
Mini-Buckets: A General Scheme for
Bounded Inference

RINA DECHTER

University of California, Irvine, Irvine, California

AND

IRINA RISH

IBM T. J. Watson Research Center, Hawthorne, New York

Abstract. This article presents a class of approximation algorithms that extend the idea of bounded-
complexity inference, inspired by successful constraint propagation algorithms, to probabilistic in-
ference and combinatorial optimization. The idea is to bound the dimensionality of dependencies
created by inference algorithms. This yields a parameterized scheme, calledmini-buckets, that offers
adjustable trade-off between accuracy and efficiency. The mini-bucket approach to optimization prob-
lems, such as finding the most probable explanation (MPE) in Bayesian networks, generates both an
approximate solution and bounds on the solution quality. We present empirical results demonstrating
successful performance of the proposed approximation scheme for the MPE task, both on randomly
generated problems and on realistic domains such as medical diagnosis and probabilistic decoding.

Categories and Subject Descriptors: F.2.3 [Analysis of Algorithms and Problem Complexity]:
Tradeoffs between Complexity Measures; G.1.6 [Numerical Analysis]: Optimization; I.2
[Computing Methodologies]: Artificial Intelligence

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Accuracy/complexity trade-off; approximation algorithms,
Bayesian networks, combinatorial optimization, probabilistic inference.

The work of R. Dechter was partially supported by the National Science Foundation (NSF) grant IRI-
9157636 and by Air Force Office of Scientific Research grant, AFOSR 900136, Rockwell International
and Amada of America.
This work was supported in part by NSF grant IIS-0086529 and by MURI ONR award N00014-00-
1-0617.
This work was done while I. Rish was completing her Ph.D. at the University of California, Irvine,
Information and Computer Science Department.
Authors’addresses: R. Dechter, Department of Information and Computer Science, University of
California, Irvine, CA, e-mail: dechter@ics.uci.edu; I. Rish, IBM T. J. Watson Research Center,
19 Skyline Drive, Hawthorne, NY 10532, e-mail: rish@us.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0004-5411/03/0300-0107 $5.00

Journal of the ACM, Vol. 50, No. 2, March 2003, pp. 107–153.

108 R. DECHTER AND I. RISH

1. Introduction

Automated reasoning tasks such as constraint satisfaction and optimization, proba-
bilistic inference, decision-making and planning are generally hard (NP-hard). One
way to cope with this computational complexity is to identify tractable problem
classes. Another way is to design algorithms that compute approximate rather than
exact solutions.

Although approximation within given error bounds is also known to be NP-hard
[Dagum and Luby 1993; Roth 1996], there are approximation strategies that work
well in practice. One approach advocatesanytime algorithms. These algorithms
can be interrupted at any time, producing the best solution found thus far [Horvitz
1987, 1990, Dean and Boddy 1988; Boddy and Dean 1989]. Another approach is
to identify classes of problems for which some solution quality can be guaranteed,
thus applying the idea of tractability to approximation. Yet another approach is
to use approximation algorithms that output a bound on their accuracy for each
problem instance.

In this article, we present approximation algorithms that accommodate some
of these properties. The class ofmini-bucketapproximation algorithms applies a
local inferenceapproach to probabilistic reasoning and combinatorial optimiza-
tion using thebucket-eliminationframework. Bucket elimination is a unifying
algorithmic scheme that generalizes nonserial dynamic programming and vari-
able elimination, to enable complex problem-solving and reasoning activities.
Among the algorithms that can be expressed as bucket elimination aredirectional-
resolutionfor propositional satisfiability [Dechter and Rish 1994; Rish and Dechter
2000],adaptive-consistencyfor constraint satisfaction [Dechter and Pearl 1987],
FourierandGaussian eliminationfor linear inequalities [Lassez and Mahler 1992],
dynamic-programmingfor combinatorial optimization [Bertele and Brioschi 1972],
as well as many algorithms for probabilistic inference [Dechter 1999].

In all these areas, problems are represented by a set of functions or dependencies
over subsets of variables (e.g., constraints, cost functions, or probabilities). The
dependencies can be represented by aninteraction graph. The algorithms infer
and record new dependencies which amounts to adding new edges to the graph.
Generally, representing a dependency amongr variables (r is called thearity of a
dependency) requires enumeratingO(exp(r)) tuples. As a result, the complexity of
inference is time and space exponential in the arity (the number of arguments) of
the largest dependency recorded by these algorithms, which is captured by a graph
parameter known asinduced width, or treewidth[Arnborg 1985; Dechter 1992].

In constraint networks, the computational complexity of inference can be
bounded using constraint propagation or local consistency algorithms, such as
i -consistencyalgorithms [Freuder 1982; Dechter 1992] that restrict the arity of
recorded dependencies toi . Known special cases arearc-consistency(i = 2) and
path-consistency(i = 3) [Mackworth 1977; Freuder 1978; Dechter 1992]. In gen-
eral,constraint-propagationalgorithms transform a given constraint problem into
an equivalent but more explicit representation, by inferring new constraints that
are added to the problem. Intuitively, ani -consistency algorithm will make any
solution of any subproblem of sizei extensible (if possible) to some surround-
ing variables and constraints. These algorithms are interesting because they are
polynomial, and yet they are often sufficient for discovering inconsistency. Indeed,
the recent success of constraint-processing algorithms can be attributed primarily

Mini-Buckets: A General Scheme for Bounded Inference 109

FIG. 1. From global to local consistency: Graph aspects of algorithmi -consistency and two particular
cases, path-consistency (i= 3) and arc-consistency (i= 2).

to this class of algorithms, either used as stand-alone, incomplete algorithms, or
incorporated within backtracking search [Dechter 1998; Dechter and Frost 1997].
The idea, visualized in Figure 1, shows that while exact algorithms may record
arbitrarily large constraints (depicted by large cliques),i -consistency algorithms
enforce consistency over smaller subproblems, recording constraints of sizei or
less. Thei -consistency enforcing algorithm is an iterative procedure that goes over
all subsets ofi variables and filters out all those assignment that are not extensible;
the procedure terminates when it converges to a fixed point, or when an inconsistent
subproblem is discovered.

The mini-bucket approximation presented in the this article is inspired by the
success of local consistency propagation, extending the idea to probabilistic reason-
ing and combinatorial optimization. This yields a parameterized scheme controlled
by a bound on the size of functions that are recorded. Higher bounds result in more
accurate solutions but require more computation. The mini-bucket algorithms gen-
erate both an approximate solution and a bound on the solution quality. We identify
regions of completeness and present empirical results for the task of finding the
most probable explanation (MPE)in Bayesian belief networks (see Section 2).

As we show, the proposed mini-bucket algorithms demonstrate good performance
both on randomly generated problems and on realistic domains such as medical
diagnosis and probabilistic decoding. One of the most important aspects of this
scheme is that its parameterization yields an adaptive scheme that allows the user
to tailor the algorithm to a particular problem domain and to the available time and
space resources.

The article is organized as follows: Section 2 provides necessary definitions and
preliminaries. The next three sections present and analyze the mini-bucket approx-
imation for the probabilistic inference tasks of finding amost probable explanation

110 R. DECHTER AND I. RISH

(MPE), belief updating (BEL)and finding amost probable a posteriori hypothesis
(MAP). Section 6 presents the mini-bucket algorithm for optimization problems.
Section 7 identifies cases of completeness and Section 8 discusses extensions to
anytime algorithms. In Section 9, empirical evaluation is carried out for the MPE
task on randomly generated noisy-OR networks, on the CPCS networks for medical
diagnosis [Pradhan et al. 1994], and on classes of probabilistic decoding problems.
Section 10 discusses related work, while Section 11 provides concluding remarks
and discusses future work.

2. Background

Belief networksprovide a formalism for reasoning under uncertainty. A belief net-
work is defined by a directed acyclic graph over nodes representing random vari-
ables of interest (e.g., the temperature of a device, the gender of a patient, a feature
of an object, an event occurrence). The arcs signify the existence of direct causal
influences between the linked variables, and the strength of these influences are
quantified by conditional probabilities. A belief network relies on the notion of a
directed graph.

Definition1 (Graphs). A directed graphis a pairG = (V, E), whereV =
{X1, . . . , Xn} is a set of nodes andE = {(Xi , X j)|Xi , X j ∈ V, i 6= j } is a set of
edges. Two nodesXi andX j are calledneighborsif there is an edge between them
(either (Xi , X j) or (X j , Xi)). We say thatXi pointsto X j if (Xi , X j) ∈ E; Xi is
called aparentof X j , while X j is called achild of Xi . The set of parent nodes of
Xi is denotedpaXi , or pai , while the set of child nodes ofXi is denotedchXi , or
chi . We call a node and its parents afamily. A directed graph isacyclic if it has
no directed cycles. In anundirected graph, the directions of the edges are ignored:
(Xi , X j) and (X j , Xi) are identical. A directed graph issingly-connected(also
known as apolytree), if its underlying undirected graph (calledskeleton graph) has
no (undirected) cycles. Otherwise, it is calledmultiply-connected.

Definition2 (Belief Networks). Let X = {X1, . . . , Xn} be a set of random
variables, each having a finite number of possiblestates, or values. The set of
valuesDi is the domainof Xi . A belief networkis a pair (G,P), whereG =
(X, E) is a directed acyclic graph over nodes, denoting the variables, andP =
{P(Xi |pai)|i = 1, . . . ,n} is the set of conditional probability tables (CPTs) defined
for each variableXi and its parentspai in G. A belief network represents a joint
probability distribution overX having the product form

P(x̄) = P(x1, , xn) = 5n
i=1P(xi |x̄pai

), (1)

wherex̄ = (x1, . . . , xn), an abbreviation for̄x = (X1 = x1, . . . , Xn = xn), denotes
an assignment to all the variables from their respective domains, andx̄pai

denotes
the assignment to the parents ofXi .

The following notation will be used in this article. We denote variables by upper-
case letters, and use lower-case letters for the corresponding domain values. We
use vector notation (e.g.,̄x) for assignments to subsets of variables. For example,
A = ā denotes value assignmentā to a subset of variablesA from their respective
domains. Ifā is a partial assignment overA andS is another subset of variables,

Mini-Buckets: A General Scheme for Bounded Inference 111

FIG. 2. (a) A belief network representing the joint probability distributionP(g, f, d, c, b,a) =
P(g| f)P(f |c, b)P(d|b,a)P(b|a)P(c|a)P(a), and (b) its moral graph.

thenāS denotes the projection of̄a over S, namely, the partial assignment from̄a
restricted to variables inS. An evidencēe is an assignment to a subset ofevidence
variables, that is, the variables that are observed.

The set of arguments of a functionf is called thescopeof f . Thus, the scope of
a CPT is its family. Themoral graph GM of a belief network (G, P) is obtained by
connecting (“marrying”) all the parents of each node and removing the directionality
of edges. Thus, each CPT, associated with a family in a belief network, corresponds
to a clique (complete subgraph) in the moral graph.

Example1. Consider the belief network that represents the joint probability
distribution

P(g, f, d, c, b,a) = P(g| f)P(f |c, b)P(d|b,a)P(b|a)P(c|a)P(a).

Its acyclic directed graph is shown in Figure 2(a), and the corresponding moral graph
is shown in Figure 2(b). In this case,pa(F) = {B,C}, pa(B) = {A}, pa(A) = ∅,
ch(A) = {B, D,C}.

2.1. PROBABILISTIC TASKS. The main benefit of having a joint-probability rep-
resentation is that it allows answering a range of queries. The primary probabilistic
reasoning queries are of two types: conditional probability queries, known as belief
updating queries, and most probable assignment queries.Belief updatingis the task
of finding the posterior probabilityP(Y|ē) of querynodesY ⊂ X given evidence
over a subset of variablesE, E = ē. Applications that require answering such
queries are numerous, including medical and fault diagnosis, genetic inheritance
over family trees, reasoning about images and so on.

The most probable assignmentqueries require computing the most likely as-
signment to some subset of unobserved variables given observed evidence. Finding
the Most Probable Explanation toall unobserved variables (theMPE task) is an
important special case. LetY = X− E, and letȳ be an assignment toY. The MPE
task is to find

MPE(ȳmpe|e) = max
ȳ

P(ȳ|e). (2)

112 R. DECHTER AND I. RISH

Note that there may be more than one maximizing assignmentȳmpe. The more
general query, calledmaximum a posteriori hypothesis (MAP), requires find-
ing a maximum probability assignment to asubset of hypothesisvariables,
given the evidence. Namely, the set of variablesY can be a strict subset
of X − E.

Both tasks arise in a wide variety of applications, such as probabilistic error-
correcting coding, speech recognition, medical diagnosis, airplane maintenance,
monitoring and diagnosis in complex distributed computer systems, and so on.
MPE queries are often used as ways of “completing” unknown information. For
example, in probabilistic decoding, the task is to reconstruct a message (e.g., a vector
of bits) sent through a noisy channel, given the channel output; in speech recogni-
tion and image understanding, the objective is to find a sequence of objects (letters,
images) that is most likely to produce the observed sequence such as phonemes or
pixel intensities; yet another example is diagnosis, where the task is to reconstruct
the hidden state of nature (e.g., a set of possible diseases and unobserved symp-
toms the patient may have, or a set of failed nodes in a computer network) given
observations of the test outcomes (e.g., symptoms, medical tests, or network trans-
actions results).

The general MAP queries are more applicable, used in cases such as medical
diagnosis, when we observe part of the symptoms, and can accommodate some of
the tests, and still wish to find the most likely assignments to the diseases only,
rather than to both diseases and all unobserved variables. Although the MAP query
is more general, MPE is an important special case because it is computationally
simpler and thus should be applied when appropriate. It often serves as a “surrogate”
task for MAP due to computational reasons. Since all the above problems can be
posed as MPE or MAP queries, finding efficient algorithms clearly has a great
practical value.

All the above probabilistic tasks are known to be NP-hard [Cooper 1990]1. How-
ever, there exists a polynomial propagation algorithm for singly connected net-
works [Pearl 1988]. The two main approaches to extending this algorithm to mul-
tiply connected networks are thecycle-cutsetapproach, also calledconditioning,
and thetree-clusteringapproach [Pearl 1988; Lauritzen and Spiegelhalter 1988;
Shachter 1986], which is also closely related tovariable-eliminationtechniques
[D’Ambrosio 1994; Zhang and Poole 1996; Dechter 1996]. We present proba-
bilistic approximation algorithms based on the variable-elimination scheme called
bucket elimination[Dechter 1996, 1999].

2.2. THE BUCKET ELIMINATION SCHEME. This section provides a brief
overview of bucket elimination algorithms for some probabilistic reasoning tasks.
Given a belief network (G, P) and a variable orderingo= (X1, . . . , Xn), the belief
P(x1|ē) is defined as

P(x1|ē) = P(x1, ē)

P(ē)
= αP(x1, ē) = α

∑
x2

· · ·
∑

xn

∏
i

P(xi |x̄pai
), (3)

1 In fact, recent results show that while the decision problems associated with belief updating and
MPE are NP-complete, MAP is harder and is not in NP [Park 2002].

Mini-Buckets: A General Scheme for Bounded Inference 113

FIG. 3. Algorithmelim-belfor belief updating in belief networks.

whereα is a normalizing constant. By the distributivity law,∑
x2

· · ·
∑

xn

∏
i

P(xi |x̄pai
) = F1

∑
x2

F2 . . .
∑

xn

Fn, (4)

where eachFi =
∏

x P(x|x̄pai
) is the product of all the probabilistic components

(functions) defined onXi andnotdefined on any variableX j for j > i .
Algorithmelim-bel[Dechter 1996] shown in Figure 3 computes the sum in Eq. (4)

from right to left, sequentially eliminating variables fromXn to X1. Initially, all
functions (CPTs)P(X|pai) participating in the productFi =

∏
x P(x|x̄pai

) are
placed in thebucketof Xi (denotedbucketi). For eachXi , from i = n to i = 2,
the algorithm multiplies the functions inbucketi , then sums overXi , and places the
resulting function in the bucket corresponding to the highest-index variable in the
function’s scope (clearly, this is one of the “lower” buckets). IfXi is observed
(e.g.,Xi = a), thenXi is assigned the valuea in each of the bucket’s functions,
and each resulting function is placed in its highest-variable bucket. This simplifies
computation, and graphically corresponds to removing the evidence node from the
moral graph. Note that constants (the results of eliminating a variable that is the
only argument of a function) are placed into the first (lowest) bucket. Finally, the al-
gorithm processes the lowest bucket,bucket1. The algorithm returns the normalized
product of functions inbucket1 which yields the updated beliefP(X1|ē). Note that
only multiplication (no summation overX1) need to be performed in this bucket.

The following example illustrateselim-belon the network in Figure 4(a).

Example2. Given the belief network in Figure 4(a), the orderingo =
(A, E, D,C, B), and evidencee={E= 0}, Bel(a)= P(a|E= 0)=αP(a, E= 0)
is computed by bucket elimination as follows: First, all the CPT’s are partitioned
into the ordered buckets as shown in Figure 5. At first, only the CPT functions
(shown in nonbold style in Figure 4(a)) are included. (Note that upper-case letters
denote nodes, and lower-case letters denote their values). Carrying out the com-
putation from right to left using the bucket data-structure, and denoting byhX the
function computed in bucketX, we get new functions as demonstrated in Figure 5.

114 R. DECHTER AND I. RISH

FIG. 4. (a) A belief network. The dotted arc (B,C) is added by the moral graph. (b) The induced
graph alongo= (A, E, D,C, B), and (c) the induced graph alongo= (A, B,C, D, E).

FIG. 5. An example of elim-bel’s execution.

The computation performed in each bucket is given by:

(1) bucket B:hB(a, d, c, e) =∑b P(e|b, c)P(d|a, b)P(b|a)

(2) bucket C:hC(a, d, e) =∑c P(c|a)hB(a, d, c, e)

(3) bucket D:hD(a, e) =∑d hC(a, d, e)

(4) bucket E:hE(a) = hD(a, E = 0)
(5) bucket A:Bel(a) = P(a|E = 0)= αP(a)hE(a),

whereα is a normalizing constant.

Similar bucket elimination algorithms were derived for the tasks of finding MPE,
MAP, and for finding the maximum expected utility (MEU) [Dechter 1996, 1999].
Given a belief network (G, P), a variable orderingo = (X1, . . . , Xn), and an
evidencēe, the MPE task is to find the most-probable assignment to the variables,
namely, to find

x̄MPE = (xMPE
1 , . . . , xMPE

n) = arg max
x1,...,xn

P(x1, . . , xn|ē) (5)

and the corresponding value maxx1,...,xn P(x1, . . , xn|ē). However, from algorith-
mic prospective, it is more convenient to maximize the joint probabilityP(x̄, ē)

Mini-Buckets: A General Scheme for Bounded Inference 115

FIG. 6. Algorithmelim-mpefor finding Most Probable Explanation in belief networks.

rather than the conditional probabilityP(x̄|ē). Clearly, both probabilities achieve
the maximum at the same point̄xMPE since P(x̄, ē) = P(x̄|ē) · P(ē), where
P(ē) is independent ofX. Thus, instead of computing maxx̄ P(x̄|ē), we compute
max̄x P(x̄, ē) and call it theMPE probability, MPE value, or simplyMPE (clearly,
P(x̄|ē) = MPE/P(ē); however, computingP(ē) may not be an easy task as it
requires belief updating over a subset of evidence variables).

The MPE task can be solved by algorithmelim-mpe(see Figure 6), which is
similar toelim-belexcept that summation inelim-belis replaced by maximization
in elim-mpe. The main difference is that the “backward” phase is followed by a
“forward” phase that computes an MPE assignment as follows: given an assignment
to the first i − 1 variables, the assignment to thei th variable is computed by
maximizing the product of all functions in the bucket ofXi . The algorithm returns
the joint probability of the most-likely assignment,MPE= maxx P(x, e).

The bucket elimination scheme can be generalized using the notion of elimination
operator applied to the functions in each bucket. Some elimination operators are
defined below:

Definition3 (Elimination Functions). Given a functionh defined over sub-
set of variablesS, whereX ∈ S, the functions (minX h), (maxX h), (

∑
X h), and

(meanXh) are defined overU = S− {X} as follows: For everȳu ∈ U , we define
operators (minX h)(ū) =minx h(ū, x), (maxX h)(ū) =maxx h(ū, x), (

∑
X h)(ū) =∑

x h(ū, x), and (meanXh)(ū) =∑x
h(ū,x)
|X| , where (̄u, x) is the extension of tuplēu

by assignmentX = x, and where|X| is the cardinality ofX’s domain. Given a set
of functionsh1, . . . , h j defined over the subsetsS1, . . . , Sj , the product function
(5 j h j) and

∑
j h j are defined overU = ∪ j Sj . For everyū ∈ U , (5 j h j)(ū) =

5 j h j (ūSj), and (
∑

j h j)(ū) =∑ j h j (ūSj).

An important property of bucket elimination algorithms is that their complexity
can be predicted using a graph parameter calledinduced width[Dechter and Pearl
1987] (also known astree-width[Arnborg 1985]), which describes the largest clique

116 R. DECHTER AND I. RISH

created in the graph by bucket elimination, and which corresponds to the largest
scope of function recorded by the algorithm.

Definition4 (Induced Width). Given an undirected graphG, thewidth of Xi
along orderingo is the number ofXi ’s neighbors precedingXi in o. Thewidth of the
graphalongo, denotedwo, is the maximum width over all variables alongo. The
induced graphof G alongo is obtained by recursively connecting the preceding
neighbors of eachXi , going from i = n to i = 1. The induced width alongo,
denotedw∗o, is the width of the induced graph alongo, while the induced widthw∗
is the minimum induced width along any ordering.

Example3. Figures 4(b) and 4(c) depict the induced graphs (induced edges
are shown as dashed lines) of the moral graph in Figure 4(a) along the orderings
o= (A, E, D, C, B) ando′ = (A, B, C, D, E), respectively. Clearly,w∗o = 4 and
w∗o′ = 2.

It can be shown that

THEOREM 1 [DECHTER1999]. The time and space complexity of bucket elim-
ination algorithms is O(n · dw∗o+1), where n is the number of variables, d bounds
the variables’ domain size andw∗o is the induced width of the moral graph along
ordering o, after all evidence nodes and their adjacent edges are removed.

The induced width will vary depending on the variable ordering. Although finding
a minimum-w∗ ordering is NP-hard [Arnborg 1985], heuristic algorithms are inves-
tigated [Bertele and Brioschi 1972; Dechter 1992; Kjaerulff 1990, 1992; Robertson
and Seymour 1995; Bodlaender 1997; Bodlaender et al. 2001]. For more details on
bucket elimination and induced width, see Dechter [1999].

3. Mini-Bucket Approximation for MPE

We introduce the idea of mini-bucket approximation using the combinatorial opti-
mization task of finding the most probable explanation, MPE.

Since the MPE task is NP-hard and since complete algorithms (such as the
cycle cutsettechnique,join-tree-clustering[Pearl 1988] and bucket elimination
[Dechter 1996]) work well only on relatively sparse networks, approximation
methods are necessary. Researchers investigated several approaches for finding
MPE. The suitability of Stochastic Local Search (SLS) algorithms for MPE was
studied in the context of medical diagnosis applications [Peng and Reggia 1989]
and, more recently, in [Kask and Dechter 1999b]. Best-First search algorithms
were proposed [Shimony and Charniack 1991] as well as algorithms based on
linear programming [Santos 1991].

In this article, we propose approximation algorithms based on bucket elimina-
tion. Consider the bucket-elimination algorithmelim-mpe. Since the complexity
of processing a bucket depends on the number of arguments (arity) of the func-
tions being recorded, we propose to approximate these functions by a collection
of smaller-arity functions. Leth1, . . . , ht be the functions in the bucket ofXp, and
let S1, . . . , St be their scopes. Whenelim-mpeprocesses bucket(Xp), the function
hp = maxXp5

t
i=1hi is computed. A simple approximation idea is to compute an up-

per bound onhp by “migrating” the maximization inside the multiplication. Since,
in general, for any two non-negative functionsZ(x) andY(x), maxx Z(x) ·Y(x) ≤
maxx Z(x) · maxx Y(x), this approximation will compute an upper bound onhp.

Mini-Buckets: A General Scheme for Bounded Inference 117

FIG. 7. The idea of mini-bucket approximation.

For example, we can compute a new functiongp = 5t
i=1 maxXp hi , that is an upper

bound onhp. Procedurally, it means that maximization is applied separately to each
function, requiring less computation.

The idea is demonstrated in Figure 7, where the bucket of variableX havingn
functions is split into two mini-buckets of sizer and (n− r), r ≤ n, and it can be
generalized to any partitioning of a set of functionsh1, . . . , ht into subsets called
mini-buckets. Let Q = {Q1, . . . , Qr } be a partitioning into mini-buckets of the
functionsh1, . . . , ht in Xp’s bucket, where the mini-bucketQl contains the func-
tionshl1, . . . , hlr . The complete algorithmelim-mpecomputeshp = maxXp 5

t
i=1hi ,

which can be rewritten ashp = maxXp 5
r
l=15l i hli . By migrating maximization into

each mini-bucket we can compute:gp
Q = 5r

l=1 maxXp 5l i hli . The new functions
maxXp 5l i hli are placed separately into the bucket of the highest variable in their
scope and the algorithm proceeds with the next variable. Functions without ar-
guments (i.e., constants) are placed in the lowest bucket. The maximized product
generated in the first bucket is an upper bound on the MPE probability. A lower
bound can also be computed as the probability of a (suboptimal) assignment found
in the forward step of the algorithm. Clearly, as the mini-buckets get smaller, both
complexity and accuracy decrease.

Definition 5. Given two partitioningsQ′ andQ′′ over the same set of elements,
Q′ is a refinement ofQ′′ if and only if, for every setA ∈ Q′, there exists a set
B ∈ Q′′ such thatA ⊆ B.

PROPOSITION 1. If Q′′ is a refinement of Q′ in bucketp, then hp ≤ gp
Q′ ≤ gp

Q′′ .

PROOF. Based on the above discussion it is easy to see that for any partitioning
Q (be it Q′ or Q′′) we havehp ≤ gp

Q.
By definition, given a refinementQ′′ = {Q′′1, . . . , Q′′k} of a partitioningQ′ =
{Q′1, . . . , Q′m}, each mini-bucketi ∈ {1, . . . , k} of Q′′ belongs to some mini-bucket
j ∈ {1, . . . ,m}of Q′. In other words, each mini-bucketj of Q′ is further partitioned
into the corresponding mini-buckets ofQ′′, Q′j = {Q′′j1, . . . , Q′′jl }. Therefore,

gp
Q′′ =

k∏
i=1

(
max

Xp

5l∈Q′′i hl

)
=

m∏
j=1

∏
Q′′i ⊆Q′j

(
max

Xp

5l∈Q′′i hl

)

≥
m∏

j=1

(
max

Xp

5l∈Q′j hl

)
= gp

Q′ .

118 R. DECHTER AND I. RISH

FIG. 8. Algorithmmbe-mpe(i, m).

The mini-bucket elimination (mbe) algorithm for finding MPE,mbe-mpe(i, m),
is described in Figure 8. It has two input parameters that control the mini-
bucket partitioning.

Definition6 ((i, m)-partitioning). LetH be a collection of functionsh1, . . . , ht
defined on scopesS1, . . . , St , respectively. We say that a functionf is subsumed
by a functionh if any argument off is also an argument ofh. A partitioning of
h1, . . . , ht is canonicalif any function f subsumed by another function is placed
into the bucket of one of those subsuming functions. A partitioningQ into mini-
buckets is an (i,m)-partitioning if and only if (1) it is canonical, (2) at mostm
non-subsumed functions are included in each mini-bucket, (3) the total number of
variables in a mini-bucket does not exceedi , and (4) the partitioning isrefinement-
maximal, namely, there is no other (i,m)-partitioning that it refines.

The parametersi (number of variables) andm (number of functions allowed per
mini-bucket) are not independent, and some combinations ofi andm do not allow
an (i,m)-partitioning. However,

PROPOSITION 2. If the bound i on the number of variables in a mini-bucket is
not smaller than the maximum family size, then, for any value of m> 0, there exists
an (i,m)-partitioning of each bucket.

PROOF. For m = 1, each mini-bucket contains one family. The arity of the
recorded functions will only decrease and thus in each bucket an (i, 1)-partitioning
always exists. Any (i,m)-partitioning that satisfies conditions 1–3 (but not nec-
essarily condition 4), always includes all (i, 1)-partitionings satisfying conditions
1–3. Therefore, the set of (i,m)-partitionings satisfying conditions 1–3 is never
empty, and there exists an (i,m)-partitioning satisfying conditions 1–4.

Mini-Buckets: A General Scheme for Bounded Inference 119

FIG. 9. Comparison between (a)elim-mpeand (b)mbe-mpe(3, 2).

Although the two parametersi andmare not independent, they do allow a flexible
control of the mini-bucket scheme. The properties of the mini-bucket algorithms
are summarized in the following theorem.

THEOREM 2. Algorithm mbe-mpe(i,m) computes an upper bound on the MPE.
its time and space complexity is O(n · exp(i)) where i≤ n.

We will prove the theorem later (Section 7) in a more general setting, common
to all mini-bucket elimination algorithms.

In general, asm and i increase, we get more accurate approximations. Note,
however, a monotonic increase in accuracy as a function ofi can be guaranteed
only for refinements of a given partitioning.

Example4. Figure 9 compares algorithmselim-mpeandmbe-mpe(i,m)where
i = 3 andm= 2 over the network in Figure 4(a) along the orderingo= (A, E, D,
C, B). The exact algorithmelim-mpesequentially records the new functions (shown
in boldface)hB(a, d, c, e), hC(a, d, e), hD(a, e), andhE(a). Then, in the bucket
of A, it computesM = maxa P(a)hE(a). Subsequently, an MPE assignment
(A = a′, B = b′, C = c′, D = d′, E = e′) wheree′ = 0 is the evidence,
is computed alongo by selecting a value that maximizes the product of func-
tions in the corresponding buckets conditioned on the previously assigned values.
Namely,a′ = arg maxa P(a)hE(a), e′ = 0, d′ = arg maxd hC(a′, d, e = 0), and
so on.

On the other hand, since bucket(B) includes five variables,mbe-mpe(3, 2) splits
it into two mini-buckets{P(e|b, c)} and{P(d|a, b), P(b|a)}, each containing no
more than three variables, as shown in Figure 9(b) (the (3, 2)-partitioning is se-
lected arbitrarily). The new functionshB(e, c) andhB(d,a) are generated in dif-
ferent mini-buckets and are placed independently in lower buckets. In each of the
remaining lower buckets that still need to be processed, the number of variables is
not larger than 3 and therefore no further partitioning occurs. An upper bound on
the MPE value is computed by maximizing over A the product of functions inA’s
bucket:U = maxa P(a)hE(a)hD(a). Once all the buckets are processed, a subop-
timal MPE tuple is computed by assigning a value to each variable that maximizes
the product of functions in the corresponding bucket. By design,mbe-mpe(3, 2)

120 R. DECHTER AND I. RISH

does not produce functions on more than two variables, while the exact algorithm
elim-mperecords a function on four variables.

In summary, algorithmmbe-mpe(i, m)computes an interval [L ,U] containing
the MPE value whereU is the upper bound computed by the backward phase and
L is the probability of the returned assignment.

Remember thatmbe-mpecomputes the bounds onMPE= max̄x P(x̄, ē), rather
than onM = max̄x P(x̄|ē) = MPE/P(ē). Thus

L

P(ē)
≤ M ≤ U

P(ē)
.

Clearly, the boundsU andL for MPEare very close to zero when the evidenceē is
unlikely: however, the ratio between the upper and the lower bound is not dependent
on P(ē). As we will see next, approximating conditional probabilities using bounds
on joint probabilities is more problematic for belief updating.

4. Mini-Bucket Approximation for Belief Updating

As shown in Section 2, the bucket elimination algorithmelim-belfor belief assess-
ment is similar toelim-mpeexcept that maximization is replaced by summation and
no value assignment is generated. Algorithmelim-belfindsP(x1, ē) and then com-
putesP(x1|ē) = αP(x1, ē) whereα is the normalization constant (see Figure 3).

The mini-bucket idea used for approximating MPE can be applied to belief up-
dating in a similar way. LetQ′ = {Q1, . . . , Qr } be a partitioning of the functions
h1, . . . ht (defined over scopesS1, . . . , St , respectively) inXp’s bucket. Algorithm
elim-belcomputeshp : Up→ <, wherehp =∑Xp

5t
i=1hi , andUp = ∪i Si−{Xp}.

Note thathp = ∑
Xp
5t

i=1hi , can be rewritten ashp = ∑
Xp
5r

l=15l i hli . If
we follow the MPE approximation precisely and migrate the summation op-
erator into each mini-bucket, we will computef p

Q′ = 5r
l=1

∑
Xp
5l i hli . This,

however, is an unnecessarily large upper bound ofhp in which each5l i hli
is bounded by

∑
Xp
5l i hli . Instead, we rewritehp = ∑Xp

(51i h1i) · (5r
l=25l i hli).

Subsequently, instead of bounding a function ofX by its sum overX, we can
bound (i > 1), by its maximum overX, which yieldsgp

Q′ = (
∑

Xp
51i h1i) ·

(5r
l=2 maxXp 5l i hli). In summary, an upper boundgp of hp can be obtained by

processing one ofXp’s mini-buckets by summation and the rest by maximiza-
tion. Clearly,

PROPOSITION 3. For every partitioning Q, hp ≤ gp
Q ≤ f p

Q. Also, if Q′′ is a
refinement partitioning of Q′, then hp ≤ gp

Q′ ≤ gp
Q′′ .

A lower bound on the belief, or its mean value, can be obtained in a similar way.
Algorithmmbe-bel-max(i, m)that uses themaxelimination operator is described in
Figure 10. Algorithmsmbe-bel-minandmbe-bel-meancan be obtained by replacing
the operatormaxby minand bymean, respectively.

4.1. NORMALIZATION . Note thataprox-bel-maxcomputes an upper bound on
P(x1, ē) but not onP(x1|ē). If an exact value ofP(ē) is not available, deriving a
bound onP(x1|ē) from a bound onP(x1, ē) is not easy, becauseg(x1)/

∑
x1

g(x1),
where g(x) is the upper bound onP(x1, ē), is not necessarily an upper bound

Mini-Buckets: A General Scheme for Bounded Inference 121

FIG. 10. Algorithmmbe-bel-max(i, m).

on P(x1|ē). In principle, we can derive a lower bound,f , on P(ē) using mbe-
bel-min(in this case, the observed variables initiate the ordering), and then com-
puteg(x1)/ f as an upper bound onP(x1|ē). This however is likely to make the
bound quite weak due to compounded error. In many practical scenarios, however,
we are interested in the ratio between the belief in two competing values ofX1.
SinceP(xi , e)/P(xj , e) = P(xi |e)/P(xj |e), the ratio between the upper bounds of
the respective join probabilities can serve as a good comparative measure between
the conditional probabilities as well.

Alternatively, letUi andLi be the upper bound and lower bounding functions on
P(X1 = xi , ē) obtained bymbe-bel-maxandmbe-bel-min, respectively. Then,

Li

P(ē)
≤ P(xi |ē) ≤ Ui

P(ē)
.

Therefore, althoughP(ē) is not known, the ratio of upper to lower bounds remains
the same. Yet, the difference between the upper and the lower bounds can grow
substantially, especially in cases of rare evidence. Note that ifP(ē) ≤ Ui , we get
Li /P(ē) ≤ P(X1|ē) ≤ 1, so that the upper bound is trivial. Finally, note there is no
bound forgmean(xi), and therefore, the approximation ofgmean(xi)/

∑
x1

gmean(x1) can
also be a lower or an upper bound of the exact belief. Interestingly, the computation
of gmean(X1 = xi)/

∑
x1

gmean(x1) is achieved when processing all mini-buckets by
summations, and subsequently normalizing.

5. Mini-Bucket Elimination for MAP

Algorithm elim-mapfor computing the MAP is a combination ofelim-mpeand
elim-bel; some of the variables are eliminated by summation, while the others
by maximization. The MAP task is generally more difficult than MPE and be-
lief updating [Park 2002]. From variable elimination perspective it restricts the

122 R. DECHTER AND I. RISH

possible variable orderings and therefore may require higherw∗ which implies
higher complexity.

Given a belief network, a subset of hypothesis variablesA = {A1, . . . , Ak}, and
evidencēe, the problem is to find an assignment to the hypothesized variables that
maximizes their probability conditioned on̄e. Formally, we wish to find

āmap
k = arg max

āk

P(āk|ē) = arg max
āk

∑
x̄n

k+1
5n

i=1P(xi , ē| ¯xpai
)

P(ē)
. (6)

wherex̄ = (a1, . . . ,ak, xk+1, . . . , xn) denotes an assignment to all variables, while
āk = (a1, . . . ,ak) and x̄n

k+1 = (xk+1, . . . , xn) denote assignments to the hypothe-
sis and nonhypothesis variables, respectively. SinceP(ē) is a normalization con-
stant, the maximum ofP(āk|ē) is achieved at the same point as the maximum of
P(āk, ē). Namely, as before, we haveP(āk|ē) = P(āk, ē)/P(ē). Thus, we define
MAP= P(āk, ē) and derive an approximation to this quantity which is easier than
approximatingP(āk|ē).

The bucket-elimination algorithm for finding the exact MAP,elim-map[Dechter
1996, 1999], assumes only orderings in which the hypothesized variables appear
first and thus are processed last by the algorithm (this restricted ordering implies
increased complexity as remarked above). The algorithm has a backward phase as
usual but its forward phase is relative to the hypothesis variables only. The appli-
cation of the mini-bucket scheme toelim-mapfor deriving an upper bound is a
straightforward extension of the algorithmsmbe-mpeandmbe-bel-max. We parti-
tion each bucket into mini-buckets as before. If the bucket’s variable is eliminated
by summation, we apply the rule we have inmbe-bel-maxin which one mini-bucket
is approximated by summation and the rest by maximization. When the algorithm
reaches the hypothesis buckets, their processing is identical to that ofmbe-mpe.
Algorithm mbe-map(i, m)is described in Figure 11.

Deriving a lower bound on the MAP is no longer a simple extension ofmbe-map
as we observed for MPE. Oncembe-mapterminates, we have an upper bound and
we can compute an assignment to the hypothesis variables. While the probability
of this assignment is a lower bound for the MAP, obtaining this probability is no
longer possible by a simple forward step over the generated buckets. It requires
an exact inference, or a lower bound approximation. We cannot use the functions
generated bymbe-bel-maxin the buckets of summation variables since those serve
as upper bounds. One possibility is, once an assignment is obtained, to rerun the
mini-bucket algorithm over the non-hypothesis variables using the min operator (as
in mbe-bel-min, and then compute a lower bound on the assigned tuple in another
forward step over the firstk buckets that take into account the original functions
and only those computed bymbe-bel-min.

Example5. We will next demonstrate the mini-bucket approximation for
MAP on an example inspired byprobabilistic decoding[MacKay and Neal 1996;
Frey 1998].2 Consider a belief network which describes the decoding of alinear
block code, shown in Figure 12. In this network,Ui are information bitsand X j
arecode bits, which are functionally dependent onUi . The vector (U, X), called
the channel input, is transmitted through a noisy channel which adds Gaussian

2 Probabilistic decoding is discussed in more details in Section 9.5.

Mini-Buckets: A General Scheme for Bounded Inference 123

FIG. 11. Algorithmmbe-map(i, m).

FIG. 12. Belief network for a linear block code.

noise and results in the channel output vectorY = (Yu,Yx) . The decoding
task is to assess the most likely values for theU ’s given the observed values
Y = (ȳu, ȳx), which is the MAP task whereU is the set of hypothesis variables,
andY = (ȳu, ȳx) is the After processing the observed buckets we get the following
bucket configuration (lower casey’s are observed values):

bucket(X0) = P(yx
0 |X0), P(X0|U0,U1,U2),

bucket(X1) = P(yx
1 |X1), P(X1|U1,U2,U3),

bucket(X2) = P(yx
2 |X2), P(X2|U2,U3,U4),

bucket(X3) = P(yx
3 |X3), P(X3|U3,U4,U0),

bucket(X4) = P(yx
4 |X4), P(X4|U4,U0,U1),

124 R. DECHTER AND I. RISH

bucket(U0) = P(U0), P(yu
0 |U0),

bucket(U1) = P(U1), P(yu
1 |U1),

bucket(U2) = P(U2), P(yu
2 |U2),

bucket(U3) = P(U3), P(yu
3 |U3),

bucket(U4) = P(U4), P(yu
4 |U4).

Processing bymbe-map(4, 1) of the first top five buckets by summation and
the rest by maximization, results in the following mini-bucket partitionings and
function generation:

bucket(X0) = {P(yx
0 |X0), P(X0|U0,U1,U2)},

bucket(X1) = {P(yx
1 |X1), P(X1|U1,U2,U3)},

bucket(X2) = {P(yx
2 |X2), P(X2|U2,U3,U4)},

bucket(X3) = {P(yx
3 |X3), P(X3|U3,U4,U0)},

bucket(X4) = {P(yx
4 |X4), P(X4|U4,U0,U1)},

bucket(U0) = {P(U0), P(yu
0 |U0), hX0(U0,U1,U2)}, {hX3(U3,U4,U0)},

{hX4(U4,U0,U1)},
bucket(U1) = {P(U1), P(yu

1 |U1), hX1(U1,U2,U3), hU0(U1,U2)}, {hU0(U4,U1)},
bucket(U2) = {P(U2), P(yu

2 |U2), hX2(U2,U3,U4), hU1(U2,U3)},
bucket(U3) = {P(U3), P(yu

3 |U3), hU0(U3,U4), hU1(U3,U4), hU2(U3,U4)},
bucket(U4) = {P(U4), P(yu

4 |U4), hU1(U4), hU3(U4)}.

The first five buckets are not partitioned at all and are processed as full buckets,
since in this case a full bucket is a (4, 1)-partitioning. This processing generates five
new functions, three are placed in bucketU0, one in bucketU1 and one in bucketU2.
Then, bucketU0 is partitioned into three mini-buckets processed by maximization,
creating two functions placed in bucketU1 and one function placed in bucketU3.
Bucket U1 is partitioned into two mini-buckets, generating functions placed in
bucketU2 and bucketU3. Subsequent buckets are processed as full buckets. Note
that the scope of recorded functions is bounded by 3.

In the bucket ofU4 we get an upper boundU satisfying U ≥ MAP =
P(U, ȳu, ȳx) where ȳu and, ȳx are the observed outputs for theU ’s and theX’s
bits transmitted. In order to boundP(U |ē), whereē = (ȳu, ȳx), we needP(ē),
which is not available. Yet, again, in most cases we are interested in the ratio
P(U = ū1|ē)/P(U = ū2|ē) for competing hypothesesU = ū1 andU = ū2 rather
than in the absolute values. SinceP(U |ē) = P(U, ē)/P(ē) and the probability
of the evidence is just a constant factor independent ofU , the ratio is equal to
P(U1, ē)/P(U2, ē).

6. Mini-Buckets for Discrete Optimization

The mini-bucket principle can also be applied to deterministic discrete optimiza-
tion problems which can be defined overcost networks, yielding approximation to
dynamic programming for discrete optimization [Bertele and Brioschi 1972]. Cost
networks is a general model encompassing constraint-satisfaction, and constraint-
optimization in general. In fact, the MPE task is a special case of combinatorial
optimization and its approximation via mini-buckets can be straightforwardly ex-
tended to the general case. For an explicit treatment, see [Dechter 1997b]. For

Mini-Buckets: A General Scheme for Bounded Inference 125

FIG. 13. Algorithmmbe-opt(i, m).

completeness sake, we present the algorithm explicitly within the framework of
cost networks.

A cost networkis a triplet (X, D,C), where X is a set of discrete variables,
X = {X1, . . . , Xn}, over domainsD = {D1, . . . , Dn}, andC is a set of real-valued
cost functionsC1, . . . ,Cl , also calledcost components. Each functionCi is defined
over a scopeSi = {Xi1, . . . , Xir } ⊆ X, Ci : ×r

j=1Di j → R+. Thecost graphof a
cost network has a node for each variable and edges connecting variables included in
the same scope. Thecost functionis defined byC(X) =∑l

i=1 Ci . The optimization
(minimization) problem is to find an assignmentxopt = (x1

opt, . . . , xn
opt) such that

C(xopt) = minx=(x1,...,xn) C(x).
Algorithm mbe-optis described in Figure 13. Step 2 (backward step) computes a

lower bound on the cost function while Step 3 (forward step) generates a suboptimal
solution which provides an upper bound on the cost function.

7. Complexity and Tractability

7.1. THE CASE OF LOW INDUCED WIDTH. All mini-bucket algorithms have
similar worst-case complexity bounds and completeness conditions. We denote by
mini-bucket-elimination(i, m), or simplymbe(i, m), a generic mini-bucket scheme
with parametersi andm, without specifying the particular task it solves, which can
be either one of probabilistic inference tasks defined above or a general discrete
optimization problem. Theorem 2 applies to all mini-bucket algorithms:

THEOREM 3. Algorithm mbe(i, m) takes O(r · di) time and space, where r is
the number of input functions,3 d is a bound on the domain size of the variables.

3 Note thatr = n for Bayesian networks, but can be higher or lower for general constraint optimization
tasks.

126 R. DECHTER AND I. RISH

For m= 1, the algorithm is time and space O(r · d|F |), where|F | is the maximum
scope of any input function,|F | ≤ i ≤ n.

PROOF. We can associate a bucket-elimination or a mini-bucket elimination
algorithm with acomputation treewhere leaf nodes correspond to the original
input functions (CPTs or cost functions), and each internal nodev corresponds to
the result of applying an elimination operator (e.g., product followed by summation)
to the set of node’s children,ch(v) (children correspond to all functions in the
corresponding bucket or mini-bucket). We can compress the computation tree so that
each node having a single child will be merged into one node with its parent, so that
the branching degree in the resulting tree is not less than 2. Computing an internal
node that is a compressed sequence of single-child nodes takesO(di) time and space
since it only requires a sequence of elimination operations over a single function
whose scope size is bounded byi . Indeed, given a function overi variables, an
elimination of a single variable takesO(di) time and space. Thus, elimination of
1 ≤ k ≤ i variables takes time and space

∑i
j=i−k+1 O(d j) = O(

∑i
j=i−k+1 d j) =

O(di). The cost of computing any other internal nodev is O(|ch(v)| · di) where
|ch(v)| ≤ m and i bounds the resulting scope size of generated functions. Since
the number of leaf nodes is bounded byr , the number of internal nodes in the
computation tree is bounded byr as well (since the branching factor of each internal
node is at least 2). Thus the total amount of computation over all internal nodes in the
computation tree is time and spaceO(r ·di) in general, which becomes toO(n·di) for
belief networks.

The above proof, suggested in [Larrosa 2000], refines the original proof given in
[Dechter and Rish 1997].

We next identify cases for which the mini-bucket scheme coincides with the
exact algorithm, and is therefore complete.

THEOREM 4. Given an ordering of the variables, o, algorithmmbe(i, n) applied
along o is complete for networks havingw∗o ≤ i .

PROOF. The claim trivially follows from the observation that each full bucket
satisfies the condition of being an (i, n)-partitioning and it is the only one which is
refinement-maximal.

7.2. THE CASE OFMINI-BUCKET (n, 1). Another case ismbe(n, 1), which al-
lows only one nonsubsumed function in a mini-bucket. It is easy to see thatmini-
bucket(n, 1) is complete for polytrees if applied along somelegal orderings. A
legal orderingof a polytree (see Figure 14) is one where (1) all evidence nodes
appear last in the ordering, and (2) among the remaining variables, each child node
appears before its parents and all the parents of the same family are consecutive
in the ordering. Such an ordering is always feasible for polytrees, and using this
ordering, each bucket contains only one nonsubsumed function. Clearly, algorithm
mini-bucket(n, 1) is complete along such orderings and is therefore complete for
polytrees.

In summary,

THEOREM 5. Given a polytree, there exists an ordering o such that algorithm
mbe(n, 1) finds an exact solution in time and space O(n · exp(|F |)), where|F | is
the largest scope size of any input function.

Mini-Buckets: A General Scheme for Bounded Inference 127

FIG. 14. (a) A polytree and (b) a legal ordering, assuming that nodesZ1, Z2, Z3 andY1 are observed.

Example6. Consider a legal orderingo= (X1,U3,U2,U1,Y1, Z1, Z2, Z3) of
the polytree in Figure 14(a), where the last four variablesY1, Z1, Z2, Z3 in the
ordering are observed. Processing the buckets from last to first, after the last four
buckets were already processed as observation buckets, we get (observed values
shown in low-case):

bucket(U1) = P(U1), P(X1|U1,U2,U3), P(z1|U1),
bucket(U2) = P(U2), P(z2|U2),
bucket(U3) = P(U3), P(z3|U3)
bucket(X1) = P(y1|X1).

It is easy to see that the only legal partitionings correspond to full buckets.

Note also that on polytrees,mbe(n, 1) is similar to Pearl’s well-known propa-
gation algorithm. One difference, however, is that Pearl’s algorithm records only
functions defined on a single variable, while mini-bucket(n, 1) may record functions
whose scope is at most the size of a family.

8. Anytime Inference

An important property of the mini-bucket scheme is that it provides an adjustable
trade-off between accuracy of solution and computational complexity. Both the
accuracy and the complexity increase with increasing parametersi andm. While,
in general, it may not be easy to predict the algorithm’s performance for a particular
parameter setting, it is possible to use this scheme within theanytimeframework.

Anytime algorithmscan be interrupted at any time producing the best solution
found thus far [Horvitz 1987, 1990; Dean and Boddy 1988; Boddy and Dean 1989].
As more time is available, better solutions are guaranteed by such algorithms. In
the context of Bayesian networks, anytime algorithms were first considered by the
name offlexible computationunder computational resource constraints [Horvitz
1987, 1988, 1990]. One of the first probabilistic anytime inference algorithms was
bounded conditioningalgorithm [Horvitz et al. 1989] that works by conditioning
on a small, high probability cutset instances, including more of the instances as
more computational resources become available.

128 R. DECHTER AND I. RISH

FIG. 15. Algorithmanytime-mpe(ε).

In general, any inference algorithm that adapts to limited computational re-
sources by ignoring some information about the problem, and is able to recover
that information incrementally as more resources become available, can be called
an anytime inference algorithm [Guo and Hsu 2002; Wellman and Liu 1994]. Many
approximation schemes can be used by anytime methods since they are based on
exploiting only partial information about the problem, for example, ignoring a
subset of “weak” edges [Kjaerulff 1994; van Engelen 1997], using partial vari-
able assignments [Poole 1996; Santos and Shimony 1998] (including partial cutset
assignments [Horvitz et al. 1989]), using only a subset of nodes [Draper 1995],
or a subset of (relatively high) probability entries in CPTs [Jensen and Andersen
1990]. In particular, our mini-bucket scheme exploits partial (bounded) dependen-
cies among the variables. Clearly, an iterative application of such schemes with
less restrictions on the amount of information they use, results in anytime inference
algorithms that eventually become exact, if sufficient computational resources are
available.

Our idea of extending the mini-bucket scheme to an anytime algorithm is to
run a sequence of mini-bucket algorithms with increasing values ofi andm until
either a desired level of accuracy is obtained, or until the computational resources
are exhausted. The anytime algorithmanytime-mpe(ε) for MPE is presented in
Figure 15. The parameterε is the desired accuracy level. The algorithm uses initial
parameter settings,i0 and m0, and incrementsi step and mstep. Starting withi =
i0 and m = m0, mbe-mpe(i, m)computes a suboptimal MPE solution and the
corresponding lower boundL, and an upper bound (U) for increasing values of
i andm. The algorithm terminates when either 1≤ U/L ≤ 1+ ε, or when the
computational resources are exhausted, returning the largest lower bound and the
smallest upper bound found so far, as well as the current best suboptimal solution.
Note that the algorithm is complete whenε = 0.

Another anytime extension of the mini-bucket, is to embed it within a complete
anytime heuristic search algorithm such asbranch-and-bound. Since, the mini-
bucket approximations computes bounds (upper or lower) of the exact quantities,
these bounds can be used as heuristic functions to guide search algorithms as

Mini-Buckets: A General Scheme for Bounded Inference 129

well as for pruning the search space. In other words, rather than stopping with
the first solution found, as it is done in the forward step ofmbe-mpe, we can
continue searching for better solutions, while using the mini-bucket functions to
guide and prune the search. This approach was explored recently and demonstrated
great promise both for probabilistic optimization tasks such as MPE as well as for
constraint satisfaction problems [Kask et al. 2001].

9. Empirical Evaluation

9.1. METHODOLOGY. Our empirical study is focused on approximating the
MPE. We investigate the impact of the parametersi andm on the performance
of mbe-mpe(i, m)by varying one parameter at a time.Mbe-mpe(m)denotes the
algorithm with an unrestrictedi and a varyingm, while mbe-mpe(i)assumes an
unrestrictedm and a varyingi . Both algorithms use the following brute-force strat-
egy for selecting a mini-bucket partitioning. First, a canonical partitioning is found,
i.e. all subsumed functions are placed into mini-buckets of one of their subsum-
ing functions. Then, formbe-mpe(m), each group ofm successive mini-buckets is
combined into one mini-bucket. Formbe-mpe(i), we merge the successive canonical
mini-buckets into a new one until the total number of variables in that mini-bucket
exceedsi . Then the process is repeated for the next group of canonical mini-buckets,
and so on. Also, in our implementation, we use a slightly different interpretation of
the parameteri . We allowi < |F |, where|F | is maximum family size, and bound
the number of variables in a mini-bucket by max{i, |F |} rather than byi .

The accuracy of an approximation is measured by the error ratiosMPE/L and
U/MPE, whereU andL are, respectively, the upper and the lower bound onMPE
found bymbe-mpe, whereMPE is the probability of the exact MPE solution found
by elim-mpe. When computing the exact MPE assignment is infeasible, we report
only the ratioU/L (note thatU/L is an upper bound on the error ratiosMPE/L
andU/MPE). The efficiency gain is represented by thetime ratio TR= Te/Ta,
whereTe is the running time forelim-mpeand Ta is the running time formbe-
mpe. We also report the width,wo, and the induced width,w∗o, of the network’s
graph along themin-degree4 orderingo [Bertele and Brioschi 1972; El Fattah and
Dechter 1995] used by the algorithms. When there is no confusion, we omit the
explicit specification of the ordering and use notationw andw∗ instead ofwo and
w∗o, respectively. Remember that fori > w∗, mbe-mpe(i)coincides withelim-mpe.
For diagnostic purposes, we also report the maximum number of mini-buckets
created in a single bucket,max mb(we report averages wheremax mbis rounded
to the nearest integer).

We present empirical results for randomly generated networks and for applica-
tions such as medical diagnosis (CPCSnetworks [Pradhan et al. 1994]) and prob-
abilistic decoding [McEliece et al. 1997; Frey 1998; MacKay and Neal 1996; Frey
and MacKay 1998]. Our objective is to assess the effectiveness of the mini-bucket
algorithms for different problem classes and to understand how structural domain

4 The min-degree ordering procedure works as follows: Given a moralized belief network withn
nodes, a node with minimum degree is assigned indexn (placed last in the ordering). Then the node’s
neighbors are connected, the node is deleted from the graph, and the procedure repeats, selecting the
n− 1th node, and so on.

130 R. DECHTER AND I. RISH

TABLE I. AVERAGE PERFORMANCE OFmbe-mpeON 200 INSTANCES OFBINARY-VALUED UNIFORM

RANDOM NETWORKS

mbe-mpe(m) for m= 1, 2, 3
m MPE/L U/MPE TR Ta max mb

30 nodes, 80 edges(w = 8, w∗ = 11)
1 43.2 46.2 296.1 0.1 4
2 4.0 3.3 25.0 2.2 2
3 1.3 1.1 1.4 26.4 1

60 nodes, 90 edges(w = 4, w∗ = 11)
1 9.9 21.7 131.5 0.1 3
2 1.8 2.8 27.9 0.6 2
3 1.0 1.1 1.3 11.9 1

mbe-mpe(i) for i = 5, 8, 11
i MPE/L U/MPE TR Ta max mb

30 nodes, 80 edges(w = 8, w∗ = 11)
5 29.2 20.7 254.6 0.1 3
8 17.3 7.5 151.0 0.2 3
11 5.0 3.0 45.3 0.6 2

60 nodes, 90 edges(w = 4, w∗ = 11)
5 2.8 6.1 112.8 0.1 2
8 1.9 2.8 71.7 0.2 2
11 1.4 1.6 24.2 0.5 2

(a) mbe-mpe(m) (b) mbe-mpe(i)

properties affect its performance. In the following four sections, we present the
results for randomly generated networks (uniform random networks and noisy-OR
networks), for CPCS networks, and for coding networks.

9.2. UNIFORM RANDOM PROBLEMS.

9.2.1. Random Problem Generators.Our uniform random problem generator
takes as an input the number of nodes,n, the number of edges,e, and the number of
values per variable,v. An acyclic directed graph is generated by randomly picking
e edges and subsequently removing possible directed cycles, parallel edges, and
self-loops. Then, for each nodexi and its parentsxpai

, the conditional probability
tables (CPTs)P(xi |xpai

) are generated from the uniform distribution over [0, 1].
Namely, eachP(xi |xpai

) is replaced byP(xi |xpai
)/
∑

xi
P(xi |xpai

).

9.2.2. Results. In Tables I and II, we present the results obtained when running
mbe-mpe(m)andmbe-mpe(i)on 200 instances of uniform random networks having
30 nodes and 80 edges (referred to as “dense” networks), and on 200 instances
of networks having 60 nodes and 90 edges (referred to as “sparse” networks). We
computed the MPE solution and its approximations assuming no evidence nodes.

Tables I(a) and I(b) show the mean values ofMPE/L, U/MPE, TR, Ta, max mb,
w, andw∗, for m = 1, 2, 3, and fori = 5, 8, 11. Tables II(a) and II(b) present the
approximation errorsMPE/L andU/MPE, showing the percentage of instances
whose error ratio belongs to one of the intervals [r, r + 1], wherer = 1, 2, 3,
or to the interval [4,∞]. For each interval, we also show the mean time ratio
TR computed on the corresponding instances. Table III presents the results on
larger networks where the exact inference was often infeasible, so that we report
only U/L.

The main observation is that the approximation algorithm solves many prob-
lem instances quite accurately (MPE/L ∈ [1, 2] andU/MPE ∈ [1, 2]), spending
1–2 orders of magnitude less time than the complete algorithm. For instance, in
Table I(a),mbe-mpe(m = 2) on sparse instances solved all problems with mean
MPE/L ratio less than 2 and with speedup of almost 28. When controlled byi , the
performance was even better. An accuracyMPE/L < 2 was achieved with speedup
of almost 72 (i = 8) on sparse networks.

As expected, the average errorsMPE/L andU/MPE decrease with increasing
m and i , approaching 1, while the time complexity of the approximation algo-
rithms,Ta, increases, approaching the runtime of the exact algorithm,Te. Table II

Mini-Buckets: A General Scheme for Bounded Inference 131

TABLE II. APPROXIMATION RESULTS FORUNIFORM RANDOM NETWORKS WITH30 NODES, 80 EDGES,
AND WITH 60 NODES, 90 EDGES(200 INSTANCESPER EACH NETWORK CLASS)

mbe-mpe(m)
30 nodes, 80 edges
MPE/L Mean U/MPE Mean

range m % TR % TR
[1, 2] 2 48 20.8 29.5 10.9
(2, 3] 2 16 25.7 27.5 22.2
(3, 4] 2 7.5 53.1 17 22.1
(4,∞) 2 29.5 25.3 26 46.0
[1, 2] 3 92 1.4 97 1.4
(2, 3] 3 5 2.0 3 4.9
(3, 4] 3 1 1.2 1 1.3
(4,∞) 3 3 1.6 0 0.0

mbe-mpe(i)
30 nodes, 80 edges
MPE/L Mean U/MPE Mean

range i % TR % TR
[1, 2] 8 31 150.1 2.5 33.0
(2, 3] 8 10 100.5 7 101.1
(3, 4] 8 10.5 114.7 12.5 132.9
(4,∞) 8 48.5 169.8 78 162.1
[1, 2] 11 51 41.3 29 27.0
(2, 3] 11 15 41.3 32 50.5
(3, 4] 11 11 69.2 17 45.4
(4,∞) 11 23 44.5 22 60.6

60 nodes, 90 edges
MPE/L Mean U/MPE Mean

range m % TR % TR
[1, 2] 1 26.5 172.8 0 0.0
(2, 3] 1 16 64.3 0 0.0
(3, 4] 1 9 43.5 1 17.4
(4,∞) 1 48.5 147.5 99 132.7
[1, 2] 2 79.5 26.1 41 21.2
(2, 3] 2 10 28.0 31 32.6
(3, 4] 2 5.5 42.4 14 24.4
(4,∞) 2 5 40.5 14 40.3
[1, 2] 3 100 1.3 100 1.3
(2, 3] 3 0 1.0 1 1.0
(3, 4] 3 0 0.0 0 0.0
(4,∞) 3 0 0.0 0 0.0

60 nodes, 90 edges
MPE/L Mean U/MPE Mean

range i % TR % TR
[1, 2] 5 57.5 91.4 3 28.5
(2, 3] 5 15 158.3 15.5 71.0
(3, 4] 5 9 82.3 17.5 57.2
(4,∞) 5 18.5 157.2 64 142.0
[1, 2] 8 80 64.9 38.5 36.9
(2, 3] 8 11.5 88.9 25 72.0
(3, 4] 8 3 27.4 21 96.3
(4,∞) 8 5.5 158.4 15.5 124.5
[1, 2] 11 85.5 24.4 81 23.5
(2, 3] 11 11.5 29.7 13.5 29.1
(3, 4] 11 0.5 11.4 5 37.3
(4,∞) 11 2.5 21.1 0.5 14.0

(a) mbe-mpe(m) (b) mbe-mpe(i)

TABLE III. RESULTS ONRANDOM NETWORKS OFTWO TYPES: (A) mbe-mpe(m)AND (B) mbe-mpe(i)ON

100 INSTANCES OFNETWORKS WITH100 NODES AND130 EDGES(WIDTH 4), AND (C) mbe-mpe(i)FOR

i = 2 TO 20 ON 100 INSTANCES OFNETWORKS WITH100 NODES AND200 EDGES(WIDTH w = 6)

mbe-mpe(m)
max

m U/L Ta mb
1 781.1 0.1 3
2 10.4 3.4 2
3 1.2 132.5 1
4 1.0 209.6 1

mbe-mpe(i)
max

i U/L Ta mb
2 475.8 0.1 3
5 36.3 0.2 2
8 14.6 0.3 2
11 7.1 0.8 2
14 3.0 3.7 2
17 1.7 24.8 1

mbe-mpe(i)
max

i U/L Ta mb
2 1350427.6 0.2 4
5 234561.7 0.3 3
8 9054.4 0.5 3
11 2598.9 1.8 3
14 724.1 10.5 3
17 401.8 75.3 3
20 99.5 550.2 2

(a) 100 nodes, 130 edges (b) 100 nodes, 130 edges (c) 100 nodes, 200 edges

demonstrates how the distribution of error changes with increasingmandi . Namely,
a larger percentage of problems can be solved with a lower error.

On sparse random problems, we observe a substantial time speedup accompanied
with low error. For example,mbe-mpe(i = 8) andmbe-mpe(i = 11) achieve a
relatively small error (MPE/L < 2 andU/MPE < 2) in approximately 80% of
cases, while being up to 2 orders of magnitude more efficient thanelim-mpe(see the
data for the 60-node networks in Table II(b)). Clearly, for dense random problems

132 R. DECHTER AND I. RISH

the approximation quality is worse since they tend to have larger induced width.
However, even for dense networks we observe that fori = 11 and form = 2,
approximately 50% of the instances were solved with an accuracyMPE/L < 2
accompanied with an order of magnitude speedup over the exact algorithm (see
Tables II(a) and II(b) for 30-node networks).

We observe that the lower bound provided by the (suboptimal) solution tuple
is closer toMPE than the upper bound. Namely,MPE/L ∈ [1, 2] in a larger
percent of cases thanU/MPE∈ [1, 2] for both problem classes and for alli andm
(see Table II).

The parameteri , bounding the number of variables in a mini-bucket, allows
a better control over the approximation quality thanm, the number of (nonsub-
sumed) functions in a mini-bucket. This results in a more accurate approximation
scheme and in a larger time speedup. For example, as we can see from Table II,
mbe-mpe(m= 2) solved about 80% of the instances with accuracyMPE/L ∈ [1, 2]
and average speedupTR= 26, whilembe-mpe(i = 8) solved 80% of the sparse
instances in the sameMPE/L range with time speedupTR= 65.

The results in Tables III(a) and III(b) demonstrate further the advantages of
more refined control allowed by the parameteri . For example, in Table III(a),
U/L ≤ 10.4 is achieved in 3.4 seconds bymbe-mpe(m = 2), while U/L ≤ 7.1
requires 0.8 seconds on the average bymbe-mpe(i = 11) (Table III(b)). On denser
problems having 100 nodes and 200 edgesmbe-mpe(m)is inaccurate form = 1
andm= 2, and already infeasible space-wise form= 3 andm= 4. Therefore, we
report only the results formbe-mpe(i), which allowed smaller error in a reasonable
amount of time. However, its accuracy was still not acceptable (U/L ≈ 100),
even when the number of mini-buckets was bounded just by 2 (Table III(c)). Note,
however, thatU/L may be a very loose upper bound on the actual accuracy.

9.3. RANDOM NOISY-OR PROBLEMS. The second set of experiments was per-
formed on randomly generatednoisy-ORnetworks.5 A noisy-OR conditional prob-
ability table (CPT) is defined on binary-valued nodes as follows: given a child
nodex, and its parentsy1, . . . , yn, eachyi is associated with anoise parameter
qi = P(x = 0|yi = 1, yk = 0), k 6= i . The conditional probabilities are defined as
follows [Pearl 1988]:

P(x|y1, . . . , yn) =
{∏

yi=1 qi if x = 0,
1−∏yi=1 qi if x = 1.

(7)

Obviously, when allqi = 0, we have a logical OR-gate. The parameter 1− qi =
P(x = 1|yi = 1, yk = 0) for k 6= i is also calledlink probability.

We generated random noisy-OR networks using the random graph generator
described earlier, and randomly selecting the conditional probabilities for each
CPT from the interval [0,q], whereq was the bound on the noise parameter.

Table IV presents the results of evaluating algorithmsmbe-mpe(m)and mbe-
mpe(i). We observe a good approximation quality (MPE/L < 1.5) accompanied
by one or two orders of magnitude efficiency improvement formbe-mpe(i), using
i = 11 andi = 14. In these cases the number of mini-buckets in a single bucket
was at most two. The parameterm was too coarse to allow accurate approximation

5 Noisy-OR is an example ofcausal independence[Heckerman and Breese 1995], which implies that
several causes (parent nodes) contribute independently to a common effect (child node).

Mini-Buckets: A General Scheme for Bounded Inference 133

TABLE IV. AVERAGE RESULTS FORelim-mpeVERSUSmbe-mpe(m)AND mbe-mpe(i)ON 200 RANDOM

NOISY-OR NETWORK INSTANCES WITH30 NODES, 90 EDGES(w = 9, w∗ = 12), ONE EVIDENCE NODE

X1 = 1, AND MAXIMUM NOISELEVEL q = 1

mbe-mpe(m)
max

m MPE/L U/MPE TR Ta mb
1 1285.8 59.0 441.2 0.0 4
2 179.9 5.5 30.8 1.0 2
3 1.3 1.2 1.2 15.5 1
4 1.1 1.1 1.0 18.0 1

mbe-mpe(i)
max

i MPE/L U/MPE TR Ta mb
5 48585.6 47.7 578.3 0.0 4
7 126.2 22.2 347.6 0.1 3
11 1.3 16.4 105.1 0.2 2
14 1.2 1.5 19.2 1.2 2

FIG. 16. Results on 200 random noisy-OR networks, each having 50 nodes, 150 edges, and 10
evidence nodes: (a) frequency of problems solved exactly (U/L=1) versus noiseq for different values
of i ; (b) a histogram of U/L forq = 0.1 andq = 0.5.

that also yields a good performance. For example, the case of m= 2 was fast but
very inaccurate (MPE/L ≈ 180), while for m= 3 the mini-bucket approximation
often coincided with the exact algorithm since the averagemax mb(rounded to the
nearest integer) equals 1.

Subsequently, we present results formbe-mpe(i)on larger networks (Figure 16).
Algorithm elim-mpewas intractable on these problems. The most apparent phe-
nomenon here is that the approximation improves with decreasing noiseq, that
is, U/L → 1 for q → 0. In Figure 16(a), the percentage of instances for which
U/L = 1 is plotted againstq for mbe-mpe(8), mbe-mpe(14), andmbe-mpe(20).
Whenq = 0 (deterministic dependencex⇔ y1∨ · · · ∨yk between a childx and its
parentsyi , i = 1, . . . , k), we observe almost 100% accuracy, which then decreases
with increasingq for all values ofi = 8, 14, 20. One possible explanation is that,
in the absence of noise, we get loosely connected constraint-satisfaction problems
that can be easily solved by local constraint propagation techniques coinciding in
this case with the mini-bucket scheme.

Notice that the behavior ofmbe-mpe(i)is “extreme”: it is either very accurate, or
very inaccurate (Figure 16(b)). This phenomenon is more noticeable for smallq.

9.4. CPCS NETWORKS. To evaluate the mini-bucket approach on realistic
benchmarks, we used the CPCS networks derived from the Computer-based Pa-
tient Case Simulation system [Parker and Miller 1987; Pradhan et al. 1994]. CPCS
network representation is based on INTERNIST-1 [Miller et al. 1982] and Quick

134 R. DECHTER AND I. RISH

Medical Reference (QMR) [Miller et al. 1986] expert systems. The nodes of CPCS
networks correspond to diseases and findings. In the original knowledge base, the
probabilistic dependencies between the nodes are represented byfrequency weights
that specify the increase in the probability of a finding (child node) given a certain
disease (parent node). This representation was later converted into a belief network
using several simplifying assumptions: (1) conditional independence of findings
given diseases, (2) noisy-OR dependencies between diseases and findings, and (3)
marginal independence of diseases [Shwe et al. 1991].

In CPCS networks, the noisy-OR CPTs may also includeleak probabilitiesnot
specified in Eq. 7. Namely, given a child nodex and its parentsy1, . . . , yn, theleak
probability is defined asleak= P(x = 1|y1 = 0, . . . , yn = 0). The definition of a
noisy-OR CPT is then modified as follows:

P(x = 0|y1, . . . , yn) = (1− leak)
n∏

yi=1

qi , (8)

whereqi are noise parameters defined earlier. Some CPCS networks include mul-
tivalued variables andnoisy-MAXCPTs, which generalize noisy-OR by allowing
k values per node, as follows:

l i = P(x = i |y1 = 0, . . . , yn = 0), i = 1, . . . k− 1, and

P(x = i |y1, . . . , yn) = l i
n∏

j=1

q
yj

j , i = 0, . . . k− 2,

P(x = k− 1|y1, . . . , yn) = 1−
i=k−2∑

i=0

l i
n∏

j=1

q
yj

j , (9)

whereq
yj

j is a noise coefficient for parentj and the parent’s valueyj . This definition
coincides with the one given by Eq. (8) fork = 2, assumingl0 = 1− leak, q0

j = 1,
andq1

j = qj .
We experimented with both binary (noisy-OR) and non-binary (noisy-MAX)

CPCS networks. The noisy-MAX networkcpcs179(179 nodes, 305 edges) has
2 to 4 values per node, while the noisy-OR networkscpcs360b(360 nodes, 729
edges) andcpcs422b(422 nodes, 867 edges) have binary nodes (the letter ‘b’ in
the network’s name stands for “binary”). Since our implementation used standard
conditional probability tables the non-binary versions of the larger CPCS networks
with 360 and 422 nodes did not fit into memory. Each CPCS network was tested
for different sets of evidence nodes.

9.4.1. Experiments Without Evidence.In Table V we present the results ob-
tained oncpcs179, cpcs360b, andcpcs422bnetworks assuming no evidence nodes
(i.e., there is only one network instance in each case) and using a min-degree elim-
ination ordering, as before. Note thatmbe-mpe(i= w∗ + 1) is equivalent to exact
elim-mpe. Each row contains the usual parameters and measures as well as an ad-
ditional parameter called theeffectiveinduced width,w∗a , defined as the size of
largest mini-bucket minus one. This parameter does not exceedi −1 nor the largest
family size.

Mini-Buckets: A General Scheme for Bounded Inference 135

TABLE V. mbe-mpe(i) ON CPCS NETWORKS INCASE OFNO EVIDENCE

i M U L U/MPE MPE/L Ta Te Te/Ta max mb w∗a
cpcs179 network,w = 8, w∗ = 8

Greedy value= 6.9e-3, MPE/greedy= 1.0, greedy time= 0.0
1 6.9e-3 9.1e-3 6.9e-3 1.3 1.0 0.3 1.0 3.3 4 8
4 6.9e-3 9.1e-3 6.9e-3 1.3 1.0 0.3 1.0 3.3 3 8
6 6.9e-3 6.9e-3 6.9e-3 1.0 1.0 0.4 1.0 2.5 2 8
8 6.9e-3 6.9e-3 6.9e-3 1.0 1.0 1.0 1.0 1.0 1 8

cpcs360b network,w = 18, w∗ = 20
Greedy value= 2.0e-7, MPE/greedy= 1.0, greedy time= 0.0

1 2.0e-7 3.7e-7 2.0e-7 1.8 1.0 0.4 115.8 289.5 8 11
6 2.0e-7 4.0e-7 2.0e-7 2.0 1.0 0.4 115.8 289.5 9 11
11 2.0e-7 2.4e-7 2.0e-7 1.2 1.0 0.5 115.8 231.6 6 11
16 2.0e-7 2.2e-7 2.0e-7 1.1 1.0 4.9 115.8 23.6 3 15
19 2.0e-7 2.0e-7 2.0e-7 1.0 1.0 30.4 115.8 3.8 3 18

cpcs422b network,w = 22, w∗ = 23
Greedy value= 1.19e-4, MPE/greedy= 41.2, greedy time= 0.1

1 0.0049 0.1913 0.0049 3.88 1.00 7.7 1697.6 220.5 12 17
6 0.0049 0.0107 0.0049 2.17 1.00 7.7 1697.6 220.5 10 17
11 0.0049 0.0058 0.0049 1.17 1.00 7.8 1697.6 217.6 9 17
18 0.0049 0.0050 0.0049 1.01 1.00 34.6 1697.6 49.1 3 17
20 0.0049 0.0069 0.0049 1.40 1.00 98.8 1697.6 17.2 3 19
21 0.0049 0.0049 0.0049 1.00 1.00 156.1 1697.6 10.9 2 20

In addition, we compute a lower bound onMPE (calledGreedyhere) using a
simple greedy strategyas follows. Before applying a mini-bucket algorithm we
generate a tuple (forward step) using only the original functions in each bucket.
Namely, for each variableXi along the given ordering we assign toXi a value
x′ = arg maxx

∏
j f j , where f j is a function inbucketi . The probability of the

generated tuple is another lower bound on theMPE. For each network, we report
theGreedylower bound and the ratioMPE/Greedyin a separate row.

We observe that for the above three instances, the lower bound computed by
mbe-mpe(i = 1) already provides the probability of the exact MPE solution. For
cpcs179andcpcs360b, even the greedy solution coincides with the MPE. The upper
bound converges slowly and reaches theMPEprobability at higher values ofi , such
asi = 6 for cpcs179, i = 19 for cpcs360b, andi = 21 for cpcs422b. Still, those
values are smaller thanw∗ +1, which is 9 forcpcs179, 21 forcpcs360b, and 24 for
cpcs422b. Therefore, the exact solution is found before the approximate algorithm
coincides with the exact one (we see that there are still two or three mini-buckets in
a bucket). Note the nonmonotonic convergence of the upper bound. For example, on
thecpcs360bnetwork, the upper boundU equals 3.7e-7 fori = 1, but then jumps
to 4.0e-7 fori = 6. Similarly, oncpcs422bnetwork,U = 0.0050 for i = 18,
but U = 0.0069 for i = 20. We also observe that the greedy approximation for
cpcs422bis an order of magnitude less accurate than the lower bound found by
mbe-mpe(i = 1) (see Table V), demonstrating that the mini-bucket scheme with
i = 1 can accomplish a nontrivial task very efficiently.

The results in Table V are reorganized in Figure 17 from the perspective of
algorithmanytime-mpe(ε). Anytime-mpe(ε) runsmbe-mpe(i)for increasingi un-
til U/L < 1 + ε. We started withi = 1 and were incrementing it by 1. We
present the results forε = 0.0001 in Figure 17. The table compares the time of
anytime-mpe(0.0001) and ofanytime-mpe(0.1) against the time of the exact

136 R. DECHTER AND I. RISH

FIG. 17. anytime-mpe(0.0001) oncpcs360bandcpcs422bnetworks for the case of no evidence.

algorithm. We see that the anytime approximation can be an order of magni-
tude faster.

9.4.2. Likely and Random Evidence.Subsequently, we experimented with
likely evidence and random evidence. A random evidence set of sizek is gen-
erated by randomly selectingk nodes and assigning value 1 to all of them. This
approach usually produces a highly unlikely evidence set that results in lowMPE
probability. Alternatively, likely evidence is generated viaancestral simulation(for-
ward samplingas follows: Starting with the root nodes and following an ancestral
ordering where parents precede children, we simulate a value of each node in accor-
dance with its conditional probability table. A given number of evidence nodes is
then selected randomly. Ancestral simulation results in relatively high-probability
tuples, which produce higher values ofMPEthan those for random evidence. As we
demonstrate below, this has a dramatic impact on the quality of the approximation.

In Table VI, we show the results forcpcs360b. We generated 1000 instances of
likely evidence and 1000 instances of random evidence, each of size 10. We first
show the results for a single “typical” instance (one per each type of evidence), and
then the average results over the complete sample set. We see that the probability
of MPE solution decreases dramatically when switching from likely to random
evidence. We observe thatmbe-mpe(i = 1) and the simple greedy approximation
compute the exact MPE solution, while the upper bound converges toMPEonly for
larger values ofi . The averageMPE/L ratio, however, is greater than 1 fori ≤ 5
(e.g.,MPE/L = 2.1 for i = 1), which tells us that the lower bound differs fromMPE
probability on some instances. The averageMPE/Greedy= 17.2 is significantly
larger. For random evidence the approximation error increases. The average lower
bound is strictly less than theM for i < 17, and the averageMPE/L = 25 for
i = 1. The results forcpcs422b(not shown here) were similar to those forcpcs360b.
Note thatU/L is an order of magnitude lower for likely evidence than for random
evidence (especially wheni < 8), but is still about an order of magnitude higher
than in the case of no evidence.

Mini-Buckets: A General Scheme for Bounded Inference 137

TABLE VI. mbe-mpe(i) ON cpcs360b(360 NODES, 729 EDGES, w = 18, w∗ = 20)

ONE SAMPLE of each evidence type
i M U L U/L U/MPE MPE/L Ta Te Te/Ta max mb w∗a

LIKELY evidence: 10 nodes
Greedy= 4.5e-10, MPE/greedy= 1.0, greedy time= 0.0

1 4.5e-10 4.1e-9 4.5e-10 9.0 9.0 1.0 0.4 115.8 289.5 8 11
7 4.5e-10 3.3e-9 4.5e-10 7.3 7.3 1.0 0.4 115.8 289.5 9 11
11 4.5e-10 1.9e-9 4.5e-10 4.1 4.1 1.0 0.5 115.8 231.6 6 11
17 4.5e-10 4.7e-10 4.5e-10 1.1 1.1 1.0 9.8 115.8 11.9 3 16

RANDOM evidence: 10 nodes
Greedy= 1.1e-29, MPE/greedy= 7.0, greedy time= 0.0

1 7.7e-29 8.9e-27 7.7e-29 115.4 115.4 1.0 0.4 116.0 290 7 11
7 7.7e-29 2.2e-26 7.7e-29 284.4 284.4 1.0 0.4 116.0 290 7 11
11 7.7e-29 4.0e-28 7.7e-29 5.2 5.2 1.0 0.5 116.0 232 5 11
17 7.7e-29 8.3e-29 7.7e-29 1.1 1.1 1.0 8.0 116.0 14.5 3 16

AVERAGES on 1000 instances
i M U L U/L U/MPE MPE/L Ta Te Te/Ta max mb w∗a

LIKELY evidence: 10 nodes
Greedy= 1.18e-7, MPE/Greedy= 17.2, greedy time= 0.0

1 1.2e-7 2.4e-7 1.2e-7 82 11 2.1 0.40 41.44 104.16 7.98 11
7 1.2e-7 2.1e-7 1.2e-7 8.6 8.2 1.0 0.40 41.44 103.53 8.94 11
11 1.2e-7 1.5e-7 1.2e-7 3.5 3.3 1.0 0.51 41.44 80.93 5.86 11
17 1.2e-7 1.3e-7 1.2e-7 1.3 1.3 1.0 9.59 41.44 4.35 3.04 16

RANDOM evidence: 10 nodes
Greedy= 5.01e-21, MPE/Greedy= 2620, greedy time= 0.0

1 6.1e-21 2.3e-17 2.4e-21 2.5e+6 2.8e+5 25 0.40 40.96 102.88 7.95 11
7 6.1e-21 7.3e-17 5.9e-21 1.3e+5 1.2e+5 1.5 0.40 40.96 102.41 8.89 11
11 6.1e-21 2.4e-18 6.0e-21 2.4e+4 2.1e+3 3.1 0.51 40.96 80.02 5.81 11
17 6.1e-21 1.8e-20 6.1e-21 15 15 1.0 9.53 40.96 4.31 3.03 16

Since the variance ofU/L is high, we also present histograms oflog(U/L) in
Figures 18 and 19, which summarize and highlight our main observations. The
accuracy increases for larger values ofi (histograms in Figure 18 shift to the left
with increasingi). As before, we see a dramatic increase in accuracy in case of
likely evidence (Figure 18), and observe that the lower bound is often much closer
to M than the upper bound:MPE/L is closer to 1 thanU/L (see Figure 19).

In summary, on CPCS networks

(1) mbe-mpe(i) computed accurate solutions for relatively smalli . At the
same time, the algorithm was sometimes orders of magnitude faster than
elim-mpe.

(2) As expected, both the upper and the lower bounds converge to the exactMPE
asi increases. The lower bound is much closer toM , meaning thatmbe-mpe(i)
can find a good (suboptimal) MPE assignment before it is confirmed by the
upper bound. In other words, we can find a good solution much faster than we
can find a tight bound on the quality of the approximation.

(3) The preprocessing done bymbe-mpe(i)is necessary. A simple greedy assign-
ment often provided a much less accurate lower bound.

(4) The approximation is significantly more accurate for likely than for unlikely
evidence.

138 R. DECHTER AND I. RISH

FIG. 18. Histograms ofU/L for i = 10, 20 on thecpcs360bnetwork with 1000 sets of likely and
random evidence, each of size 10.

9.5. PROBABILISTIC DECODING. In this section, we evaluate the quality of the
mini-bucket algorithmmbe-mpefor the task of probabilistic decoding. We compare
it to the exact elimination algorithms (elim-mpe, elim-mapandelim-bel) and to
the state-of-the-art approximate decoding algorithm,iterative belief propagation
(IBP), on several classes oflinear block codes, such asHamming codes, randomly
generated block codes, andstructured low-induced-width block codes.

9.5.1. Channel Coding. The purpose ofchannel codingis to provide reliable
communication through a noisy channel. Transmission errors can be reduced by
adding redundancy to the information source. For example, asystematic error-
correcting code[McEliece et al. 1997] maps a vector ofK information bits u=
(u1, . . . ,uK), ui ∈ {0, 1}, into anN-bit codeword c= (u, x), addingN − K code
bits x = (x1, . . . , xN−K), xj ∈ {0, 1}. Thecode rate R= K/N is the fraction of
the information bits relative to the total number of transmitted bits. A broad class
of systematic codes includes linear block codes. Given a binary-valuedgenerator
matrix G, an(N, K) linear block codeis defined so that the codewordc = (u, x)
satisfiesc = uG, assuming summation modulo 2. The bitsxi are also called the

Mini-Buckets: A General Scheme for Bounded Inference 139

FIG. 19. Histograms ofU/L andMPE/L for i = 10 and RANDOM evidence on thecpcs360b
network. Each histogram is obtained on 1000 randomly generated evidence sets, each of size 10.

FIG. 20. Belief network for a (7, 4) Hamming code.

parity-checkbits. For example, the generator matrix

1 0 0 0 1 1 0
G = 0 1 0 0 1 0 1

0 0 1 0 0 1 1
0 0 0 1 1 1 1

defines a (7, 4)Hamming code.
The codewordc = (u, x), also called thechannel input, is transmitted through a

noisy channel. A commonly used Additive White Gaussian Noise (AWGN) channel
model assumes that independent Gaussian noise with varianceσ 2 is added to each
transmitted bit, producing areal-valued channel output y. Given y, the decoding
task is to restore the input information vectoru [Frey 1998; McEliece et al. 1997;
MacKay and Neal 1996].

It was observed that the decoding problem can be formulated as a probabilistic
inference task over a belief network [McEliece et al. 1997]. For example, a (7, 4)
Hamming code can be represented by the belief network in Figure 20, where the
bits of u, x, andy vectors correspond to the nodes, the parent set for each nodexi
is defined by non-zero entries in the (K + i)th column ofG, and the (determinis-
tic) conditional probability functionP(xi |pai) equals 1 ifxi = u j1 ⊕ · · · ⊕ u j p

and 0 otherwise, where⊕ is the summation modulo 2 (also, XOR, or parity-check

140 R. DECHTER AND I. RISH

operation). Each output bityj has exactly one parent, the corresponding channel
input bit. The conditional density functionP(yj |cj) is a Gaussian (normal) distri-
bution N(cj ; σ), where the mean equals the value of the transmitted bit, andσ 2 is
the noise variance.

The probabilistic decoding task can be formulated in two ways. Given the ob-
served outputy, the task ofbit-wise probabilistic decoding is to find the most
probable value of eachinformation bit, namely:

u∗k = arg max
uk∈{0,1}

P(uk|y), for 1≤ k ≤ K .

The block-wisedecoding task is to find a maximum a posteriori (maximum-
likelihood) information sequence

u′ = arg max
u

P(u|y).

Block-wise decoding is sometimes formulated as finding a most probable explana-
tion (MPE) assignment (u′, x′) to the codeword bits, namely, finding

(u′, x′) = arg max
(u,x)

P(u, x|y).

Accordingly, bit-wise decoding, which requests the posterior probabilities for each
information bit, can be solved by belief updating algorithms, while the block-wise
decoding translates to the MAP or MPE tasks, respectively.

In the coding community, decoding error is measured by thebit error rate (BER),
defined as the average percentage of incorrectly decoded bits over multiple transmit-
ted words (blocks). It was proven by Shannon [1948] that, given the noise variance
σ 2, and a fixed code rateR = K/N, there is a theoretical limit (calledShannon’s
limit) on the smallest achievable BER, no matter which code is used. Unfortu-
nately, Shannon’s proof is nonconstructive, leaving open the problem of finding
an optimal code that achieves this limit. In addition, it is known that low-error
(i.e., high-performance) codes tend to be long [Gallager 1965], and thus intractable
for exact (optimal) decoding algorithms [McEliece et al. 1997]. Therefore, finding
low-error codes is not enough; good codes must be also accompanied by efficient
approximatedecoding algorithms.

Recently, several high-performance coding schemes have been proposed (turbo
codes[Berrou et al. 1993],low-density generator matrix codes[Cheng 1997],
low-density parity-checkcodes [MacKay and Neal 1996]), that outperform by far
the best up-to-date existing codes and get quite close to Shannon’s limit. This is
considered “the most exciting and potentially important development in coding
theory in many years” [McEliece et al. 1997]. Surprisingly, it was observed that the
decoding algorithm employed by those codes is equivalent to an iterative application
of Pearl’sbelief propagationalgorithm [Pearl 1988] that is designed for polytrees
and, therefore, performs only local computations. This successful performance of
iterative belief propagation (IBP) on multiply-connected coding networks suggests
that approximations by local computations may be suitable for this domain. In the
following section, we discuss iterative belief propagation in more detail.

9.5.2. Iterative Belief Propagation. Iterative belief propagation (IBP) com-
putes an approximate belief for each variable in the network. It applies Pearl’s belief
propagation algorithm [Pearl 1988], developed for singly-connected networks, to
multiply-connected networks, as if there are no cycles. The algorithm works by

Mini-Buckets: A General Scheme for Bounded Inference 141

FIG. 21. Iterative belief propagation (IBP) algorithm.

sending messages between the nodes: each parentui of a nodex sends acausal
support messageπui ,x to x, while each ofx’s children,yj , sends tox a diagnos-
tic support messageλyj ,x. The causal support from all parents and the diagnostic
support from all children are combined into vectorsπx andλx, respectively.

Nodes are processed (activated) in accordance with a variable ordering called
an activation schedule. Processing all nodes along the given ordering yields one
iteration of belief propagation. Subsequent iterations update the messages computed
during previous iterations. Algorithm IBP(I) stops afterI iterations. If applied to
polytrees, two iterations of the algorithm are guaranteed to converge to the correct
a posteriori beliefs [Pearl 1988]. For multiply-connected networks, however, the
algorithm may not even converge, or it may converge to incorrect beliefs. Some
analysis of iterative belief propagation on networks with cycles is presented in
[Weiss 1997] for the case of a single cycle.

For the sake of completeness, algorithm IBP(I) is shown in Figure 21. In our
implementation, we assumed an activation schedule that first updates the input
variables of the coding network and then updates the parity-check variables. Clearly,
evidence variables are not updated.Bel(x) computed for each node can be viewed
as an approximation to the posterior beliefs. The tuple generated by selecting the
most probable value for each node is the output of the decoding algorithm.

9.5.3. Experimental Methodology.We experimented with several types of
(N, K) linear block codes, which include (7, 4) and (15, 11) Hamming codes, ran-
domly generated codes, and structured codes with relatively low induced width.
The code rate wasR = 1/2, that is, N = 2K . As described above, linear
block codes can be represented by four-layer belief networks havingK nodes
in each layer (see Figure 12). The two outer layers represent the channel out-
put y = (yu, yx), whereyu and yx result from transmitting the input vectorsu
andx, respectively. The input nodes are binary (0/1), while the output nodes are
real-valued.

142 R. DECHTER AND I. RISH

Random codes are generated as follows: For each parity-check bitxj , P parents
are selected randomly out of theK information bits. Random codes are similar
to thelow-density generator matrixcodes [Cheng 1997], which randomly select a
given numberC of childrennodes for each information bit.

Structured codes are generated as follows. For each parity bitxi , P sequential
parents{u(i+ j)modK, 0 ≤ j < P} are selected. Figure 12 shows a belief network
of the structured code withK = 5 andP = 3. Note that the induced width of the
network is 3, given the orderx0, . . . , x4, u0, . . . ,u4. In general, a structured (N, K)
block code withP parents per each code bit has induced widthP, no matter how
largeK andN are.

Given K , P, and the channel noise varianceσ 2, a coding networkinstanceis
generated as follows: First, the appropriate belief network structure is created. Then,
an input signal is simulated, assuming uniform prior distribution of information bits.
The parity-check bits are computed accordingly and the codeword is “transmitted”
through the channel. As a result, Gaussian noise with varianceσ 2 is added to each
information and parity-check bit yielding the channel outputy, namely, a real-
valued assignment to theyu

i and yx
j nodes.6 The decoding algorithm takes as an

input the coding network and the observation (evidence)y and returns the recovered
information sequenceu′.

We experimented with iterative belief propagationIBP(I), with the exact elimi-
nation algorithms for belief updating (elim-bel), for finding MAP (elim-map), and
for finding MPE (elim-mpe), and with the mini-bucket approximation algorithms
mbe-mpe(i). In our experiments,elim-mapalways achieved the same bit error rate
(BER) aselim-mpe, and, therefore, only the latter is reported.

For each Hamming code network and for each structured code network, we
simulate 10,000 and 1,000 input signals, respectively, and report the corresponding
BERs associated with the algorithms. For the random code networks, the BER is
computed over 1,000 random networks while using only one randomly generated
signal per network.

Note that in our previous experiments we compared actual probabilities (MPE
and its bounds), while in the coding domain we use a secondary error measure,
the BER. The bit error rate is plotted as a function of the channel noise and is
compared to the Shannon limit and to the performance of a high-quality turbo-code
reported in Frey [1998] and used as a reference here (this code has a very large
block sizeK = 65, 536, code rate 1/2, and was decoded using 18 iterations of
IBP until convergence [Frey 1998]). In the coding community, the channel noise
is commonly measured in units of decibels (dB), 10log10Eb/No, whereEb/No is
called signal-to-noise-ratio and defined as

Eb/No = P

2σ 2R
.

P is the transmitter power, that is, bit 0 is transmitted as−√P, and bit 1 is trans-
mitted as

√
P; R is the code rate, andσ 2 is the variance of Gaussian noise. We use

0/1 signaling (equivalent to−1
2/+ 1

2 signaling), so thatP = 1
4.

6 Note that simulation of the channel output is akin to the simulation of likely evidence in a general
Bayesian network (i.e., forward sampling, or ancestral simulation). As observed in the previous
sections,mbe−mpeis more accurate, on average, when evidence is likely. Not surprisingly, similar
results were observed on coding networks.

Mini-Buckets: A General Scheme for Bounded Inference 143

TABLE VII. BER OF EXACT DECODINGALGORITHMS elim-bel(DENOTEDbel) AND elim-mpe
(DENOTEDmpe) ON SEVERAL BLOCK CODES(AVERAGE ON1000 RANDOMLY GENERATEDINPUT

SIGNALS)

σ Hamming code Random code Structured code
(7,4) (15,11) K= 10, N= 20, P= 3 K= 10, N= 20, P= 5 K= 10, N= 20, P= 7 K= 25, P= 4

bel mpe bel mpe bel mpe bel mpe bel mpe bel mpe
0.3 6.7e-3 6.8e-3 1.6e-2 1.6e-2 1.8e-3 1.7e-3 5.0e-4 5.0e-4 2.1e-3 2.1e-3 6.4e-4 6.4e-4
0.5 9.8e-2 1.0e-1 1.5e-1 1.6e-1 8.2e-2 8.5e-2 8.0e-2 8.1e-2 8.7e-2 9.1e-2 3.9e-2 4.1e-2

9.5.4. Results.

9.5.4.1. EXACT MPE VERSUSEXACT BELIEF-UPDATE DECODING. Before ex-
perimenting with the approximation algorithms for bit-wise and for block-wise
decoding (namely, for belief updating and for MPE), we tested whether there is a
significant difference between the corresponding exact decoding algorithms. We
compared the exactelim-mpealgorithm against the exactelim-belalgorithm on sev-
eral types of networks, including two Hamming code networks, randomly generated
networks with different number of parents, and structured code. The BER on 1000
input signals, generated randomly for each network, are presented in Table VII.
When the noise is relatively low (σ = 0.3), both algorithms have practically the
same decoding error, while for larger noise (σ = 0.5) the bit-wise decoding (elim-
bel) gives a slightly smaller BER than the block-wise decoding (elim-mpe). Conse-
quently, comparing an approximation algorithm for belief updating (IBP(I)) to an
approximation algorithm for MPE (mbe-mpe(i)) makes sense in the coding domain.

9.5.4.2. STRUCTURED LINEAR BLOCK CODES. In Figure 22, we compare the
algorithms on the structured linear block code networks withN = 50 and 100,
K = 25 and 50, andP = 4 andP = 7. The figures also displays the Shannon limit
and the performance of IBP(18) on a state-of-the-art turbo-code having input block
sizeK = 65,536 and rate 1/2 (the results are copied from Frey [1998]). Clearly,
our codes are far from being optimal: even the exactelim-mpe decoding yields a
much higher error than the turbo-code. However, the emphasis of our preliminary
experiments was not on improving the state-of-the-art decoder but rather on evalu-
ating the performance ofmbe-mpeand comparing it to the performance of IBP(i)
andmbe-mpeon different types of networks.

We observe that:

(1) As expected, the exactelim-mpedecoder always gives the smallest error among
the algorithms we tested;

(2) IBP(10) is more accurate on average than IBP(1);
(3) mbe-mpe(i), even fori = 1, is close toelim-mpe, due to the low induced width

of the structured code networks (w∗ = 6 for P = 4, andw∗ = 12 for P = 7),
and it outperforms IBP on all structured networks;

(4) Increasing the parents set size fromP = 4 (Figures 22(a) and 22(b)) toP = 7
(Figures 22(c) and 22(d)), makes the difference between IBP andmbe-mpe(i)
become even more pronounced. On networks withP = 7 both mbe-mpe(1)
and mbe-mpe(7) achieve an order of magnitude smaller error than IBP(10).

Next, we consider the results for each algorithm separately, while varying the
number of parents fromP = 4 to P = 7. We see that the error of IBP(1) remains
practically the same, the error of the exact elim-mpe changes only slightly, while
the error of IBP(10) andmbe-mpe(i)increases. However, the BER of IBP(10)

144 R. DECHTER AND I. RISH

FIG. 22. The average performance ofelim-mpe, mbe-mpe(i), and IBP(I) on rate 1/2structured block
codesand 1000 randomly generated input signals. The induced width of the networks is: (a), (b)
w∗ = 6; (c), (d)w∗ = 12. The bit error rate (BER) is plotted versus the channel noise measured
in decibels (dB), and compared to the Shannon limit and to the performance of IBP(18) on a high-
quality code reported [Frey 1998] (a turbo-code having input block sizeK = 65,536 and rate 1/2.
Notice thatmbe-mpe(7) coincides withelim-mpein (a) and (b), while in (c) and (d) it coincides with
mbe-mpe(1).

increased more dramatically with increased parent set. Note that the induced width
of the network increases with the increase in parent set size. In the case ofP = 4
(induced width 6),mbe-mpe(7) coincides withelim-mpe; in the case ofP = 7
(induced width 12), the approximation algorithms do not coincide withelim-mpe.
Still, they are better than IBP.

9.5.4.3. RANDOM LINEAR BLOCK CODE. On randomly generated linear block
networks (Figure 23(a)), the picture was reversed:mbe-mpe(i)for both i = 1 and
i = 7 was worse than IBP(10), although as good as IBP(1).Elim-mpealways ran
out of memory on these networks (the induced width exceeded 30). The results
are not surprising sincembe-mpe(i)can be inaccurate ifi is much lower than the

Mini-Buckets: A General Scheme for Bounded Inference 145

FIG. 23. The average performance ofelim-mpe, mbe-mpe(i), and IBP(I) on (a) 1000 instances of
rate 1/2random block codes, one signal instance per code; and on (b) (7, 4) and (c) (15, 11)Hamming
codes, 1000 signal instances per each code. The induced width of the networks is: (a) 30≤ w∗ ≤ 45;
(b) w∗ = 3; (c)w∗ = 9. The bit error rate (BER) is plotted versus the channel noise measured in
decibels (dB), and compared to the Shannon limit and to the performance of IBP(18) on a high-
quality code reported [Frey 1998] (a turbo-code having input block sizeK = 65,536 and rate 1/2.
Notice thatmbe-mpe(7) coincides withelim-mpein (a) and (b), while in (c) and (d) it coincides with
mbe-mpe(1).

induced width. However, it is not clear why IBP is better in this case. Also, note
that the experiments on random networks differ from those described above. Rather
than simulating many input signals for one network, we average results over many
random networks with one random signal per each network. To be more conclusive,
one needs to compare our algorithms on other random code generators such as
the recently proposed low-density generator matrix codes [Cheng 1997] and low-
density parity-check codes [MacKay and Neal 1996]. However, such experiments
are outside the scope of the current paper.

146 R. DECHTER AND I. RISH

9.5.4.4. HAMMING CODES. We tested the belief propagation and the mini-
bucket approximation algorithms on two Hamming code networks, one withN = 7,
K = 4, and the other one withN = 15, K = 11. The results are shown in
Figures 23(b) and 23(c). Again, the most accurate decoder was the exactelim-mpe.
Since the induced width of the (7, 4) Hamming network is only 3,mbe-mpe(7)
coincides with the exact algorithm. IBP(1) is much worse than the rest of the algo-
rithms, while IBP(5) is very close toelim-mpe. Algorithm mbe-mpe(1) is slightly
worse than IBP(5). On the larger Hamming code network, the results are similar,
except that bothmbe-mpe(1) andmbe-mpe(7) are significantly inferior to IBP(5).
Since the networks were quite small, the runtime of all the algorithms was less than
a second, and the time of IBP(5) was comparable to the time of exact elim-mpe.

9.5.5. Channel Coding: Summary.We showed that

(1) On a class of structured codes having low induced width the mini-bucket ap-
proximationmbe-mpeoutperformsIBP;

(2) On a class of random networks having large induced width and on some
Hamming codesIBP outperformsmbe-mpe;

(3) As expected, the exact MPE decoding (elim-mpe) outperforms approximate
decoding. However, on random networks, finding exact MPE was not feasible
due to the large induced width.

(4) On some classes of problems, theexactmaximum-likelihood decoding using
elim-mpeand theexactbelief update decoding usingelim-belhave comparable
error for relatively low channel noise; for higher noise, belief-update decoding
gives a slightly smaller (by≈ 0.1%) bit error rate than the MPE decoding.

As dictated by theory, we observed a correlation between the network’s induced
width and the quality of the mini-bucket’s approach. In summary, our results on
structured codes demonstrate that the mini-bucket scheme may be a better decoder
than IBP on coding networks having relatively low induced width. Additional ex-
periments are required in order to generalize this result for practical codes having
large block size (e.g.,N ≈ 104).

Our experiments were restricted to networks having small parent sets since the
mini-bucket and the belief propagation approaches are, in general, time and space
exponential in the parent set. This limitation can be removed by using the specific
structure ofdeterministicCPTs in the coding networks, which is a special case
of causal independence[Heckerman and Breese 1995; Zhang and Poole 1996].
Such networks can be transformed into networks having families of size three only.
Indeed, in coding practice, the belief propagation algorithm exploits the special
structure of the CPTs and is linear in the family size.

10. Related Work

The basic idea for approximating dynamic-programming type algorithms appears
in the early work of Montanari [1972] who proposed to approximate a discrete
function of high arity by a sum of functions having lower arity. Montanari uses the
mean square error in choosing the low-arity representation.

The mini-bucket approximation is the first attempt to approximate all bucket elim-
ination algorithms within a single principled framework. The bucket elimination

Mini-Buckets: A General Scheme for Bounded Inference 147

framework [Dechter 1999] provides a convenient and succinct language for
expressing elimination algorithms in many areas. In addition to dynamic program-
ming [Bertele and Brioschi 1972], constraint satisfaction [Dechter and Pearl 1987],
and Fourier elimination [Lassez and Mahler 1992], there are variations on these
ideas and algorithms for probabilistic inference [Cannings et al. 1978; Tatman and
Shachter 1990; Zhang and Poole 1996].

Our approach is inspired byadaptive-consistency, a full bucket elimination al-
gorithm for constraint satisfaction whose approximation,directional i-consistency
and its relational variantdirectional-relational-consistency(i, m)(DRC(i,m)), en-
force bounded levels of consistency [Dechter and van Beek 1997]. For example,
directional relational arc-consistency,DRC1, is similar tomini-bucket(m = 1);
directional path-consistency,DRC2, corresponds tomini-bucket(m = 2); and
so on.

Note that mini-bucket approximations can be used as heuristics for subse-
quent search, similar to pre-processing by local consistency prior to backtrack
search for constraint solving. Indeed, this direction was recently pursued quite suc-
cessfully embedding mini-bucket heuristics in branch and bound search [Kask
and Dechter 1999, 2001; Kask 2000]. In propositional satisfiability,bounded-
directional-resolutionwith boundb [Dechter and Rish 1994; Rish and Dechter
2000] corresponds tomini-bucket(i = b). It bounds the original resolution-based
Davis–Putnam algorithm [Davis and Putnam 1960].

Further comparisons of the mini-bucket scheme with search algorithms (for
MPE task), as well as combinations of mini-bucket preprocessing with search
were reported in [Kask and Dechter 1999b]. Empirical results show that on some
classes of random problems the mini-bucket algorithmmbe-mpeoutperforms
greedy local search, stochastic local search (SLS), a combination of greedy with
SLS, simulated annealing, and iterative belief propagation (unlike in coding net-
works). The overall winner is the combination of greedy search with SLS ap-
plied on top of the mini-bucket scheme (i.e., using the mini-bucket solution as an
initial assignment).

Another idea related to bounding dependencies is that of removingweak depen-
denciesin a join-tree clustering scheme presented in [Kjaerulff 1994]. This work
suggests the use of Kullback–Leibler distance (KL-distance, or relative entropy)
in deciding which dependencies to remove. Both the KL-distance measure and the
mean square error can be used to improve the mini-bucket partitioning scheme. A
similar approximation idea based on ignoring some dependencies was proposed by
[Boyen and Koller 1998] for stochastic processes, and can be perceived as similar
to mini-bucket(n, 1).

The mini-bucket scheme is closely related to other local approximations, such
as iterative belief propagation (IBP), generalized belief propagation (GBP)al-
gorithms [Yedidia et al. 2001] and in particular the recently proposedIterative
Join-Graph Propagation[Dechter et al. 2002] that were successfully used in prac-
tical applications such as probabilistic error-correcting coding [Frey and MacKay
1998]. The mini-bucket algorithms can be viewed as a noniterative version of all
those approaches.

The mini-bucket scheme was recently extended to tree-elimination algorithms
such as bucket tree elimination and join-tree clustering schemes and is calledmini-
bucket tree-elimination (MBTE). This extension allows approximating updated

148 R. DECHTER AND I. RISH

beliefs of all the variables at once, as well as computing other quantities of in-
terest, using single additional function generation pass in the reverse direction.
This approach was tested empirically for updating beliefs and showed highly com-
petitive results in many cases, compared with Gibbs sampling and iterative belief
propagation [Mateescu et al. 2002].

A collection of approximation algorithms for sigmoid belief networks was
recently presented [Jaakkola and Jordan 1996] in the context of a recursive
algorithm similar to bucket elimination. Upper and lower bounds are derived
by approximating sigmoid functions by Gaussian functions. This approximation
can be viewed as a singleton mini-bucket algorithm (m = 1) where Gaussian
functions replace themin or max operations applied in each mini-bucket. Ap-
proximations for sigmoid belief networks belong to a wider class ofvaria-
tional methodsfor approximate inference [Jordan et al. 1998]. Finally, there is
a large family of approximation techniques somewhat orthogonal to local prop-
agation, namely, sampling techniques (Markov-Chain Monte-Carlo, or MCMC
mehtods) often applied to approximate inference in Bayesian networks [Pearl
1988; MacKay 1998]. However, sometimes slow convergence of these methods
calls for hybrid algorithms that combine sampling with local propagation and
other approaches, thus exploiting different kinds of structure present in joint prob-
ability distributions.

11. Conclusions

The article describes a new approximate inference scheme, called mini-buckets,
that trades accuracy for efficiency when computational resources are bounded. The
scheme bounds the dimensionality of dependencies created by inference algorithms.
The mini-bucket scheme is based on the bucket-elimination framework [Dechter
1997a] that is applicable across a wide variety of areas.

We presented and analyzed the mini-bucket approximation algorithms for
the probabilistic tasks of belief updating, finding the most probable expla-
nation (MPE), and finding the maximum a posteriori hypothesis (MAP) as
well as for general combinatorial optimization tasks. We identified regions of
completeness and demonstrated promising empirical results obtained both on
randomly generated networks and on realistic domains such as medical diag-
nosis and probabilistic decoding. The complexity bounds of the mini-bucket al-
gorithms provide some guidelines for selecting algorithm’s parameters based
both on memory considerations and on the problem’s graph structure. An any-
time version of the algorithm iteratively increments the controlling parame-
ters and guarantees an increase in accuracy as long as computational resources
are available.

Our experimental work focused on evaluatingmbe-mpe, the mini-bucket approx-
imation algorithm for MPE. We demonstrated that the algorithm provides a good
approximation accompanied by a substantial speedup in many cases. Specifically,
we observed that

(a) As expected, the algorithm’s performance (wheni is fixed) decreases with
increasing network density.

(b) The algorithm works significantly better for structured rather than for uniformly
distributed CPTs. For example, for noisy-OR random networks and for CPCS

Mini-Buckets: A General Scheme for Bounded Inference 149

networks (noisy-OR and noisy-MAX CPTs), we often computed an accurate
solution in cases when the exact algorithm was much slower, or infeasible.

(c) For probabilistic decoding we demonstrated that the mini-bucket scheme out-
performs the state-of-the-art iterative belief propagation decoding algorithm on
problems having loww∗. However, on randomly generated high-w∗ codes, the
mini-bucket approximation was inferior to IBP.

(d) The lower bound computed bymbe-mpewas often closer to the MPE than
the corresponding upper bound, indicating that good solutions are found long
before this can be verified by the generated upper bound.

(e) The approximation accuracy is significantly better for problems having high
MPE (e.g., likely evidence), as observed on CPCS networks and coding prob-
lems. Also, the algorithm’s performance improves considerably with decreasing
noise in noisy-OR CPTs, yielding an exact solution in practically all zero-noise
cases while using a relatively low boundi . We believe that these results can also
be attributed to high MPE values that normally accompany noisy-OR problems
having low noise.

The mini-bucket scheme can be improved along the following lines. Instead
of using the brute-force procedure for partitioning a bucket into mini-buckets
we can improve the decomposition by minimizing a distance metric between
the exact function and its approximation. Candidate metrics are relative entropy
(KL-distance) [Kjaerulff 1994] and the min-square error [Montanari 1972].
The approximation may be further improved for the special cases of noisy-OR,
noisy-MAX, and noisy-XOR (also known ascausal independence[Heckerman
and Breese 1995; Zhang and Poole 1996; Rish and Dechter 1998]) structures that
are often present in real-life domains (e.g., CPCS and coding networks). Also,
it was shown that combining the mini-bucket scheme with heuristic search has a
great potential [Kask and Dechter 1999].

Finally, theoretical explanation of our empirical results (e.g., on relatively high-
MPE and low-noise problems) and prediction of mini-bucket accuracy still remain
open questions. Initial theoretical analysis and certain optimality conditions are
given in [Rish et al. 2002] for the simplest member of the mini-bucket family,
greedy forward assignment (no preprocessing) for finding MPE, on problems hav-
ing high MPE probability, such as some problems with nearly deterministic CPTs
(e.g., noisy-OR networks with low noise). Interestingly, the greedy approxima-
tion is guaranteed to give an exact solution when MPE values are high enough
(a frequent situation in low-noise problems), but its accuracy drops dramatically
after certain threshold MPE value. Investigating the behavior of more complex
mini-bucket approximations under similar conditions remains the topic of fur-
ther research.

ACKNOWLEDGMENT. We wish to thank Padhraic Smyth and Robert McEliece for
insightful discussions and for providing information about the coding domain,
Kalev Kask for his contribution to the joint work on coding problems [Kask et al.
1998], and to Nira Brand for useful editorial comments.

REFERENCES

ARNBORG, S. A. 1985. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability—A survey.BIT 25, 2–23.

150 R. DECHTER AND I. RISH

BERROU, G., GLAVIEUX , A., AND THITIMAJSHIMA , P. 1993. Near Shannon limit error-correcting cod-
ing: Turbo codes. InProceedings of the 1993 International Conference on Communications(Geneva,
May).

BERTELE, U., AND BRIOSCHI, F. 1972. Nonserial Dynamic Programming. Academic Press, New York.
BODDY, M., AND DEAN, T. L. 1989. Solving time-dependent planning problems. InProceedings of the

11th International Joint Conference on Artificial Intelligence. pp. 979–984.
BODLAENDER, H. L. 1997. Treewidth: Algorithmic techniques and results. InProceedings of 22nd In-

ternational Symposium on Mathematical Foundations of Computer Science (MFCS’97). Lecture Notes
in Computer Science, vol. 1295. Springer-Verlag, New York, pp. 19–36.

BODLAENDER, H. L., KOSTER, A. M., EIJKHOF, F. V., AND VAN DER GAAG, L. C. 2001. Pre-processing
for triangulation of probabilistic networks. InProceedings of 17th Annual Conference of Uncertainty in
Artificial Intelligence (UAI01). pp. 32–39.

BOYEN, X., AND KOLLER, D. 1998. Tractable inference for complex stochastic processes. InProceedings
of 14th annual conference on Uncertainty in AI (UAI)(Madison, Wisc). pp. 33–42.

CANNINGS, C., THOMPSON, E. A., AND SKOLNICK, H. H. 1978. Probability functions on complex pedi-
grees.Adv. Appl. Prob. 10, 26–61.

CHENG, J.-F. 1997. Iterative decoding. Ph.D. dissertation. Caltech, Pasadena, Calif.
COOPER, G. F. 1990. The computational complexity of probabilistic inference using Bayesian belief

networks.Artif. Intel. 42, 2–3, 393–405.
DAGUM, P.,AND LUBY, M. 1993. Approximating probabilistic inference in Bayesian belief networks is

NP-hard.Artif. Intel. 60, 1, 141–155.
D’A MBROSIO, B. 1994. Symbolic probabilistic inference in large BN2O networks. InProceedings of the

10th Conference on Uncertainty in Artificial Intelligence. pp. 128–135.
DAVIS, M., AND PUTNAM, H. 1960. A computing procedure for quantification theory.J. ACM 7, 3.
DEAN, T. L., AND BODDY, M. 1988. An analysis of time-dependent planning. InProceedings of the 7th

National Conference on Artificial Intelligence. PP. 49–54.
DECHTER, R. 1992. Constraint networks. InEncyclopedia of Artificial Intelligence, 2nd ed. Wiley,

New York, pp. 276–285.
DECHTER, R. 1996. Bucket elimination: A unifying framework for probabilistic inference. InProceedings

of 12th Conference on Uncertainty in Artificial Intelligence (UAI-96). pp. 211–219.
DECHTER, R. 1997a. Bucket elimination: A unifying framework for processing hard and soft constraints.

CONSTRAINTS: An Int. J. 2, 51–55.
DECHTER, R. 1997b. Mini-buckets: A general scheme for generating approximations in automated rea-

soning. InProceedings of the 15th International Joint Conference of Artificial Intelligence (IJCAI-97)
(Japan). pp. 1297–1302.

DECHTER, R. 1998. Constraint satisfaction. InMIT Encyclopedia of the Cognitive Sciences (MITECS).
MIT Cambridge, Mass.

DECHTER, R. 1999. Bucket elimination: A unifying framework for reasoning.Artif. Intel. 113, 41–
85.

DECHTER, R., AND FROST, D. 1997. Backtracking algorithms for constraint satisfaction problems, a
tutorial survey. Tech. rep., UCI.

DECHTER, R., KASK, K., AND MATEESCU, R. 2002. Iterative join-graph propagation. InProceedings of
UAI-02.

DECHTER, R.,AND PEARL, J. 1987. Network-based heuristics for constraint satisfaction problems.Artif.
Intel. 34, 1–38.

DECHTER, R., AND RISH, I. 1994. Directional resolution: The Davis–Putnam procedure, revisited. In
Principles of Knowledge Representation and Reasoning (KR-94). pp. 134–145.

DECHTER, R., AND RISH, I. 1997. A scheme for approximating probabilistic inference. InProceedings
of the 13th Conference on Uncertainty in Artificial Intelligence (UAI97).

DECHTER, R., AND VAN BEEK, P. 1997. Local and global relational consistency.Theoret. Comput. Sci.
pp. 283–308.

DRAPER, D. 1995. Localized partial evaluation of belief networks. Tech. rep. Ph.D. dissertation. Univer-
sity of Washington.

EL FATTAH, Y., AND DECHTER, R. 1995. Diagnosing tree-decomposable circuits. InProceedings of the
International Joint Conference of Artificial Intelligence (IJCAI-95)(Montreal, Ont., Canada, Aug.). pp.
1742–1748.

JENSEN, F., AND ANDERSEN, S. K.. 1990. Approximations in Bayesian belief universes for knowledge-
based systems. InProceedings of the 6th Conference on Uncertainty in Artificial Intelligence.

Mini-Buckets: A General Scheme for Bounded Inference 151

FREUDER, E. C. 1978. Synthesizing constraint expressions.Commun. ACM 21, 11, 958–965.
FREUDER, E. C. 1982. A sufficient condition for backtrack-free search.J. ACM 21, 11, 958–

965.
FREY, B. J. 1998. Graphical Models for Machine Learning and Digital Communication. MIT Press,

Cambridge, Mass.
FREY, B. J. 1998. Graphical Models for Machine Learning and Digital Communication. MIT Press,

Cambridge, Mass.
FREY, B. J.,AND MACKAY, D. J. C. 1998. A revolution: belief propagation in graphs with cycles.Adv.

Neural Inf. Proc. Syst. 10.
GALLAGER, R. G. 1965. A simple derivation of the coding theorem and some applications.IEEE Trans.

Inf. Theory IT-11, 3–18.
GUO, H., AND HSU, W. 2002. A survey on algorithms for real-time Bayesian network inference. InPro-

ceedings of the Joint AAAI-02/KDD-02/UAI-02 Workshop on Real-Time Decision Support and Diagnosis
Systems(Edmonton, Alberta, Canada).

HECKERMAN, D. AND BREESE, J. 1995. Causal independence for probability assessment and inference
using Bayesian networks. Tech. Rep. MSR-TR-94-08, Microsoft Research.

HORVITZ, E. 1987. Reasoning about beliefs and actions under computational resource constraints. In
Proceedings of the 3rd Conference on Uncertainty in Artificial Intelligence (UAI-87)(Seattle, Wash.).
pp. 301–324.

HORVITZ, E. 1988. Reasoning under varying and uncertain resource constraints. InProceedings of the
4th Conference on Uncertainty in Artificial Intelligence (UAI-88). pp. 111–116.

HORVITZ, E. 1990. Computation and action under bounded resources. Ph.D. dissertation. Stanford Univ.,
Stanford, Calif.

HORVITZ, E., SUERMONDT, H. J.,AND COOPER, G. F. 1989. Bounded conditioning: Flexible inference
for decisions under scarce resources. InProceedings of the 5th Conference on Uncertainty in Artificial
Intelligence (UAI-89). pp. 182–193.

KASK, K., RISH, I., AND DECHTER, R. 1998. Approximation algorithms for probabilistic decoding. In
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98).

JAAKKOLA , T. S., AND JORDAN, M. I. 1996. Recursive algorithms for approximating probabilities in
graphical models.Adv. Neural Inf. Proc. Syst. 9.

JORDAN, M. I., GHAHRAMANI , Z., JAAKKOLA , T. S.,AND SAUL, L. K. 1998. An Introduction to Variational
Methods for Graphical Models. Kluwer Academic Publishers.

KASK, K. 2000. New search heuristics for max-csp. InProceedings of the Principles and Practice of
Constraint Programming (CP2000). pp. 255–269.

KASK, K., AND DECHTER, R. 1999a. Mini-bucket heuristics for improved search. InProceedings of 15th
Conference on Uncertainty in Artificial Intelligence (UAI-99).

KASK, K., AND DECHTER, R. 1999b. Stochastic local search for bayesian networks. InProceedings of
Workshop on AI and Statistics (AISTAT’99). pp. 113–122.

KASK, K., AND DECHTER, R. 2001. A general scheme for automatic search heuristics from specification
dependencies.Artif. Intel.

KASK, K., DECHTER, R., LARROSA, J., AND FABIO, G. 2001. Bucket-tree elimination for automated
reasoning.Artif. Intel. 125, 91–131.

KJAERULFF, U. 1990. Triangulation of graph-based algorithms giving small total state space. Tech. Rep.
90-09, Department of Mathematics and Computer Science, Univ. Aalborg, Aalborg, Denmark.

KJAERULFF, U. 1992. Optimal decomposition of probabilistic networks by simulated annealing.Stat.
Comput. 2, 7–17.

KJAERULFF, U. 1994. Reduction of computational complexity in Bayesian networks through removal
of week dependencies. InProceedings of the 10th Conference on Uncertainty in Artificial Intelligence
(UAI-94).

LARROSA, J. 2000. On the time complexity of bucket elimination algorithms. ICS Tech. rep.
LASSEZ, J.-L.,AND MAHLER, M. 1992. On Fourier’s algorithm for linear constraints.J. Automat. Reas. 9.
LAURITZEN, S. L., AND SPIEGELHALTER, D. J. 1988. Local computation with probabilities on graph-

ical structures and their application to expert systems.J. Roy. Stat. Soc., Seri. B 50, 2, 157–
224.

MACKAY, D. J. C. 1998. Introduction to Monte Carlo methods. InLearning in Graphical Models, M. I.
Jordan, ed. Kluwer Academic Press.

MACKAY, D. J. C.,AND NEAL, R. M. 1996. Near Shannon limit performance of low density parity check
codes.Electron. Lett. 33, 457–458.

152 R. DECHTER AND I. RISH

MACKWORTH, A. K. 1977. Consistency in networks of relations.Artif. Intel. 8, 1, 99–118.
MATEESCU, R., DECHTER, R., AND KASK, K. 2002. Tree approximation for belief updating. InPro-

ceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002)(Edmonton, Alberta,
Canada). pp. 553–559.

MCELIECE, R. J., MACKAY, D. J. C.,AND CHENG, J. F. 1997. Turbo decoding as an instance of Pearl’s
belief propagation algorithm.IEEE J. Select. Areas Commun.

MILLER, R. A., MASARIE, F. E.,AND MYERS, J. 1986. Quick medical reference (QMR) for diagnostic
assistance.Medi. Comput. 3, 5, 34–38.

MILLER, R. A., POPLE, H. E., AND MYERS, J. D. 1982. Internist-1: An experimental computer-
based diagnostic consultant for general internal medicine.New Eng. J. Med. 307, 468–
476.

MONTANARI, U. 1972. On the optimal approximation of discrete functions with low-dimensional tables.
Inf. Proc. 71, 1363–1368.

PARK, J. 2002. MAP complexity results and approximation methods. InProceedings of the 18th Con-
ference on Uncertainty in Artificial Intelligence (UAI)(San Francisco, Calif.) Morgan-Kaufmann, San
Mateo, Calif., pp. 388–396.

PARKER, R.,AND MILLER, R. 1987. Using causal knowledge to create simulated patient cases: the CPCS
project as an extension of INTERNIST-1. InProceedings of the 11th Symposium Computer Applications
in Medical Care, pp. 473–480.

PEARL, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan-Kaufmann, San Mateo, Calif.

PENG, Y., AND REGGIA, J. A. 1989. A connectionist model for diagnostic problem solving.IEEE Trans.
Syst., Man and Cybernet.

POOLE, D. 1996. Probabilistic conflicts in a search algorithm for estimating posterior probabilities in
Bayesian networks.Artif. Intel. 88, 69–100.

PRADHAN, M., PROVAN, G., MIDDLETON, B.,AND HENRION, M. 1994. Knowledge engineering for large
belief networks. InProceedings of the 10th Conference on Uncertainty in Artificial Intelligence.

RISH, I., BRODIE, M., AND MA, S. 2002. Accuracy vs. efficiency trade-offs in probabilistic diagnosis.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI2002)(Edmonton, Alb.,
Canada).

RISH, I., AND DECHTER, R. 1998. On the impact of causal independence. Tech. rep., Information and
Computer Science, Univ. California, Irvine, Irvine, Calif.

RISH, I., AND DECHTER, R. 2000. Resolution vs. search; Two strategies for SAT.J. Automat. Reas. 24,
1/2, 225–275.

ROBERTSON, N., AND SEYMOUR, P. 1995. Graph minor. XIII. The disjoint paths problem.Combinat.
Theory, Ser. B 63, 65–110.

ROTH, D. 1996. On the hardness of approximate reasoning.AI J. 82, 1-2 (Apr.), 273–302.
SANTOS, E. 1991. On the generation of alternative explanations with implications for belief revision.

In Proceedings of the 7th Annual Conference on Uncertainty in Artificial Intelligence (UAI-91). pp.
339–347.

SANTOS, E. J.,AND SHIMONY, S. E. 1998. Deterministic approximation of marginal probabilities in
Bayes nets.IEEE Trans. Syst. Man, Cybernet. 28, 4, 377–393.

SHACHTER, R. D. 1986. Evaluating influence diagrams.Oper. Res. 34.
SHANNON, C. E. 1948. A mathematical theory of communication.Bell Syst. Tech. J. 27, 379–423, 623–

656.
SHIMONY, S. E.,AND CHARNIACK, E. 1991. A new algorithm for finding MAP assignments to belief

networks. InUncertainty in Artificial Intelligence, P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer,
Eds. pp. 185–193.

SHWE, M., MIDDLETON, B. F., HECKERMAN, D. E., HENRION, M., HORVITZ, E. J., LEHMANN, H.,
AND COOPER, G. F. 1991. Probabilistic diagnosis using a reformulation of the Internist-1/QMR
knowledge base: I. The probabilistic model and inference algorithms.Meth. Inf. Med. 30, 241–
255.

TATMAN , J. A., AND SHACHTER, R. D. 1990. Dynamic programming and influence diagrams.IEEE
Trans. Syst. Man, Cyberneti.

VAN ENGELEN, R. A. 1997. Approximating Bayesian belief networks by arc removal.IEEE Trans. Patt.
Anal. Mach. Intel. 19, 8, 916–920.

WEISS, Y. 1997. Belief propagation and revision in networks with loops. InProceedings of the NIPS-97
Workshop on Graphical Models.

Mini-Buckets: A General Scheme for Bounded Inference 153

WELLMAN , M. P., AND LIU, C. 1994. State-space abstraction for anytime evaluation of probabilistic
networks. InProceedings of the 10th Annual Conference on Uncertainty in Artificial Intelligence (UAI-
94). pp. 567–574.

YEDIDIA, J., FREEMAN, W. T., AND WEISS, Y. 2001. Generalized belief propagation. InNIPS 13. MIT
Press, Cambridge, Mass, pp. 689–695.

ZHANG, N. L., AND POOLE, D. 1996. Exploiting causal independence in Bayesian network inference.J.
Artif. Intel. Res. 5, 301–328.

RECEIVED NOVEMBER2000;REVISED OCTOBER2002;ACCEPTED OCTOBER2002

Journal of the ACM, Vol. 50, No. 2, March 2003.

