

Boosting AND/OR-Based Computational Protein Design: Dynamic Heuristics and Generalizable UFO

Bobak Pezeshki (pezeshkb@uci.edu), Radu Marinescu (radu.marinescu@ie.ibm.com), Alexander Ihler (ihler@ics.uci.edu), Rina Dechter (dechter@ics.uci.edu)

Overview

Recently a new protein re-design algorithm, AOBB-K*, was introduced and was competitive with state-of-the-art BBK* on small protein re-design problems. However, AOBB-K* did not scale well. In this work, we focus on modifications to AOBB-K* that significantly enhance scalability.

Contributions:

- 1. **AOBB-K*-b (boosted):** AOBB-K* with stronger wMBE-K* heuristic and modifications to search
- 2. **AOBB-K*-DH:** AOBB-K* with dynamic heuristics.
- 3. **UFO:** An approximation scheme that introduces determinism to empower constraint propagation
- 4. **AOBB-K*-UFO:** UFO empowered AOBB-K*
- 5. Empirical analysis: Evaluation on 62 real protein benchmarks comparing with previous AOBB-K* and state-of-the-art BBK*.

UFO

:Graphical model \mathcal{M} ; SAT solving algorithm, input SAT(.); a deflation factor $\delta \in (0, 1]$ **output** : A proposed threshold τ to use begin $\tau_{min} = 0; \ \tau_{max} = \max_{F, X} f(X)$ $\tau = \frac{\tau_{max} + \tau_{min}}{2}$ while time remains for τ binary search do if $SAT(\mathcal{M}_{\tau}) = False$ then $\tau_{max} = \tau$ else $\tau_{min} = \tau$ $\tau = \frac{\tau_{max} + \tau_{min}}{2}$ $au = au_{min} \cdot \delta$ return au

CPD Empirical Analysis

Competing Scheme: BBK* [Ojewole et al., 2018]

Problem

Redesign of proteins to form higher affinity complexes

Find new amino acid assignments to residues of interest that optimize affinity between interacting subunits

K* Objective

An approximation of binding affinity between molecules (based on the biological association constant known as K_a)

$$K^{*}(r) = \frac{Z_{PL}(r)}{Z_{P}(r) Z_{L}(r)}$$

$$Z_{\gamma}(r) = \sum_{c \in C_{\gamma}(r)} \exp\{-E_{\gamma}(c)/\mathcal{RT}\}$$
r = amino acid assignments to residues
$$C(r) = \text{possible conformations given r}$$

$$E(c) = \text{energy given conformation c}$$

$$C(r) = \frac{Z_{PL}(r)}{r}$$

$$C(r$$

K*MAP Task

Find amino acid assignments to the residues that maximize K*

$$Z_{\gamma}(R_{1}...R_{N}) = \sum_{\substack{C_{1},...,C_{N} \ \mathscr{C}_{\gamma(i)} \in \mathscr{C}}} \prod_{\substack{\varphi(i) \in \mathscr{C}}} \mathscr{C}_{\gamma(i)}(R_{i},C_{\gamma(i)}) \\ \cdot \prod_{\substack{E_{\gamma(i)}^{sb} \in \mathbf{E}_{\gamma}^{sb}}} e^{-\frac{E_{\gamma(i)}^{sb}(C_{\gamma(i)})}{\mathscr{R}T}} \cdot \prod_{\substack{E_{\gamma(ij)}^{pw} \in \mathbf{E}_{\gamma}^{pw}}} e^{-\frac{E_{\gamma(ij)}^{pw}(C_{\gamma(i)},C_{\gamma(j)})}{\mathscr{R}T}}$$

$$K^*(R_1, ..., R_N) = Z_B(R_1, ..., R_N) / Z_U(R_1, ..., R_N)$$

task:
$$K^*MAP = \max_{R_1,...,R_N} K^*(R_1,...,R_N)$$

AOBB-K*

- Branch-and-bound algorithm over AND/OR search spaces
 - AOBB-K* is exact
- □ Can use wMBE-K* to guide search
- Exploits determinism by using constraint propagation
- □ Incorporates a global constraint enforcing biologically relevant solutions

Subunit Stability Constraints

Condition to enforce the stability of each subunit to be no less than a given threshold from that of the wild-type stability

State-of-the-art protein redesign algorithm, part of the software package, OSPREY, developed for over ten years for protein design • A*-like best first • utilizes dynamic optimistic greedy heuristic • approximate scheme w/ tightness parameter

Sample Empirical Results

Comparison of the AOBB-K*-b-[UFO/DH] and BBK* on problems with 4 or 5 mutable residues. For each 1hr experiment, we see: • i (i-bound) • Soln (best-found K*) • **t**_{best} (time best solution was first discovered) • **t**_{final} (completion time • **wt K*** (wild-type K* value)

The algorithms are displayed in a top-down ranking per problem. Ranking is based first on greater K* and then by faster Anytime times. Large text highlights values responsible for a higher ranking. and **blue color** indicates better performance vs. BBK*.

		AOBB-K*-b	-[D	0H/UFO]				В	BK*
М	Problem	Algorithm	i	Soln	t_{best}	t _{final}	wt K*	Soln	Time
4	d7-4-2	AOBB-K*-b-UFO	3	14.89	3391.78	3600.00	14.08	14.54	278.08
		AOBB-K*-b-DH	3	14.49	3543.27	3600.00	14.08	14.54	278.08
		AOBB-K*-b	3	14.49	3293.62	3600.00	14.08	14.54	278.08
	d13-4-1	AOBB-K*-b-UFO	3	15.03	12.69	1974.43	13.25	15.03	46.46
		AOBB-K*-b-DH	3	15.03	22.05	79.88	13.25	15.03	46.46
		AOBB-K*-b	4	15.03	165.48	3600.00	13.25	15.03	46.46
	d17-4-1	AOBB-K*-b-UFO	3	10.86	29.39	3600.00	10.52	10.80	89.94
		AOBB-K*-b	4	10.86	657.54	3600.00	10.52	10.80	89.94
		AOBB-K*-b-DH	3	10.86	660.16	3600.00	10.52	10.80	89.94
	d21-4-1	AOBB-K*-b-UFO	3	11.92	196.30	3600.00	9.37	11.72	687.66
		AOBB-K*-b-DH	3	11.92	614.88	3600.00	9.37	11.72	687.66
		AOBB-K*-b	4	11.72	264.92	3600.00	9.37	11.72	687.66
	d43-4-1	AOBB-K*-b-UFO	3	18.19	76.49	484.69	18.04	18.18	119.88
		AOBB-K*-b-DH	3	18.19	386.49	3600.00	18.04	18.18	119.88
		AOBB-K*-b	3	18.19	896.67	3600.00	18.04	18.18	119.88
	d47-4-2	AOBB-K*-b-UFO	3	22.87	72.53	239.88	22.70	22.83	1339.15
		AOBB-K*-b	3	22.74	130.95	3600.00	22.70	22.83	1339.15
		AOBB-K*-b-DH	3	22.74	140.66	3600.00	22.70	22.83	1339.15
	d7-5-1	AOBB-K*-b-UFO	3	15.17	1570.30	3600.00	14.08	14.73	401.09
5		AOBB-K*-b-DH	3	14.73	57.91	3600.00	14.08	14.73	401.09
		AOBB-K*-b	3	14.73	62.53	3600.00	14.08	14.73	401.09
	d7-5-3	AOBB-K*-b-UFO	3	14.84	891.90	3600.00	14.08	15.60	205.56
		AOBB-K*-b	3	14.73	67.53	3600.00	14.08	15.60	205.56
		AOBB-K*-b-DH	3	14.73	156.68	3600.00	14.08	15.60	205.56
	d27-5-1	AOBB-K*-b	3	15.55	274.30	3600.00	15.48	15.55	1270.65
		AOBB-K*-b-UFO	3	15.55	276.91	3600.00	15.48	15.55	1270.65
		AOBB-K*-b-DH	3	15.55	321.02	3600.00	15.48	15.55	1270.65
	d31-5-1	AOBB-K*-b-UFO	3	7.88	22.35	128.75	7.63	7.88	130.04
		AOBB-K*-b	3	7.88	129.43	3600.00	7.63	7.88	130.04
		AOBB-K*-b-DH	3	7.88	145.63	3600.00	7.63	7.88	130.04
	d47-5-1	AOBB-K*-b-UFO	3	23.08	2068.22	3600.00	22.70	23.05	3600.00
		AOBB-K*-b	3	22.74	222.66	3600.00	22.70	23.05	3600.00
		AOBB-K*-b-DH	3	22.74	241.88	3600.00	22.70	23.05	3600.00

${oldsymbol{\mathcal{R}}}$ = universal gas constant
$oldsymbol{\mathcal{T}}$ = absolute temperature (Kelvin)

AND/OR Search

Compact search space taking advantage of conditional independences present in the model

Graphical Model Network R(AB) R(AC) R(ABE) R(BCD) (E)

Possible Pseudo Tree

Directed tree (based on a variable ordering) that branches when conditional independences exist given assignments to ancestors.

The pseudo tree is used to construct the AND/OR search space

$Z_{subunit i}(r) > Z_{subunit i}$ Stability of naturally occurring	unit i (r^{wt})* exp{-[5/RT} r for thresholding					
Infusing Determinism: τ-Underflows Replace unfavorable assignments with hard constraints to exploit the strength of constraint propagation during search							
• non-negative function f • $\tau \in \mathbb{R}^+$	$f_{\tau}(x) = \begin{cases} f(x), \\ 0, \end{cases}$	$f(x) \ge \tau$ otherwise					
wMBE-K*-b							

wMBE-K* with sequential modifications to improve estimates at the cost of losing bound guarantees.

Lower bounding power-sum replaced with zero-omitted power-sum:

 $f^{\triangleleft w}(y) := f(y)^w$ for $f(y) \neq 0$ and 0 otherwise $\sum_{X}^{\triangleleft w} f := (\sum_{X} f(x)^{\triangleleft \frac{1}{w}})^w$ where $\frac{0}{0} := 0$.

Cost-shifting with only non-zero values: $F_{\lambda} = \mathcal{C} \cup E^{sb} \cup E^{pw} \cup \Lambda,$

 $\lambda_{\Omega}^{(i)} \in \Lambda, \quad \prod_{\omega \in D_{\Omega}} \prod_{i} \lambda_{\Omega}^{(i)}(\omega) = 1, \quad \lambda_{\Omega}^{(i)}(\Omega) > 0$

Maximization step prioritizes finite values: $max'_X(f) = \begin{cases} max_{X'}f(x'), & f(x') \neq \infty \end{cases}$

Summary

□ Scalability to problems with 3, 4, and 5 mutable residues

 $\begin{array}{c} R(B=0,C=0,D=0) \times \\ R(A=0,C=0) \end{array} \\ \begin{array}{c} R(B=0,C=1,D=0) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=0,C=1,D=1) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=0,C=1,D=1) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=1,C=0,D=0) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=1,C=1,D=0) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=1,C=0,D=1) \times \\ R(A=0,C=1) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=1,C=0,D=1) \times \\ R(A=0,C=1) \times \\ R(A=0,C=1) \times \\ R(A=0,C=1) \end{array} \\ \begin{array}{c} R(B=1,C=0,D=1) \times \\ R(A=0,C=1) \times \\ R(A=0,C=1) \times \\ R(A=0,C=1) \times \\ \end{array} \\ \begin{array}{c} R(B=1,C=0,D=1) \times \\ R(A=0,C=1) \times \\ \end{array} \\ \begin{array}{c} R(A=0,C=1) \times \\ R(A=0,C=1) \times \\$

wMBE-K*

 ∞

otherwise

AOBB-K*-b

AOBB-K* with search tuned to find good solutions sooner

Value-ordering of nodes modified so that:

1) The wild-type assignment is prioritized first, ensuring a strong initial lower bound. Nodes with finite wMBE-K*-b upper bounds are explored first, prioritizing consistent solutions

AOBB-K*-DH

AOBB-K* with a dynamic heuristic scheme

Dynamically tightens heuristic during search when: 1) $ub(K^*) > dhThreshold \in (0, \infty)$ 2) $depth \leq maxDepth \in \mathbb{I}^+$

□ AOBB-K*-b-UFO shows particularly good performance

• Competitive run-times

Good solution quality

• Competitiveness tapers off at 5 mutable residues

Additional Materials

Benchmarks Background

Acknowledgements

Supported in part by NSF Grant IIS-2008516

UAI 2023 – 39th Conference on Uncertainty in Artificial Intelligence

at Carnegie Mellon University