AND/OR Branch-and-Bound for Computational Protein Design Optimizing K*

BOBAK PEZESHKI, RADU MARINESCU, ALEX IHLER, RINA DECHTER

1st Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE), AAAI-22
Computational Protein Design (CPD)

[Re]design proteins to perform desired biological functions.

CPD often manifests as an optimization problem:

Ex. find the optimal composition that maximizes binding between subunits.
Special thanks to…

THOMAS SCHIEX
Special thanks to...

JONATHAN JOU
GRAHAM HOLT
BRUCE DONALD
Key Contributions

- Two formulations as a graphical model for optimizing K^*.
- wMBE-K^* heuristic that can bound the optimal K^* and guide search.
- AOBB-K^*, a depth-first branch-and-bound algorithm for maximizing K^* that uses a compact AND/OR search space.
- An experiments on over 40 protein design problems as an empirical proof-of-concept.
Background
Review of Proteins

Each amino acid position = a residue

Primary Protein Structure
Sequence of a chain of amino acids

Secondary Protein Structure
Local folding of the polypeptide chain into helices or sheets

Tertiary Protein Structure
Three-dimensional folding pattern of a protein due to side chain interactions

Quaternary Protein Structure
Protein consisting of more than one amino acid chain
Review of Proteins

There Are ~20 Naturally Occurring Amino Acids

Chemical Structure
- NAME
 - single letter code
 - three letter code
 - DNA codons

Chart Key:
- ALIPHATIC
- AROMATIC
- ACIDIC
- BASIC
- HYDROXYLIC
- SULFUR-CONTAINING
- AMIDIC
- NON-ESSENTIAL
- ESSENTIAL

Cannot be made by the human body
Review of Proteins

Amino Acid Rotamers: Select conformational isomers of an amino acid

Peter Carlsson, Konrad F. Koehler, and Lennart Nilsson
Proteins are Dynamic Structures

K* Objective

\[K^*(r) = \frac{Z_{PL}(r)}{Z_P(r)Z_L(r)} \]

(Note that \(K^* \) not only considers the “goodness” of the bonded state (PL), but also weighs it relative to the “goodness” of the unbound (dissociate) states.)

\[Z_\gamma(r) = \sum_{c \in C_\gamma(r)} \exp\{-E_\gamma(c)/RT\} \]

- amino acid assignments to the residues
- possible rotamer conformations given a.a. sequence \(r \)
- energy given conformation \(c \)
- universal gas constant (for unit conversion between kJ and K)
- absolute temperature (Kelvin)

Partition Function (Z) Normalizes the Likelihood of the Protein In A Particular Conformational State

Lilien, Stevens, Anderson, Donald, 2004

(approximates Ka, a biological measure of affinity)
K*MAP Task

\[K^* MAP = \max_R K^*(r) \]

ie. Find the sequence with the greatest \(K^* \sim Ka \)
Marginal MAP (MMAP)

\[\text{MMAP}(\mathcal{M}, X_{\text{MAP}}) = \max_{X/X_{\text{MAP}}} \sum_{\alpha} \prod_{\alpha} f_{\alpha}(X_{\alpha}) \]

- State-of-the-art search and sampling algorithms

State-of-the-art Marginal MAP (MMAP) algorithms

- Learning Depth-First AND/OR Search [Marinescu, Dechter, Ihler, 2018]
- Stochastic Best-First AND/OR Search [Marinescu, Dechter, Ihler, 2018]
- Recursive Best-First AND/OR Search [Marinescu, Dechter, Ihler, Kishimoto, Botea, 2018]

State-of-the-art sampling algorithms

- Dynamic Importance Sampling [Liu, Dechter, Ihler, 2017]
- Abstraction Sampling [Kask, Pezeshki, Broka, Ihler, Dechter, 2020]

\[f(x^*) = \max_{\alpha} \prod_{\alpha} f_{\alpha}(x_{\alpha}) \]

\[Z = \sum_{\alpha} \prod_{\alpha} f_{\alpha}(x_{\alpha}) \]

\[f(x^*_M) = \max_{x_M} \sum_{x_S} \prod_{\alpha} f_{\alpha}(x_{\alpha}) \]

- NP-hard: exponentially many terms

MMAP < K*MAP

13
Graphical Models for K*MAP Task
Problem Formulation: Simplifications

- **Select Residues**: Model using only a subset of the residues.
- **Discrete Rotamers**: Use discrete side-chain conformations.
- **Fixed Backbone**: Fix the position of the residues in space.
Problem Formulation 1:

R’s capture amino acid assignment for residue

C’s index rotamer of amino acid assigned to corresponding R
Problem Formulation 2:

R’s capture amino acid assignment for residue

C’s capture all (amino acid, rotamer) combinations possible at its corresponding R

Constraints between corresponding C’s and R’s ensure consistent assignments
wMBE-K*

Based on wMBE-MMAP [Marinescu, Dechter, Ihler, 2014]
wMBE Heuristic for K^*

$$K^*(r) = \frac{Z_{\text{complex}}(r)}{Z_{\text{subunit 1}}(r) Z_{\text{subunit 2}}(r)}$$

$M_B M_U^{-1}$

$M_B \quad \text{UB}(Z_B(R))$

$M_U \quad \text{LB}(Z_U(R))$

$$\sum_r w_r \leq \prod_r \left(\sum_x \psi_r(x) \right)$$

$$\sum_x f(x) \triangleq \left(\sum_x f(x) \frac{1}{w} \right) w \quad w = \sum_r w_r$$

MAX R

SUM Cγ
AOBB-K*

Based on AOBB-MMAP [Marinescu, Dechter, Ihler, 2014]
Algorithm 2: AOBB-K*

input : CPD graphical model \mathcal{M}; pseudo-tree T; K^*
upper-bounding heuristic function $h_{K^*}(\cdot)$; Z_γ
upper-bounding heuristic function $h_{Z\gamma}(\cdot)$; and
subunit stability threshold S_γ for each subunit γ

output : $K^* MAP(\mathcal{M})$

begin

1. $\pi \leftarrow$ root OR node s
2. $ub_{K^*}(s) \leftarrow h_{K^*}(s)$
3. $lb_{K^*}(s) \leftarrow -\infty$
4. $g(s) \leftarrow 1$
5. foreach $\gamma \in \varphi$ do
 6. $UB_{Z\gamma}(s) \leftarrow \prod_{m \in ch_{T\gamma}(s)} h_{Z\gamma}(m)$

while $n_X \leftarrow EXPAND(\pi)$ do

9. if $\text{ConstraintPropagation}(\pi) = \text{false}$ then
 10. $\text{PRUNE}(\pi)$
 else if $\exists \gamma \in \varphi \text{ s.t. } UB_{Z\gamma}(n_X) < S_\gamma$ then
 11. $\text{PRUNE}(\pi)$
 else if $X \in R$ then
 12. if $\exists a \in \text{anc}^{OR}(n) \text{ s.t. } ub_{K^*}(a, \pi) < lb_{K^*}(a)$ then
 13. $\text{PRUNE}(\pi)$
 else if $ch_{T}^{unexp}(n) = \emptyset$ then
 14. $\text{BACKTRACK}(\pi)$
 return $ub_{K^*}(s) = lb_{K^*}(s) = K^* MAP(\mathcal{M})$
AOBB-K* High Level Overview

- Exact branch-and-bound algorithm over AND/OR search spaces
- Can use the statically compiled wMBE-K* heuristic
- Exploits determinism by using constraint propagation
- Incorporates a global constraint enforcing biologically relevant solutions

[Ojewole, Jou, Fowler, Donald, 2018]
Empirical Evaluation
Results vs. State-of-the-art BBK*

| Problem | iB | X | Dmax | w* | d | UB | OR | AND | CPP | UBP | SSP | time | *MAP | BBK* t | BBK* t sln |
|-----------|----|---|------|----|---|-----|-----|-----|-----|-----|-----|------|------|-------|------------|------------|
| 1gwc_00021 | 4 | 12 | 203 | 4 | 6 | 10.29 | 28766 | 134930 | 77823 | 55 | 2 | 16 | 9.79 | 152 | 9.79 |
| 2hnu_00025 | 4 | 14 | 203 | 5 | 7 | 15.08 | 22010 | 105458 | 76657 | 38 | 0 | 7 | 13.18 | 437 | 13.18 |
| 2hnu_00025 | 4 | 16 | 203 | 6 | 8 | 15.04 | 115194 | 297138 | 84882 | 39 | 0 | 16 | 13.65 | 962 | 13.65 |
| 2r9_00018 | 6 | 18 | 205 | 7 | 9 | 16.68 | 20137 | 87306 | 78 | 0 | 15 | 15.79 | 187 | 15.79 |
| 2rfd_00035 | 6 | 16 | 205 | 6 | 8 | 17.70 | 896239 | 4253159 | 3273123 | 40 | 0 | 15 | 16.50 | 182 | 16.50 |
| 2rfe_00030 | 6 | 14 | 203 | 5 | 7 | 11.53 | 20933 | 164126 | 359007 | 87 | 40 | 15 | 10.50 | 182 | 10.50 |
| 2rfe_00043 | 6 | 16 | 203 | 6 | 8 | 18.48 | 15390 | 40297 | 422357 | 34 | 43 | 80 | 18.04 | 50 | 18.04 |
| 2rfe_00044 | 6 | 16 | 203 | 6 | 8 | 18.62 | 37887 | 99927 | 1047107 | 30 | 3 | 86 | 18.10 | 75 | 18.10 |
| 2r10_00008 | 4 | 10 | 203 | 3 | 5 | 11.16 | 2 | 3 | 0 | 40 | 0 | 3 | 11.16 | 9.46 | 11.16 |
| 2xgy_00020 | 4 | 14 | 203 | 5 | 7 | 11.47 | 43643 | 262523 | 743880 | 40 | 0 | 14 | 16.80 | 888 | 16.80 |
| 3cal_00032 | 6 | 16 | 203 | 6 | 8 | 13.38 | 133851 | 1067419 | 531976 | 32 | 6 | 125 | 11.62 | 1429 | 11.62 |
| 3u7y_00009 | 5 | 12 | 203 | 4 | 6 | 4.51 | 2 | 3 | 0 | 40 | 0 | 6 | 4.51 | 191 | 4.51 |
| 4kt6_00023 | 4 | 16 | 203 | 6 | 8 | 14.80 | 38186 | 101546 | 23877 | 16 | 19 | 7 | 12.69 | 136 | 12.69 |
| 4wwi_00019 | 5 | 14 | 203 | 5 | 7 | 15.43 | 8094 | 30874 | 177864 | 40 | 0 | 12 | 14.98 | 37 | 14.98 |
| 1gwc_00021 | 4 | 13 | 203 | 4 | 7 | 12.51 | 33884 | 506021 | 473189 | 32 | 6 | 11.92 | 16.18 | 13.65 | 11.92 |
| 2hnu_00025 | 4 | 17 | 203 | 6 | 8 | 18.48 | 21517 | 596559 | 220825 | 77 | 0 | 12 | 16.18 | 13.65 | 16.18 |
| 2rfe_00012 | 5 | 15 | 205 | 5 | 8 | 14.36 | 3127 | 10003 | 32610 | 57 | 0 | 85 | 13.92 | 15.33 | 13.92 |
| 2rfe_00014 | 5 | 15 | 205 | 5 | 8 | 14.79 | 4087 | 13087 | 39411 | 57 | 0 | 85 | 14.36 | 14.36 | 14.36 |
| 2rfe_00017 | 5 | 15 | 205 | 5 | 8 | 11.46 | 245894 | 1063198 | 6389737 | 227 | 25 | 333 | 10.86 | 10.80 | 10.80 |
| 2rfe_00030 | 4 | 15 | 203 | 5 | 8 | 13.61 | 256957 | 1327425 | 2816050 | 726 | 83 | 726 | 11.12 | 10.90 | 11.12 |
| 2xgy_00020 | 5 | 15 | 203 | 5 | 8 | 11.39 | 398102 | 2383318 | 7422285 | 42 | 0 | 360 | 14.98 | 14.98 | 14.98 |
| 3u7y_00011 | 4 | 13 | 203 | 4 | 7 | 12.29 | 5758 | 16108 | 68579 | 50 | 0 | 99 | 4.51 | 216 | 4.51 |
| 4wwi_00019 | 4 | 15 | 203 | 5 | 8 | 16.05 | 22945 | 87485 | 91677 | 176 | 7 | 180 | 14.99 | 34 | 14.99 |

Ojewole, Jou, Fowler, Donald, 2018
Future Work

- Design new, more compact, problem representations
- Explore new heuristic functions and use of a dynamic heuristic
- Extend to search to approximate anytime methods and n-best solutions
- Extend to more complex formulations
Thank You!
wMBE Heuristic for MMAP

- **Mini-bucket elimination** [Dechter & Rish 2001]
 - “i-bound”, limit on the number of variables in a single mini-bucket

- **Weighted Mini-bucket** [Liu & Ihler, 2012]
 - Holder’s inequality

\[
\sum_{r} \prod \psi_r \leq \prod_{r} \left(\sum_{x} \right)
\]

\[
\sum_{x} f(x) \triangleq \left[\sum_{x} f(x) \frac{1}{w} \right] w \quad w = \sum_{r} w_r
\]

\[
\sum_{E} [\psi(A, E) \psi(C, E)] \leq [\sum_{E} \psi(A, E)] [\sum_{E} \psi(C, E)]
\]
Problem Formulation: Subunit-Stability Constraints

Do not want dissociate subunits to be too unstable

\[Z_{\text{subunit } i}(r) > Z_{\text{subunit } i}(r^{\text{wt}}) \times \exp\left\{-\frac{5}{RT}\right\} \]

- \(i \) = index of dissociate subunit
- \(r \) = amino acid sequence assignments
- \(D \) = indicating dissociate subunit
- \(r^{\text{wt}} \) = naturally occurring in nature amino acid sequence (wild type)
- \(R \) = universal gas constant (for unit conversion between kJ and K)
- \(T \) = absolute temperature (Kelvin)
Problem Formulation: Pseudo Tree Overview for K*MAP

More information:

Key Takeaway:
Can take advantage of decomposition
GMEC Objective

Lower Energy ➔ More Stable ➔ Structure More Likely To Exist

Def. Global Minimum-Energy Conformation (GMEC):
- conformation that minimizes the energy of the complex

\[GMEC(r) = \min_{c \in C(r)} E(c) \]

- \(r = \) amino acid assignments to the residues
- \(C(r) = \) possible rotamer conformations given a.a. sequence \(r \)
- \(E(c) = \) energy given conformation \(c \)
GMEC MAP Task

\[GMEC\ MAP = \min_{R} GMEC(r) \]

\(M = \text{minimum} \)

ie. Find the sequence with the lowest GMEC
- ie. Find sequence that has the most stable conformation
Proteins are Dynamic Structures

A protein’s structural state is dynamic

Proteins continuously transition between various energetically favorable conformation.

Not captured by the GMEC objective.
K*MAP

\[
Z_X(r) = \sum_{C_Y} \prod_{E_Y} e^{-\frac{E_Y(i,j)(r_i,C_Y(i),r_j,C_Y(j))}{RT}}
\]

\[
K^*(r) = \frac{Z_{Bound}(r)}{Z_{Dissociate}(r)} = \frac{Z_{PL}(r)}{Z_P(r)Z_L(r)}
\]

\[
K^*MAP = \max_R K^*(r)
\]

\[X \in \{Bound, Dissociate\}\]