 2^{\text{dom}(M)}$: Label a cluster with a subset of variables in M

 $\psi : C \rightarrow 2^{M_{OD}}$: Label a cluster with a subset of submodels in M_{OD}

 Tree-decomposition satisfies running intersection property

![Diagram of submodel-tree decomposition]

$M'(\{D_1\}, \{U_1, V\})$ $M'(\{D_2, D_3\}, \{U_2, U_3\})$
Submodel–Tree Decomposition

• Minimal submodel-tree decomposition

A submodel-tree decomposition is minimal if submodels assigned at each cluster is not a combination of two stable submodels

• Given an ID, minimal submodel-tree decomposition is unique.

• For IDs with perfect recall, the minimal submodel-tree is equivalent to MC-DAG

• For IDs with perfect recall, each submodel cluster is one time-step ID

• For IDs without perfect recall, each submodel cluster defines the scope of exhaustive search
Message Passing over a Submodel-Tree

\[M'(\{D_1\}, \{U_1, V\}) \]

\[M'(\{D_2, D_3\}, \{U_2, U_3\}) \]

\[V(C_3) = \max_{\Delta(D_2, D_3|C_3, C_6)} \mathbb{E}[U_2 + U_3|C_3] \]

\[P(C_3) = \sum_{C_1, C_2, D_1} P(C_1, C_2, C_3, D_1) \]

- Each submodel can be solved by any exact algorithm for propagating messages
The time and space complexity for solving IDs over the submodel-tree decomposition is exponential in submodel-tree width \(w_s : \max_{C \in C} w_c(C') \), where \(w_c(C) \) is the constrained tree-width of the submodel at \(C \).
Bounding MEU of Each Submodel

• Exponentiated Utility Bounds for MEU

For each submodel cluster, we can apply Jensen’s inequality to bound MEU

\[
\max_{\Delta} \mathbb{E} \left[\sum_{U_i \in U} U_i(X_{U_i}) \right] \leq \max_{\Delta} \log \mathbb{E} \left[e^{\sum_{U_i \in U} U_i(X_{U_i})} \right]
\]

\[
= \log \max_{\Delta} \mathbb{E} \left[e^{\sum_{U_i \in U} U_i(X_{U_i})} \right]
\]

\[
= \log \max_{\Delta} \mathbb{E} \left[\prod e^{U_i(X_{U_i})} \right]
\]

LSH: MEU expression with additive utility function
RHS: Upper bound of MEU with log-partition function with exponentiated utility functions

• Use “any” upper bounding scheme for MMAP on RHS
Outline

• Backgrounds
 • Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 • Decomposition of IDs and LIMIDs
 • Bounding Schemes for Maximum Expected Utility (MEU)

• Submodel Decomposition for IDs and LIMIDs
 • Motivation and Contributions
 • A Submodel-Tree Clustering Scheme
 • A Bounding Scheme over Submodel-Tree

• Experiments and Case Study
 • Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain

• Conclusion and Future Directions
Benchmark Domains

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>c</th>
<th>d</th>
<th>f</th>
<th>p</th>
<th>u</th>
<th>k</th>
<th>s</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Horizon MDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>25</td>
<td>20</td>
<td>3</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Average</td>
<td>105.7</td>
<td>99.6</td>
<td>6.1</td>
<td>134.1</td>
<td>99.6</td>
<td>34.5</td>
<td>3.1</td>
<td>7.1</td>
<td>25.5</td>
</tr>
<tr>
<td>Max</td>
<td>170</td>
<td>160</td>
<td>10</td>
<td>240</td>
<td>160</td>
<td>80</td>
<td>5</td>
<td>9</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>c</th>
<th>d</th>
<th>f</th>
<th>p</th>
<th>u</th>
<th>k</th>
<th>s</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Horizon POMDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>15</td>
<td>12</td>
<td>3</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Average</td>
<td>55.9</td>
<td>52.4</td>
<td>3.5</td>
<td>73.5</td>
<td>52.4</td>
<td>21.1</td>
<td>2.4</td>
<td>5.5</td>
<td>28</td>
</tr>
<tr>
<td>Max</td>
<td>96</td>
<td>92</td>
<td>5</td>
<td>140</td>
<td>92</td>
<td>48</td>
<td>3</td>
<td>9</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>c</th>
<th>d</th>
<th>f</th>
<th>p</th>
<th>u</th>
<th>k</th>
<th>s</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Influence Diagrams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Average</td>
<td>56</td>
<td>47</td>
<td>9</td>
<td>56</td>
<td>47</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Max</td>
<td>91</td>
<td>70</td>
<td>21</td>
<td>91</td>
<td>70</td>
<td>21</td>
<td>2</td>
<td>3</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>c</th>
<th>d</th>
<th>f</th>
<th>p</th>
<th>u</th>
<th>k</th>
<th>s</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDs converted from BN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>54</td>
<td>48</td>
<td>3</td>
<td>54</td>
<td>48</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Average</td>
<td>84</td>
<td>77</td>
<td>7</td>
<td>84</td>
<td>77</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Max</td>
<td>115</td>
<td>109</td>
<td>12</td>
<td>115</td>
<td>109</td>
<td>12</td>
<td>2</td>
<td>10</td>
<td>42</td>
</tr>
</tbody>
</table>
Experiments: Synthetic IDs

<table>
<thead>
<tr>
<th>Domain</th>
<th>n</th>
<th>w_c</th>
<th>w_s</th>
<th>ST-GDD(i=1)</th>
<th>ST-GDD(i=5)</th>
<th>ST-WMB(i=10)</th>
<th>JGDID(i=1)</th>
<th>WMBEID(i=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-BN</td>
<td>84.6</td>
<td>30.2</td>
<td>21.8</td>
<td>0.19</td>
<td>0.15</td>
<td>0.13</td>
<td>0.33</td>
<td>0.74</td>
</tr>
<tr>
<td>IDBN14w57d12</td>
<td>115</td>
<td>57</td>
<td>42</td>
<td>103.89</td>
<td>96.24</td>
<td>95.37</td>
<td>1420</td>
<td>2.2E+4</td>
</tr>
<tr>
<td>FH-MDP</td>
<td>105.7</td>
<td>25.5</td>
<td>25.4</td>
<td>0.06</td>
<td>0.07</td>
<td>0.18</td>
<td>0.16</td>
<td>0.44</td>
</tr>
<tr>
<td>mdp9-32-3-8-3</td>
<td>99</td>
<td>43</td>
<td>43</td>
<td>18.92</td>
<td>19.71</td>
<td>25.31</td>
<td>23.09</td>
<td>111.81</td>
</tr>
<tr>
<td>FH-POMDP</td>
<td>55.9</td>
<td>28.1</td>
<td>28.1</td>
<td>0.31</td>
<td>0.22</td>
<td>0.06</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>pomdp8-14-9-3-12-14</td>
<td>96</td>
<td>47</td>
<td>46</td>
<td>73.53</td>
<td>76.37</td>
<td>67.18</td>
<td>5.E+08</td>
<td>5.E+09</td>
</tr>
<tr>
<td>RAND</td>
<td>56.2</td>
<td>20.5</td>
<td>17.9</td>
<td>0.22</td>
<td>0.24</td>
<td>0.24</td>
<td>0.23</td>
<td>0.46</td>
</tr>
<tr>
<td>rand-c70d21o1</td>
<td>84</td>
<td>32</td>
<td>34</td>
<td>1309.89</td>
<td>1791.93</td>
<td>1752.47</td>
<td>1743.6</td>
<td>2.E+04</td>
</tr>
</tbody>
</table>

- ST-GDD: submodel-tree decomposition + GDD for MMAP [ping et al 2015]
- ST-WMB: submodel-tree decomposition + WMBMAM for MMMAP [marinescu et al 2014]
- JGDID: constrained-join graph + GDD for IDs [Lee et al 2018]
- WMBMEID: constrained mini-bucket tree + WMB/GDD for IDs [Lee et al 2019]
- Evaluation: average of the gap $\frac{U-U_{\text{min}}}{U}$
Experiments: Synthetic LIMIDs

- $|C|$: number of clusters in submodel tree
- Kpu-UB: Analytical bound by [Maua and Cozman 2016]
Experiments: SysAdmin MDP/POMDP [Guestrin, et. al 2003]

- Evaluation
 - UB: WMBMM-EXP (i=20)
 - LB: Online planner to obtain lower bounds

\[
gap = 1 - \frac{LB}{UB}
\]
SysAdmin MDP

<table>
<thead>
<tr>
<th>Instance</th>
<th>(c)</th>
<th>(d)</th>
<th>(p)</th>
<th>(u)</th>
<th>(k)</th>
<th>(s)</th>
<th>(w)</th>
<th>utime (sec)</th>
<th>ub wmbmm</th>
<th>ltime (sec)</th>
<th>lb sogbofa</th>
<th>gap ((ub-\text{lb}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdp9-s50-t3</td>
<td>227</td>
<td>150</td>
<td>227</td>
<td>300</td>
<td>3</td>
<td>8</td>
<td>107</td>
<td>217</td>
<td>161.292</td>
<td>240</td>
<td>142.931</td>
<td>11%</td>
</tr>
<tr>
<td>mdp9-s50-t4</td>
<td>286</td>
<td>200</td>
<td>286</td>
<td>400</td>
<td>3</td>
<td>8</td>
<td>108</td>
<td>241</td>
<td>218.210</td>
<td>320</td>
<td>184.250</td>
<td>16%</td>
</tr>
<tr>
<td>mdp9-s50-t5</td>
<td>345</td>
<td>250</td>
<td>345</td>
<td>500</td>
<td>3</td>
<td>8</td>
<td>109</td>
<td>298</td>
<td>274.907</td>
<td>400</td>
<td>222.925</td>
<td>19%</td>
</tr>
<tr>
<td>mdp9-s50-t6</td>
<td>404</td>
<td>300</td>
<td>404</td>
<td>600</td>
<td>3</td>
<td>8</td>
<td>109</td>
<td>353</td>
<td>329.248</td>
<td>480</td>
<td>261.319</td>
<td>21%</td>
</tr>
<tr>
<td>mdp9-s50-t7</td>
<td>463</td>
<td>350</td>
<td>463</td>
<td>700</td>
<td>3</td>
<td>8</td>
<td>109</td>
<td>49406</td>
<td>383.290</td>
<td>560</td>
<td>296.269</td>
<td>23%</td>
</tr>
<tr>
<td>mdp9-s50-t8</td>
<td>522</td>
<td>400</td>
<td>522</td>
<td>800</td>
<td>3</td>
<td>8</td>
<td>109</td>
<td>530</td>
<td>438.786</td>
<td>640</td>
<td>328.550</td>
<td>25%</td>
</tr>
<tr>
<td>mdp9-s50-t9</td>
<td>581</td>
<td>450</td>
<td>581</td>
<td>900</td>
<td>3</td>
<td>8</td>
<td>108</td>
<td>370</td>
<td>496.466</td>
<td>720</td>
<td>355.263</td>
<td>28%</td>
</tr>
<tr>
<td>mdp9-s50-t10</td>
<td>640</td>
<td>500</td>
<td>640</td>
<td>1000</td>
<td>3</td>
<td>8</td>
<td>109</td>
<td>129</td>
<td>547.757</td>
<td>800</td>
<td>385.263</td>
<td>30%</td>
</tr>
<tr>
<td>mdp10-s50-t3</td>
<td>218</td>
<td>150</td>
<td>218</td>
<td>300</td>
<td>3</td>
<td>11</td>
<td>112</td>
<td>149</td>
<td>162.368</td>
<td>240</td>
<td>142.731</td>
<td>12%</td>
</tr>
<tr>
<td>mdp10-s50-t4</td>
<td>274</td>
<td>200</td>
<td>274</td>
<td>400</td>
<td>3</td>
<td>11</td>
<td>112</td>
<td>184</td>
<td>217.515</td>
<td>320</td>
<td>183.650</td>
<td>16%</td>
</tr>
<tr>
<td>mdp10-s50-t5</td>
<td>330</td>
<td>250</td>
<td>330</td>
<td>500</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>257</td>
<td>273.332</td>
<td>400</td>
<td>221.450</td>
<td>19%</td>
</tr>
<tr>
<td>mdp10-s50-t6</td>
<td>386</td>
<td>300</td>
<td>386</td>
<td>600</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>19741</td>
<td>327.268</td>
<td>480</td>
<td>257.394</td>
<td>21%</td>
</tr>
<tr>
<td>mdp10-s50-t7</td>
<td>442</td>
<td>350</td>
<td>442</td>
<td>700</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>28013</td>
<td>383.312</td>
<td>560</td>
<td>291.988</td>
<td>24%</td>
</tr>
<tr>
<td>mdp10-s50-t8</td>
<td>498</td>
<td>400</td>
<td>498</td>
<td>800</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>41748</td>
<td>439.826</td>
<td>640</td>
<td>316.600</td>
<td>28%</td>
</tr>
<tr>
<td>mdp10-s50-t9</td>
<td>554</td>
<td>450</td>
<td>554</td>
<td>900</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>34739</td>
<td>494.662</td>
<td>720</td>
<td>345.844</td>
<td>30%</td>
</tr>
<tr>
<td>mdp10-s50-t10</td>
<td>610</td>
<td>500</td>
<td>610</td>
<td>1000</td>
<td>3</td>
<td>11</td>
<td>113</td>
<td>58270</td>
<td>549.867</td>
<td>800</td>
<td>364.569</td>
<td>34%</td>
</tr>
</tbody>
</table>
SysAdmin POMDP

<table>
<thead>
<tr>
<th>Instance</th>
<th>c</th>
<th>d</th>
<th>p</th>
<th>u</th>
<th>k</th>
<th>s</th>
<th>w</th>
<th>utime (sec)</th>
<th>ub</th>
<th>ltime (sec)</th>
<th>lb</th>
<th>snap</th>
<th>gap (ub-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pomdp9-s50-t3</td>
<td>371</td>
<td>150</td>
<td>371</td>
<td>300</td>
<td>3</td>
<td>10</td>
<td>300</td>
<td>7660</td>
<td>177.597</td>
<td>240</td>
<td>141.575</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t4</td>
<td>478</td>
<td>200</td>
<td>478</td>
<td>400</td>
<td>3</td>
<td>10</td>
<td>400</td>
<td>20747</td>
<td>244.415</td>
<td>320</td>
<td>182.775</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t5</td>
<td>585</td>
<td>250</td>
<td>585</td>
<td>500</td>
<td>3</td>
<td>10</td>
<td>501</td>
<td>27369</td>
<td>315.351</td>
<td>400</td>
<td>223.000</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t6</td>
<td>692</td>
<td>300</td>
<td>692</td>
<td>600</td>
<td>3</td>
<td>10</td>
<td>600</td>
<td>69085</td>
<td>384.860</td>
<td>480</td>
<td>257.350</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t7</td>
<td>799</td>
<td>350</td>
<td>799</td>
<td>700</td>
<td>3</td>
<td>10</td>
<td>701</td>
<td>107660</td>
<td>454.910</td>
<td>560</td>
<td>290.425</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t8</td>
<td>906</td>
<td>400</td>
<td>906</td>
<td>800</td>
<td>3</td>
<td>10</td>
<td>800</td>
<td>224727</td>
<td>528.582</td>
<td>640</td>
<td>323.575</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t9</td>
<td>1013</td>
<td>450</td>
<td>1013</td>
<td>900</td>
<td>3</td>
<td>10</td>
<td>900</td>
<td>207883</td>
<td>599.923</td>
<td>720</td>
<td>348.325</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>pomdp9-s50-t10</td>
<td>1120</td>
<td>500</td>
<td>1120</td>
<td>1000</td>
<td>3</td>
<td>10</td>
<td>1000</td>
<td>231511</td>
<td>668.883</td>
<td>800</td>
<td>372.750</td>
<td>44%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t3</td>
<td>371</td>
<td>150</td>
<td>371</td>
<td>300</td>
<td>3</td>
<td>10</td>
<td>300</td>
<td>6249</td>
<td>180.257</td>
<td>240</td>
<td>141.950</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t4</td>
<td>478</td>
<td>200</td>
<td>478</td>
<td>400</td>
<td>3</td>
<td>10</td>
<td>400</td>
<td>14333</td>
<td>253.043</td>
<td>320</td>
<td>184.925</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t5</td>
<td>585</td>
<td>250</td>
<td>585</td>
<td>500</td>
<td>3</td>
<td>10</td>
<td>501</td>
<td>36078</td>
<td>331.108</td>
<td>400</td>
<td>221.775</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t6</td>
<td>692</td>
<td>300</td>
<td>692</td>
<td>600</td>
<td>3</td>
<td>10</td>
<td>600</td>
<td>66848</td>
<td>409.456</td>
<td>480</td>
<td>258.525</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t7</td>
<td>799</td>
<td>350</td>
<td>799</td>
<td>700</td>
<td>3</td>
<td>10</td>
<td>701</td>
<td>121312</td>
<td>480.291</td>
<td>560</td>
<td>290.300</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t8</td>
<td>906</td>
<td>400</td>
<td>906</td>
<td>800</td>
<td>3</td>
<td>10</td>
<td>800</td>
<td>116597</td>
<td>563.324</td>
<td>640</td>
<td>321.425</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t9</td>
<td>1013</td>
<td>450</td>
<td>1013</td>
<td>900</td>
<td>3</td>
<td>10</td>
<td>900</td>
<td>290003</td>
<td>633.134</td>
<td>720</td>
<td>346.500</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>pomdp10-s50-t10</td>
<td>1120</td>
<td>500</td>
<td>1120</td>
<td>1000</td>
<td>3</td>
<td>10</td>
<td>1000</td>
<td>244446</td>
<td>707.226</td>
<td>800</td>
<td>375.900</td>
<td>47%</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion and Future Directions

• Extend Tree-Clustering Framework in PGM for IDs and LIMIDs
 • Graph-based tree-clustering procedure for IDs and LIMIDs
 • Hierarchical message passing algorithm for exact inference

• Simple and Scalable Bounding Scheme for IDs
 • Exponentiating utility functions and reuse decomposition bounds for MMAP

• Future Directions
 • Guide heuristic search for finding MEU in IDs and LIMIDs
 • Extend relaxation schemes in PGM to submodel-tree decomposition
 • Submodel-tree clustering framework for multi-agent IDs