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1. Introduction

Automated reasoning tasks such as constraint satisfaction and optimization, proba-
bilistic inference, decision-making and planning are generally hard (NP-hard). One
way to cope with this computational complexity is to identify tractable problem
classes. Another way is to design algorithms that compute approximate rather than
exact solutions.

Although approximation within given error bounds is also known to be NP-hard
[Dagum and Luby 1993; Roth 1996], there are approximation strategies that work
well in practice. One approach advocatag/time algorithmsThese algorithms
can be interrupted at any time, producing the best solution found thus far [Horvitz
1987, 1990, Dean and Boddy 1988; Boddy and Dean 1989]. Another approach is
to identify classes of problems for which some solution quality can be guaranteed,
thus applying the idea of tractability to approximation. Yet another approach is
to use approximation algorithms that output a bound on their accuracy for each
problem instance.

In this article, we present approximation algorithms that accommodate some
of these properties. The classmfni-bucketapproximation algorithms applies a
local inferenceapproach to probabilistic reasoning and combinatorial optimiza-
tion using thebucket-eliminationframework. Bucket elimination is a unifying
algorithmic scheme that generalizes nonserial dynamic programming and vari-
able elimination, to enable complex problem-solving and reasoning activities.
Among the algorithms that can be expressed as bucket eliminatialiracéonal-
resolutionfor propositional satisfiability [Dechter and Rish 1994; Rish and Dechter
2000], adaptive-consistendpr constraint satisfaction [Dechter and Pearl 1987],
Fourier andGaussian eliminatiofor linear inequalities [Lassez and Mahler 1992],
dynamic-programminépr combinatorial optimization [Bertele and Brioschi 1972],
as well as many algorithms for probabilistic inference [Dechter 1999].

In all these areas, problems are represented by a set of functions or dependencies
over subsets of variables (e.g., constraints, cost functions, or probabilities). The
dependencies can be represented bynéeraction graph. The algorithms infer
and record new dependencies which amounts to adding new edges to the graph.
Generally, representing a dependency amowugriables K is called thearity of a
dependency) requires enumerat@{exp()) tuples. As a result, the complexity of
inference is time and space exponential in the arity (the number of arguments) of
the largest dependency recorded by these algorithms, which is captured by a graph
parameter known d@aduced widthor treewidth[Arnborg 1985; Dechter 1992].

In constraint networks, the computational complexity of inference can be
bounded using constraint propagation or local consistency algorithms, such as
i-consistencyalgorithms [Freuder 1982; Dechter 1992] that restrict the arity of
recorded dependenciesitoknown special cases asgc-consistencyi = 2) and
path-consistencfi = 3) [Mackworth 1977; Freuder 1978; Dechter 1992]. In gen-
eral,constraint-propagatioralgorithms transform a given constraint problem into
an equivalent but more explicit representation, by inferring new constraints that
are added to the problem. Intuitively, a&rconsistency algorithm will make any
solution of any subproblem of sidzeextensible (if possible) to some surround-
ing variables and constraints. These algorithms are interesting because they are
polynomial, and yet they are often sufficient for discovering inconsistency. Indeed,
the recent success of constraint-processing algorithms can be attributed primarily
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to this class of algorithms, either used as stand-alone, incomplete algorithms, or
incorporated within backtracking search [Dechter 1998; Dechter and Frost 1997].
The idea, visualized in Figure 1, shows that while exact algorithms may record
arbitrarily large constraints (depicted by large cliquésjonsistency algorithms
enforce consistency over smaller subproblems, recording constraints ofize
less. The -consistency enforcing algorithm is an iterative procedure that goes over
all subsets of variables and filters out all those assignment that are not extensible;
the procedure terminates when it converges to a fixed point, or when an inconsistent
subproblem is discovered.

The mini-bucket approximation presented in the this article is inspired by the
success of local consistency propagation, extending the idea to probabilistic reason-
ing and combinatorial optimization. This yields a parameterized scheme controlled
by a bound on the size of functions that are recorded. Higher bounds result in more
accurate solutions but require more computation. The mini-bucket algorithms gen-
erate both an approximate solution and a bound on the solution quality. We identify
regions of completeness and present empirical results for the task of finding the
most probable explanation (MPH) Bayesian belief networks (see Section 2).

As we show, the proposed mini-bucket algorithms demonstrate good performance
both on randomly generated problems and on realistic domains such as medical
diagnosis and probabilistic decoding. One of the most important aspects of this
scheme is that its parameterization yields an adaptive scheme that allows the user
to tailor the algorithm to a particular problem domain and to the available time and
space resources.

The article is organized as follows: Section 2 provides necessary definitions and
preliminaries. The next three sections present and analyze the mini-bucket approx-
imation for the probabilistic inference tasks of findinmast probable explanation
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(MPE), belief updating (BELaNd finding amost probable a posteriori hypothesis
(MAP). Section 6 presents the mini-bucket algorithm for optimization problems.
Section 7 identifies cases of completeness and Section 8 discusses extensions to
anytime algorithms. In Section 9, empirical evaluation is carried out for the MPE
task on randomly generated noisy-OR networks, on the CPCS networks for medical
diagnosis [Pradhan et al. 1994], and on classes of probabilistic decoding problems.
Section 10 discusses related work, while Section 11 provides concluding remarks
and discusses future work.

2. Background

Belief networkgrovide a formalism for reasoning under uncertainty. A belief net-
work is defined by a directed acyclic graph over nodes representing random vari-
ables of interest (e.g., the temperature of a device, the gender of a patient, a feature
of an object, an event occurrence). The arcs signify the existence of direct causal
influences between the linked variables, and the strength of these influences are
guantified by conditional probabilities. A belief network relies on the notion of a
directed graph.

Definition1 (Graphg. A directed graphis a pairG = (V, E), whereV =
{X1,..., Xy} is a set of nodes anl = {(Xi, Xj)|X;, X; € V,i # j} is a set of
edges. Two nodeX; andX; are callecheighborsf there is an edge between them
(either (X;, X;) or (Xj, Xj)). We say thalX; pointsto X; if (X;, X;) € E; X; is
called aparentof X;, while X; is called achild of X;. The set of parent nodes of
Xi is denotedpay, , or pa, while the set of child nodes of; is denotecthy,, or
ch;. We call a node and its parentdamily. A directed graph igcyclicif it has
no directed cycles. In amndirected graphthe directions of the edges are ignored:
(Xi, X;) and (Xj, X;) are identical. A directed graph Eingly-connectedalso
known as @olytred, if its underlying undirected graph (callsieleton grapphas
no (undirected) cycles. Otherwise, it is callediltiply-connected

Definition2 (Belief Networky. Let X = {X4,..., Xy} be a set of random
variables, each having a finite number of possiiigtes or values The set of
valuesD; is thedomainof X;. A belief networkis a pair G, P), whereG =
(X, E) is a directed acyclic graph over nodes, denoting the variablesPard
{P(Xj|pa)li =1,...,n}isthe setof conditional probability tables (CPTs) defined
for each variableX; and its parentpa in G. A belief network represents a joint
probability distribution oveiX having the product form

P(X) = P(X1, ..., %n) = IT{; P(Xi[Xpa ). (1)

wherex = (xg, ..., Xp), an abbreviation fox = (X1 = Xy, ..., X, = X,), denotes
an assignment to all the variables from their respective domainsyarenotes
the assignment to the parentsXf.

The following notation will be used in this article. We denote variables by upper-
case letters, and use lower-case letters for the corresponding domain values. We
use vector notation (e.gx) for assignments to subsets of variables. For example,

A = a denotes value assignmemnto a subset of variable& from their respective
domains. Ifa is a partial assignment oveéx and S is another subset of variables,
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Fic. 2. (a) A belief network representing the joint probability distributi®(g, f, d, c, b,a) =
P(gl f)P(f|c, b)P(d|b, a)P(bja)P(c|a)P(a), and (b) its moral graph.

thenas denotes the projection af over S, namely, the partial assignment fram
restricted to variables iB. An evidencee is an assignment to a subsetevidence
variables that is, the variables that are observed.

The set of arguments of a functidnis called thescopeof f. Thus, the scope of
a CPT is its family. Thenoral graph G" of a belief network G, P) is obtained by
connecting (“marrying”) all the parents of each node and removing the directionality
of edges. Thus, each CPT, associated with a family in a belief network, corresponds
to a cligue (complete subgraph) in the moral graph.

Examplel. Consider the belief network that represents the joint probability
distribution

P(g, f,d,c,b,a) = P(g| f)P(f|c, b)P(d|b, a)P(bja)P(c|a)P(a).

Its acyclic directed graphis shown in Figure 2(a), and the corresponding moral graph
is shown in Figure 2(b). In this caspa(F) = {B, C}, pa(B) = {A}, pa(A) = ¢,
ch(A) = {B, D, C}.

2.1. RROBABILISTIC TASKS. The main benefit of having a joint-probability rep-
resentation is that it allows answering a range of queries. The primary probabilistic
reasoning queries are of two types: conditional probability queries, known as belief
updating queries, and most probable assignment quBedisf updatings the task
of finding the posterior probabilit{?(Y |€) of querynodesY C X given evidence
over a subset of variables, E = e. Applications that require answering such
gueries are numerous, including medical and fault diagnosis, genetic inheritance
over family trees, reasoning about images and so on.

The most probable assignmenqtieries require computing the most likely as-
signment to some subset of unobserved variables given observed evidence. Finding
the Most Probable Explanation &l unobserved variables (thdPE tash is an
important special case. L¥t= X — E, and lety be an assignment %. The MPE
task is to find

MPE(y™1€) = maxP(ye). 2
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Note that there may be more than one maximizing assigniylétit The more
general query, callednaximum a posteriori hypothesis (MAREquires find-
ing a maximum probability assignment to smbset of hypothesisariables,
given the evidence. Namely, the set of variabMscan be a strict subset
of X — E.

Both tasks arise in a wide variety of applications, such as probabilistic error-
correcting coding, speech recognition, medical diagnosis, airplane maintenance,
monitoring and diagnosis in complex distributed computer systems, and so on.
MPE queries are often used as ways of “completing” unknown information. For
example, in probabilistic decoding, the task is to reconstruct a message (e.g., avector
of bits) sent through a noisy channel, given the channel output; in speech recogni-
tion and image understanding, the objective is to find a sequence of objects (letters,
images) that is most likely to produce the observed sequence such as phonemes or
pixel intensities; yet another example is diagnosis, where the task is to reconstruct
the hidden state of nature (e.g., a set of possible diseases and unobserved symp-
toms the patient may have, or a set of failed nodes in a computer network) given
observations of the test outcomes (e.g., symptoms, medical tests, or network trans-
actions results).

The general MAP queries are more applicable, used in cases such as medical
diagnosis, when we observe part of the symptoms, and can accommodate some of
the tests, and still wish to find the most likely assignments to the diseases only,
rather than to both diseases and all unobserved variables. Although the MAP query
is more general, MPE is an important special case because it is computationally
simpler and thus should be applied when appropriate. It often serves as a “surrogate”
task for MAP due to computational reasons. Since all the above problems can be
posed as MPE or MAP queries, finding efficient algorithms clearly has a great
practical value.

All the above probabilistic tasks are known to be NP-hard [Cooper 1980jv-
ever, there exists a polynomial propagation algorithm for singly connected net-
works [Pearl 1988]. The two main approaches to extending this algorithm to mul-
tiply connected networks are tlogcle-cutsetpproach, also calleconditioning
and thetree-clusteringapproach [Pearl 1988; Lauritzen and Spiegelhalter 1988;
Shachter 1986], which is also closely relatedveriable-eliminationtechniques
[D’Ambrosio 1994; Zhang and Poole 1996; Dechter 1996]. We present proba-
bilistic approximation algorithms based on the variable-elimination scheme called
bucket eliminatioiDechter 1996, 1999].

2.2. THE BUCKET ELIMINATION ScHEME. This section provides a brief
overview of bucket elimination algorithms for some probabilistic reasoning tasks.
Given a belief network@, P) and a variable ordering= (X4, ..., Xp), the belief
P(x1|€) is defined as

Pl = Tpe? =ePta.d=a X L[[PKR) O

L In fact, recent results show that while the decision problems associated with belief updating and
MPE are NP-complete, MAP is harder and is not in NP [Park 2002].
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Algorithm elim-bel

Input: A belief network BN = (G, P), ordering o, evidence é.
Output: P(z1|é), the belief in every value 21 of X; given evidence é.
(1) Initialize: Partition P = { P4, ..., P, } into buckets bucket, ..., bucket,, where
bucket), contains all CPTs hy, ha, ..., hy whose highest-index variable is X,.
(2) Backward: forp = nto2do
Let h1, ha, ..., hy be the CPTs in bucket, over scopes S1, ..., St.
—If X, is observed (X, = a), assign X, = a in each h;
and put the result in its highest-variable bucket
—Else compute h* = EXP Iy ebucket, I
and place AP in its highest-variable bucket
(put constants in bucket1).
(3) Return Bel(x1) = oIy, cbucket, Ny
where « is a normalizing constant over X;’s values.

FiG. 3. Algorithmelim-belfor belief updating in belief networks.

whereqx is a normalizing constant. By the distributivity law,
Y > []PXilX) =F1) Fa... ) Fa, (4)
X2 Xn X2 Xn

where eaclF; = [, P(X|Xy3) is the product of all the probabilistic components
(functions) defined oiX; andnotdefined on any variablX; for j > i.
Algorithmelim-bel[Dechter 1996] shown in Figure 3 computes the sumin Eq. (4)
from right to left, sequentially eliminating variables froXy, to Xj. Initially, all
functions (CPTs)P(X|pa) participating in the producF = [], P(X|X.) are
placed in thebucketof X; (denotedbuckef). For eachX;, fromi = ntoi = 2,
the algorithm multiplies the functions mucket, then sums oveX;, and places the
resulting function in the bucket corresponding to the highest-index variable in the
function’s scope (clearly, this is one of the “lower” buckets) X is observed
(e.0.,X; = a), thenX; is assigned the valug in each of the bucket's functions,
and each resulting function is placed in its highest-variable bucket. This simplifies
computation, and graphically corresponds to removing the evidence node from the
moral graph. Note that constants (the results of eliminating a variable that is the
only argument of a function) are placed into the first (lowest) bucket. Finally, the al-
gorithm processes the lowest buckricket. The algorithm returns the normalized
product of functions irbucket which yields the updated beli€f(X;|€). Note that
only multiplication (no summation oveX;) need to be performed in this bucket.
The following example illustrateslim-belon the network in Figure 4(a).

Example2. Given the belief network in Figure 4(a), the ordering =
(A, E, D, C, B), and evidence={E =0}, Bel(a)= P(a|[E=0)=«aP(a, E=0)
is computed by bucket elimination as follows: First, all the CPT'’s are partitioned
into the ordered buckets as shown in Figure 5. At first, only the CPT functions
(shown in nonbold style in Figure 4(a)) are included. (Note that upper-case letters
denote nodes, and lower-case letters denote their values). Carrying out the com-
putation from right to left using the bucket data-structure, and denotirigijre
function computed in buckeX, we get new functions as demonstrated in Figure 5.
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FiG. 4. (a) A belief network. The dotted ar8(C) is added by the moral graph. (b) The induced
graph along = (A, E, D, C, B), and (c) the induced graph along= (A, B, C, D, E).

>0

buckets P(elb.c) P(dla,b) P(bla)

bucket ¢ P(cla)  RE(a,d,c.e)
buckel D ha,d,e)

bucket E E=0 hn(a,e)

bucketa  P(a) K (a)

P(AIE=0)
FiIc. 5. An example of elim-bel's execution.

The computation performed in each bucket is given by:
(1) bucket B:hB(a, d, c,e) = Y, P(elb, c)P(d|a, b)P(b|a)
(2) bucket Ch®(a, d,e) = Y . P(cla)hB(a, d, c, €
(3) bucket D:hP(a, e) = > hC(a, d, €)
(4) bucket EhE(a) = hP(a, E = 0)
(5) bucket A:Bel(a) = P(alE = 0) = aP(a)hE(a),
wherex is a normalizing constant.
Similar bucket elimination algorithms were derived for the tasks of finding MPE,
MAP, and for finding the maximum expected utility (MEU) [Dechter 1996, 1999].
Given a belief network G, P), a variable orderingg = (Xi,..., X;), and an

evidenceg, the MPE task is to find the most-probable assignment to the variables,
namely, to find

gM

XMPE = (x)"PE, ..., x)'PE) = arg max P(xy, .., Xn|€) (5)
X1y..esXn

and the corresponding value max x, P(xi, .., Xn|€). However, from algorith-
mic prospective, it is more convenient to maximize the joint probabWity, €)
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Algorithm elim-mpe
Input: A belief network BN = (G, P), ordering o, evidence é.
Output: An MPE assignment Z ¥ and its probability.

(1) Initialize: Partition P = {Px, ..., P, } into buckets bucket,, . . ., bucket,, where
bucket), contains all CPTs hi, ha, ..., ht whose highest-index variable is X,.
(2) Backward: forp =nto2do
—If X, is observed (X, = a), replace X, by a in each h;
and put the result in its highest-variable bucket.
—Else compute
h? = max;, In; cbucket, hj and z;'P° = arg maxz, n; coucket, My
place h” in its highest-variable bucket and xﬂ“a =
(put constants in bucket).

(3) Forward: for p = 1 to n,

. mpe mpe :
given (z7"%°, ..., xpfl ). assign x,'P¢ = arg max, Ip; ebucket, My

in bucketp;

mpe mpe

(4) Return the assignment T = (2"?¢, ..., z'P°) and the value
MPE = maXg, thEbucketl hj.

FiGc. 6. Algorithmelim-mpefor finding Most Probable Explanation in belief networks.

rather than the conditional probabili(x|€). Clearly, both probabilities achieve
the maximum at the same poirt'*E since P(x,€) = P(x|€) - P(€), where
P(e) is independent oK. Thus, instead of computing maR(x|e), we compute
max P (X, €) and call it theMPE probability MPE value or simplyMPE (clearly,
P(x|e) = MPE/P(e); however, computing®(€) may not be an easy task as it
requires belief updating over a subset of evidence variables).

The MPE task can be solved by algorittetim-mpe(see Figure 6), which is
similar toelim-belexcept that summation ielim-belis replaced by maximization
in elim-mpe The main difference is that the “backward” phase is followed by a
“forward” phase that computes an MPE assignment as follows: given an assignment
to the firsti — 1 variables, the assignment to thi variable is computed by
maximizing the product of all functions in the bucketXf. The algorithm returns
the joint probability of the most-likely assignmeMPE = max, P(X, €).

The bucket elimination scheme can be generalized using the notion of elimination
operator applied to the functions in each bucket. Some elimination operators are
defined below:

Definition3 (Elimination Function$. Given a functionh defined over sub-
set of variablesS, whereX e S, the functions (mig h), (max h), (3_ h), and
(mearxh) are defined oveld = S— {X} as follows: For every € U, we define
operators (mig h)(u) = min, h(u, x), (maxx h)(u) = maxh(u, x), Q_x h)(u) =
Y, h(U, x), and meankh)(@) = 3, "5, where (i, x) is the extension of tuple
by assignmenk = x, and wherégX]| is the cardinality ofX's domain. Given a set
of functionshy, ..., h; defined over the subse8, ..., S;, the product function
(ITjhj) and }_; h; are defined ove = U;S;. For everyu € U, (ITjhj)(u) =
M;hj(Us), and §_; hj)(u) = 3 h;(Us).

An important property of bucket elimination algorithms is that their complexity
can be predicted using a graph parameter cafiddced widtHDechter and Pearl
1987] (also known atsee-width[Arnborg 1985]), which describes the largest clique
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created in the graph by bucket elimination, and which corresponds to the largest
scope of function recorded by the algorithm.

Definition4 (Induced Width. Given an undirected grapB, the width of X;
along ordering is the number oK;'s neighbors preceding; in 0. Thewidth of the
graphalongo, denotedw,, is the maximum width over all variables alongThe
induced graphof G alongo is obtained by recursively connecting the preceding
neighbors of eactX;, going fromi = ntoi = 1. The induced width along,
denotedw}, is the width of the induced graph alongwhile the induced widthw*
is the minimum induced width along any ordering.

Example3. Figures 4(b) and 4(c) depict the induced graphs (induced edges
are shown as dashed lines) of the moral graph in Figure 4(a) along the orderings
o= (A E, D, C,B)ando = (A, B, C, D, E), respectively. Clearlyy} = 4 and
wy = 2.

It can be shown that

THEOREM 1 [DECHTER1999]. The time and space complexity of bucket elim-
ination algorithms is @n - d*>*1), where n is the number of variables, d bounds
the variables’ domain size and; is the induced width of the moral graph along
ordering o, after all evidence nodes and their adjacent edges are removed.

The induced width will vary depending on the variable ordering. Although finding
a minimumw* ordering is NP-hard [Arnborg 1985], heuristic algorithms are inves-
tigated [Bertele and Brioschi 1972; Dechter 1992; Kjaerulff 1990, 1992; Robertson
and Seymour 1995; Bodlaender 1997; Bodlaender et al. 2001]. For more details on
bucket elimination and induced width, see Dechter [1999].

3. Mini-Bucket Approximation for MPE

We introduce the idea of mini-bucket approximation using the combinatorial opti-
mization task of finding the most probable explanation, MPE.

Since the MPE task is NP-hard and since complete algorithms (such as the
cycle cutsetechnique join-tree-clustering[Pearl 1988] and bucket elimination
[Dechter 1996]) work well only on relatively sparse networks, approximation
methods are necessary. Researchers investigated several approaches for finding
MPE. The suitability of Stochastic Local Search (SLS) algorithms for MPE was
studied in the context of medical diagnosis applications [Peng and Reggia 1989]
and, more recently, in [Kask and Dechter 1999b]. Best-First search algorithms
were proposed [Shimony and Charniack 1991] as well as algorithms based on
linear programming [Santos 1991].

In this article, we propose approximation algorithms based on bucket elimina-
tion. Consider the bucket-elimination algorithelim-mpe Since the complexity
of processing a bucket depends on the number of arguments (arity) of the func-
tions being recorded, we propose to approximate these functions by a collection
of smaller-arity functions. Lelty, ..., h; be the functions in the bucket of,, and
let S, ..., § be their scopes. Wheslim-mpeprocesses buckex(,), the function
hP = maxxpl'[it:lhi is computed. A simple approximation idea is to compute an up-
per bound orP by “migrating” the maximization inside the multiplication. Since,
in general, for any two non-negative functiofiéx) andY (x), max Z(x) - Y(X) <
max Z(X) - max, Y(x), this approximation will compute an upper bound lgh
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bucket (X) =
L{ hl yewshr shpyg,e, hy }

thy, " h}
~ r n o—
g = (max|_|hi) (max|—|hi)

X i X i=r+l

FiG. 7. The idea of mini-bucket approximation.

For example, we can compute a new functidn= I1{_, maxy, hi, thatis an upper
bound orhP. Procedurally, it means that maximization is applied separately to each
function, requiring less computation.

The idea is demonstrated in Figure 7, where the bucket of varkliiavingn
functions is split into two mini-buckets of sizeand g —r),r < n, and it can be
generalized to any partitioning of a set of functidns. . ., h; into subsets called
mini-bucketsLet Q = {Q1, ..., Q/} be a partitioning into mini-buckets of the
functionshy, ..., hy in X,’s bucket, where the mini-buck&, contains the func-
tionshy,, ..., h,. The complete algorith@lim-mpecompute$i® = maxx,, l'Iit=1hi,
which can be rewritten d&° = maxx, IT_, T, h;,. By migrating maximization into
each mini-bucket we can compug, = ITj_, maxx, IT;;h;,. The new functions
maxx, IT;; hy, are placed separately into the bucket of the highest variable in their
scope and the algorithm proceeds with the next variable. Functions without ar-
guments (i.e., constants) are placed in the lowest bucket. The maximized product
generated in the first bucket is an upper bound on the MPE probability. A lower
bound can also be computed as the probability of a (suboptimal) assignment found
in the forward step of the algorithm. Clearly, as the mini-buckets get smaller, both
complexity and accuracy decrease.

Definition 5.  Given two partitioning®)’ andQ” over the same set of elements,
Q' is a refinement of)” if and only if, for every setA € Q’, there exists a set
B € Q” such thatA C B.

PROPOSITION 1. If Q" is a refinement of Qn bucke, then H < g, < g&.

PrOOF. Based on the above discussion it is easy to see that for any partitioning
Q (be itQ’ or Q") we haveh? < gg.
By definition, given a refinemer®” = {Qf, ..., Q} of a partitioningQ’" =
{Q7, ..., Qn}, each mini-bucket € {1, ..., k} of Q” belongs to some mini-bucket
j €{1, ..., m}of Q. Inotherwords, each mini-buckgbf Q' is further partitioned
into the corresponding mini-buckets @', Q; = {Qf , ..., Qj}. Therefore,
k
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Algorithm mbe-mpe(i,m)
Input: A belief network BN = (G, P), an ordering o, evidence €.
Output: An upper bound U and a lower bound L on the M PE = max; P(Z,€),
and a suboptimal solution Z¢ that provides L = P(z%).
1. Initialize: Partition P = { P, ..., P, } into buckets bucket, .. ., buckety,
where bucket), contains all CPTs hy, ha, ..., hy whose highest-index variable is X,.
2. Backward: for p = nto 2 do
o If X, is observed (X, = a), assign X, = a in each h; and put the result
in its highest-variable bucket (put constants in bucket).
o Else for hy, ho, ..., hy in bucket, do
Generate an (%, m)-mini-bucket-partitioning, Q = {Q1,...,Qr}.
for each Q; € Q, containing hy, , ...h;, , do
compute k! = mazxx, H;Zlhlj and place it in the bucket of the highest-index
variable in U; + U;’:l Si; — {Xp}, where Sy is the scope of hy,
(put constants in bucket).
3. Forward: for p = 1 ton, given z7, ...,z _1, do
assign a value xj, to X, that maximizes the product of all functions in bucket,,.
4. Return the assignment z* = (¢, ..., z5 ), a lower bound L = P(z*), and
an upper bound U = maz,, thebucketl h7 on the MPE = maxz; P(Z, &).

FiG. 8. Algorithmmbe-mpe(i, m)

The mini-bucket eliminationnibg algorithm for finding MPEmbe-mpe(i, m)
is described in Figure 8. It has two input parameters that control the mini-
bucket partitioning.

Definition6 ((i, m)-partitioning). LetH be acollection offunctionls,, ..., h
defined on scopes,, ..., S, respectively. We say that a functidnis subsumed
by a functionh if any argument off is also an argument df. A partitioning of
hi, ..., ht is canonicalif any function f subsumed by another function is placed
into the bucket of one of those subsuming functions. A partitiofgnimto mini-
buckets is ani( m)-partitioning if and only if (1) it is canonical, (2) at most
non-subsumed functions are included in each mini-bucket, (3) the total number of
variables in a mini-bucket does not exceednd (4) the partitioning igefinement-
maximal namely, there is no other, (m)-partitioning that it refines.

The parameteris(number of variables) anah (number of functions allowed per
mini-bucket) are not independent, and some combinationsdim do not allow
an (, m)-partitioning. However,

ProprPosITIONZ2. If the bound i on the number of variables in a mini-bucket is
not smaller than the maximum family size, then, for any value sf@nthere exists
an (i, m)-partitioning of each bucket.

PrROOF Form = 1, each mini-bucket contains one family. The arity of the
recorded functions will only decrease and thus in each buckét apgartitioning
always exists. Anyi( m)-partitioning that satisfies conditions 1-3 (but not nec-
essarily condition 4), always includes all 1)-partitionings satisfying conditions
1-3. Therefore, the set of, (m)-partitionings satisfying conditions 1-3 is never
empty, and there exists an (n)-partitioning satisfying conditions 1-4[]
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Mini-buckets Max variables
in a mini-bucket
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(a) A trace of elim-mpe (b) A trace of mbe-mpe(3,2).

Fic. 9. Comparison between (a)im-mpeand (b)mbe-mpé3, 2).

Although the two parametersindm are notindependent, they do allow a flexible
control of the mini-bucket scheme. The properties of the mini-bucket algorithms
are summarized in the following theorem.

THEOREM 2. Algorithm mbe-mpe(im) computes an upper bound on the MPE.
its time and space complexity is(©®- exdi)) where i < n.

We will prove the theorem later (Section 7) in a more general setting, common
to all mini-bucket elimination algorithms.

In general, asn andi increase, we get more accurate approximations. Note,
however, a monotonic increase in accuracy as a functiancah be guaranteed
only for refinements of a given partitioning.

Example4. Figure 9 compares algorithrem-mpeandmbe-mpe(i,myvhere
i =3 andm =2 over the network in Figure 4(a) along the ordering (A, E, D,
C, B). The exact algorithralim-mpesequentially records the new functions (shown
in boldface)h®(a, d, c, €), h®(a, d, €), hP(a, €), andhE(a). Then, in the bucket
of A, it computesM = max, P(a)hE(a). Subsequently, an MPE assignment
(A=4a,B=0b,C=c,D=4d, E=¢€)wheree¢ = 0 is the evidence,
is computed alon@ by selecting a value that maximizes the product of func-
tions in the corresponding buckets conditioned on the previously assigned values.
Namely,a’ = argmax P(a)hE(a), &€ = 0,d’ = argmax h®(@, d, e = 0), and
So on.

On the other hand, since buckBj(includes five variablesnbe-mpé3, 2) splits
it into two mini-buckets{P(e|b, ¢)} and{P(d|a, b), P(bja)}, each containing no
more than three variables, as shown in Figure 9(b) (the (3, 2)-partitioning is se-
lected arbitrarily). The new functiorts®(e, c) andh®(d, a) are generated in dif-
ferent mini-buckets and are placed independently in lower buckets. In each of the
remaining lower buckets that still need to be processed, the number of variables is
not larger than 3 and therefore no further partitioning occurs. An upper bound on
the MPE value is computed by maximizing over A the product of functiomSsn
bucket:U = max,P(a)h&(a)h®(a). Once all the buckets are processed, a subop-
timal MPE tuple is computed by assigning a value to each variable that maximizes
the product of functions in the corresponding bucket. By desigme-mpé3, 2)
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does not produce functions on more than two variables, while the exact algorithm
elim-mperecords a function on four variables.

In summary, algorithhnmbe-mpe(i, mfomputes an intervall, U] containing
the MPE value wher¥ is the upper bound computed by the backward phase and
L is the probability of the returned assignment.

Remember thanbe-mpeomputes the bounds dMPE = max; P(x, €), rather
than onM = max; P(x|e) = MPE/P(€e). Thus

L U
PE ="V =P

Clearly, the bounds andL for MPE are very close to zero when the evideeds
unlikely: however, the ratio between the upper and the lower bound is not dependent
on P(€). As we will see next, approximating conditional probabilities using bounds
on joint probabilities is more problematic for belief updating.

4. Mini-Bucket Approximation for Belief Updating

As shown in Section 2, the bucket elimination algoritalim-belfor belief assess-
ment is similar teelim-mpeexcept that maximization is replaced by summation and
no value assignment is generated. Algorithlim-belfinds P(x;, €) and then com-
putesP(x1|€) = a P(Xy, €) wherex is the normalization constant (see Figure 3).
The mini-bucket idea used for approximating MPE can be applied to belief up-
dating in a similar way. LeQ’ = {Qg, ..., Q,} be a patrtitioning of the functions
hy, ... h (defined over scopes,, . . ., §, respectively) inXy’s bucket. Algorithm
elim-belcompute$i® : U, — %, wherehP = pr ni_ hj,andUp = Ui S —{Xp}.
Note thath? = 3, TIi_;hi, can be rewritten ad® = >, TIj_;II;hy. If
we follow the MPE ‘approximation precisely and migrate the summation op-
erator into each mini-bucket, we will computi, = IIj_, >, I, h,. This,
however, is an unnecessarily large upper bounchdfin which eachIl hy,
is bounded by)_ IT; hy,. Instead, we rewritéP = 3, (I3 hy) - (T 113 hy).
Subsequently, instead of bounding a functionXoby its sum overX, we can
bound { > 1), by its maximum overX, which yieldsgg/ = (pr Ty, hy,) -
(ITj_, maxx, Iy, hy;). In summary, an upper bourgf of h? can be obtained by
processing one oKy's mini-buckets by summation and the rest by maximiza-
tion. Clearly,

PROPOSITION3. For every partitioning Q, R < gg < fg. Also, if Q' is a
refinement partitioning of Qthen I < gg, < g¢.

A lower bound on the belief, or its mean value, can be obtained in a similar way.
Algorithm mbe-bel-max(i, mhat uses thenaxelimination operator is described in
Figure 10. Algorithmsnbe-bel-mimndmbe-bel-meanan be obtained by replacing
the operatomaxby minand bymean respectively.

4.1. NORMALIZATION. Note thataprox-bel-maxcomputes an upper bound on
P(x1, €) but not onP(xy|€). If an exact value oP(€) is not available, deriving a
bound onP(x; |€) from a bound orP(xy, €) is not easy, becausgx;)/ >, 9(x1),
where g(x) is the upper bound oiP(xy, €), is not necessarily an upper bound
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Algorithm mbe-bel-max(i,m)
Input: A belief network BN = (G, P), an ordering o, and evidence é.
Output: an upper bound on P(z1,é€).
1. Initialize: Partition P = { P, ..., P, } into buckets bucket1, ..., buckety,
where buckety, contains all CPTs hi, ho, ..., hy whose highest-index variable is Xj.
2. Backward: for k = n to 2 do
o If X, is observed (X = a), assign X}, <— a in each h; and put the result
in the highest-variable bucket of its scope (put constants in bucket).
e Else for hi, ha, ..., ht in bucket;, do
Generate an (%, m)-mini-bucket-partitioning, QI ={Q1,...,Qr}.
For each Q; € Q', containing hy, , ...h,, do
If | = 1 compute h! = Zxk I ha,
Else compute b’ = mazx, I hy,
Add h! to the bucket of the highest-index variable in U; Uj.zl Si; —{ Xk}
(put constant functions in bucket).
3. Return the product of functions in the bucket of X,
which is an upper bound on P(z1, €) (denoted g(z1)).

FiG. 10. Algorithmmbe-bel-max(i, m)

on P(x;]€). In principle, we can derive a lower bound, on P(€) using mbe-
bel-min(in this case, the observed variables initiate the ordering), and then com-
puteg(x;)/f as an upper bound oR(x;|€). This however is likely to make the
bound quite weak due to compounded error. In many practical scenarios, however,
we are interested in the ratio between the belief in two competing valus. of
SinceP(x;, €)/P(x;j, €) = P(xi|e)/P(x;|e), the ratio between the upper bounds of
the respective join probabilities can serve as a good comparative measure between
the conditional probabilities as well.

Alternatively, letU; andL; be the upper bound and lower bounding functions on
P(X1 = x;, €) obtained bymbe-bel-maandmbe-bel-minrespectively. Then,

Li Ui
- < A <
pE =" 19= B

Therefore, althouglf(€) is not known, the ratio of upper to lower bounds remains
the same. Yet, the difference between the upper and the lower bounds can grow
substantially, especially in cases of rare evidence. Note tHff < U;, we get
Li/P(e) < P(X1|e) < 1, so that the upper bound is trivial. Finally, note there is no
bound forgmeafXi ), and therefore, the approximationgf.{x;)/ le Omear(X1) Can
also be a lower or an upper bound of the exact belief. Interestingly, the computation
Of Omear X1 = Xi)/2_,. OmeaX1) IS achieved when processing all mini-buckets by
summations, and subsequently normalizing.

5. Mini-Bucket Elimination for MAP

Algorithm elim-mapfor computing the MAP is a combination elim-mpeand

elim-bel some of the variables are eliminated by summation, while the others
by maximization. The MAP task is generally more difficult than MPE and be-
lief updating [Park 2002]. From variable elimination perspective it restricts the
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possible variable orderings and therefore may require higlfewhich implies
higher complexity.

Given a belief network, a subset of hypothesis variales {A,, ..., A}, and
evidenceg, the problem is to find an assignment to the hypothesized variables that
maximizes their probability conditioned @ Formally, we wish to find

. I, P(Xi, €[Xpa)

a,* = arg maxP(a|€) = arg max 6

a g m: (ak|€) = arg I 6 (6)
v_vheref =(ag,...,a&, X1, - - - » Xn) denotes an assignment to all variables, while
a = (a,...,&) and>?|'g+1 = (X1, - - -, Xn) denote assignments to the hypothe-

sis and nonhypothesis variables, respectively. SR is a normalization con-
stant, the maximum oP(ax|€) is achieved at the same point as the maximum of
P(ax, €). Namely, as before, we have(ax|e) = P(ax, €)/P(e). Thus, we define
MAP = P(ax, €) and derive an approximation to this quantity which is easier than
approximatingP (ax|€).

The bucket-elimination algorithm for finding the exact M&RmM-map[Dechter
1996, 1999], assumes only orderings in which the hypothesized variables appear
first and thus are processed last by the algorithm (this restricted ordering implies
increased complexity as remarked above). The algorithm has a backward phase as
usual but its forward phase is relative to the hypothesis variables only. The appli-
cation of the mini-bucket scheme &im-mapfor deriving an upper bound is a
straightforward extension of the algorithmmbe-mpendmbe-bel-maxWe parti-
tion each bucket into mini-buckets as before. If the bucket’s variable is eliminated
by summation, we apply the rule we havenbe-bel-main which one mini-bucket
is approximated by summation and the rest by maximization. When the algorithm
reaches the hypothesis buckets, their processing is identical to thatesmpe
Algorithm mbe-map(i, mjs described in Figure 11.

Deriving a lower bound on the MAP is no longer a simple extensionlzé-map
as we observed for MPE. Onogbe-magerminates, we have an upper bound and
we can compute an assignment to the hypothesis variables. While the probability
of this assignment is a lower bound for the MAP, obtaining this probability is no
longer possible by a simple forward step over the generated buckets. It requires
an exact inference, or a lower bound approximation. We cannot use the functions
generated bynbe-bel-main the buckets of summation variables since those serve
as upper bounds. One possibility is, once an assignment is obtained, to rerun the
mini-bucket algorithm over the non-hypothesis variables using the min operator (as
in mbe-bel-minand then compute a lower bound on the assigned tuple in another
forward step over the fird buckets that take into account the original functions
and only those computed lmgbe-bel-min

Example5. We will next demonstrate the mini-bucket approximation for
MAP on an example inspired lrobabilistic decodingMacKay and Neal 1996;
Frey 1998F Consider a belief network which describes the decoding lofear
block code shown in Figure 12. In this network); areinformation bitsand X;
arecode bits which are functionally dependent &h. The vector (J, X), called
the channel input, is transmitted through a noisy channel which adds Gaussian

2 Probabilistic decoding is discussed in more details in Section 9.5.
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Algorithm mbe-map(i,m)
Input: A belief network BN = (G, P), a subset of variables A = {A1, ..., Ax }.
an ordering of the variables, o, in which the A’s appear first, and evidence e.
Output: An upper bound U on the M AP and a suboptimal solution A = aj.
1. Initialize: Partition P = { P, ..., P, } into buckets bucket1, .. ., bucket,
where bucket p contains all CPTs, hy, ..., hy whose highest index variable is X,.
2. Backward: forp =nto2do
o If X, is observed (X, = a), assign X, = a in each h; and put the result
in its highest-variable bucket (put constants in bucket1).
e Else for h1, ha, ..., hj in bucket, do
Generate an (¢, m)-partitioning, Q' of the matrices h; into mini-buckets @1, ..., Q.
o If Xp ¢ A /* not a hypothesis variable */
for each Q; € Q', containing Ay, , ...h, , do
If { = 1, compute k! = Yx, It b,
Else compute ' = maz xp i by,
Add h' to the bucket of the highest-index variable in U; < U!_, Si; — {X,}.
(put constants in buckety).
o Else (X, € A) /* a hypothesis variable */
for each Q; € Q' containing Ay, , ...h;, compute h = mazxpﬂlehll and place it
in the bucket of the highest-index variable in U; « J!_, Si, — {Xp}.
(put constants in bucket).
3. Forward: for p = 1 to k, given A1 = af, ..., Ap—1 = aj;_1,
assign a value a;, to A, that maximizes the product of all functions in bucket,,.
4. Return An upper bound U = maz,, Hhi Cbucket, i On M AP, computed in the first bucket.
and the assignment aj, = (a{, ..., a}).

FiG. 11. Algorithmmbe-map(i, m)

Fic. 12. Belief network for a linear block code.

noise and results in the channel output vector= (YY,Y*) . The decoding
task is to assess the most likely values for this given the observed values
Y = (Y, ¥%), which is the MAP task wher¥ is the set of hypothesis variables,
andY = (yY, y¥) is the After processing the observed buckets we get the following
bucket configuration (lower cagés are observed values):

bucke(Xo) = P(yy1Xo), P(XolUo, U1, Uy),
bucke(X1) = P(y;1X1), P(X1|Uy, Uz, U3),
bucketXz) = P(y;1X2), P(X2|Uz, Uz, Uy),
bucketX3) = P(y31X3s), P(X3|Us, Us, Up),
bucke(Xs) = P(y;1X4), P(Xa|U4, Ug, Uy),
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buckefUo) = P(Uo), P(y§|Uo),
buckefU;) = P(U1), P(y;|Uy),
buckefUz) = P(Uy), P(y5|U>),
buckefUs) = P(Us), P(y3|Us),
buckefU,) = P(Us), P(Y5|Ua).

Processing bynbe-mag4, 1) of the first top five buckets by summation and
the rest by maximization, results in the following mini-bucket partitionings and
function generation:

bucketXo) = {P(yy|Xo), P(Xo|Uo, U1, Uz)},

bucketX1) = {P(y;|X1), P(X1|U1, Uz, U3)},

bucke(Xz) = {P(y31X2), P(X2|U2, Uz, Us)},

bucke(Xs) = {P(y3]X3), P(X3|Us, Uy, Ug)},

buckeXs) = {P(y;|Xa), P(X4|Us, Uo, U1)},

bucketUo) = {P(Uo), P(yg1Uo), h*°(Uo, U1, Uz)}, {h*s(Us, Us, Uo)},
{h*4(Ug4, U, U1)},

bucke(U1) = {P(U1), P(yj|U1), h*1(Uy, Uz, Ug), h¥(Uq, U)}, {h¥(Ua, Uy},

buckefUy) = {P(Uy), P(y5|U2), h*2(Ua, Us, Ug), h¥(Us, Us)},

buckefUs) = {P(Us), P(y5]Us), h%(Us, Ug), hV(Us, Us), h¥2(Us, Ua)},

buckefUs) = {P(Ua), P(y4IUa), hV*(Ua), hY3(Ua)}.

The first five buckets are not partitioned at all and are processed as full buckets,
since in this case a full bucketis a (4, 1)-partitioning. This processing generates five
new functions, three are placed in buckigt one in buckety; and one in bucked,.

Then, buckety is partitioned into three mini-buckets processed by maximization,
creating two functions placed in buckg{ and one function placed in buckés.
Bucket U, is partitioned into two mini-buckets, generating functions placed in
bucketU, and bucketJ;. Subsequent buckets are processed as full buckets. Note
that the scope of recorded functions is bounded by 3.

In the bucket ofU, we get an upper bountd satisfyingU > MAP =
P(U, yY, y*) wherey" and, y* are the observed outputs for thiés and theX'’s
bits transmitted. In order to bouné(U |€), wheree = (Y, y*), we needP(e),
which is not available. Yet, again, in most cases we are interested in the ratio
P(U = u;|€e)/P(U = u;|€) for competing hypothesés$ = u; andU = uj; rather
than in the absolute values. Sine€U|e) = P(U, €)/P(e) and the probability
of the evidence is just a constant factor independent othe ratio is equal to

P(U1, €)/P(U2, ©).

6. Mini-Buckets for Discrete Optimization

The mini-bucket principle can also be applied to deterministic discrete optimiza-
tion problems which can be defined owarst networksyielding approximation to
dynamic programming for discrete optimization [Bertele and Brioschi 1972]. Cost
networks is a general model encompassing constraint-satisfaction, and constraint-
optimization in general. In fact, the MPE task is a special case of combinatorial
optimization and its approximation via mini-buckets can be straightforwardly ex-
tended to the general case. For an explicit treatment, see [Dechter 1997b]. For
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Algorithm mbe-opt(i,m)
Input: A cost network (X, D, C), C = {C1, ...,C; }; ordering o, a set of assignments e.
Output: A lower and an upper bound on the optimal cost.
1. Initialize: Partition C and e into buckety, ..., bucket,, where bucket,
contains all components h1, h2, ..., ht whose highest-index variable is X,.
2. Backward: forp = nto 2 do
o If X, is observed (X, = a), replace X, by a in each h; and put the result
in its highest-variable bucket (put constants in buckety).
o Else for hy, ha, ..., ht in bucket, do
Generate an (¢, m)-mini-bucket-partitioning, QI ={Q1,.-,Qr}.
For each Q; € Q/ containing hy, , ...hy,, compute ht = minx, Zle hy; and add it
to the bucket of the highest-index variable in U; +— Ji_, Si, — {Xp}. where S,
is the set of arguments of h;, (put constants in buckety).
3. Forward: for p = 1to n, given X1 = :c?pt, ey, Xp—1 = x;’:tl,
assign a value x;pt to X, that minimizes the sum of all functions in bucket.
4. Return the assignment z°P* = (2P, ..., 2%P"), an upper bound U = C/(z°P?),
and a lower bound L = ming, Zhiebucketl h on the optimal cost.

FiG. 13. Algorithmmbe-opt(i, m)

completeness sake, we present the algorithm explicitly within the framework of
cost networks.

A cost networkis a triplet (X, D, C), where X is a set of discrete variables,
X ={Xy,..., Xp},overdomain®d = {D4, ..., Dy}, andC is a set of real-valued
cost function<C,, . . ., C;, also calleccost component&ach functiorC; is defined
over a scop§ = {X,,..., X} € X,C; : xrjleij — R*. Thecost graphof a
costnetwork has a node for each variable and edges connecting variables included in
the same scope. Thest functions defined byC(X) = Z:Zl Ci. The optimization
(minimization) problem is to find an assignmesit' = (x;°", ..., x,°?) such that
C(X%P) = MiNk—(x,,... x,) C(X).

Algorithm mbe-opis described in Figure 13. Step 2 (backward step) computes a
lower bound on the cost function while Step 3 (forward step) generates a suboptimal
solution which provides an upper bound on the cost function.

7. Complexity and Tractability

7.1. THE CASE oOF Low INDUCED WIDTH. All mini-bucket algorithms have
similar worst-case complexity bounds and completeness conditions. We denote by
mini-bucket-elimination(i, m)or simplymbe(i, m) a generic mini-bucket scheme
with parameters andm, without specifying the particular task it solves, which can
be either one of probabilistic inference tasks defined above or a general discrete
optimization problem. Theorem 2 applies to all mini-bucket algorithms:

THEOREM 3. Algorithm mbe(i, m) takes @ - d') time and space, where r is
the number of input functiorisd is a bound on the domain size of the variables.

3 Note thatr = nfor Bayesian networks, but can be higher or lower for general constraint optimization
tasks.
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For m = 1, the algorithm is time and space(©- d'F!), where| F| is the maximum
scope of any input functioff-| <i < n.

PROOF We can associate a bucket-elimination or a mini-bucket elimination
algorithm with acomputation treevhere leaf nodes correspond to the original
input functions (CPTs or cost functions), and each internal nocteresponds to
the result of applying an elimination operator (e.g., product followed by summation)
to the set of node’s childrergh(v) (children correspond to all functions in the
corresponding bucket or mini-bucket). We can compress the computation tree so that
each node having a single child will be merged into one node with its parent, so that
the branching degree in the resulting tree is not less than 2. Computing an internal
node thatis a compressed sequence of single-child node2éit8dime and space
since it only requires a sequence of elimination operations over a single function
whose scope size is bounded ibyindeed, given a function overvariables, an
elimination of a single variable take&3(d') time and space. Thus, elimination of
1 < k <i variables takes time and spaﬁ}dj:i_k+l o@d!) = O(Z'j:i k1 d)) =
O(d"). The cost of computing any other internal nades O(|ch(v)| - d') where
ch(v)] < mandi bounds the resulting scope size of generated functions. Since
the number of leaf nodes is bounded kythe number of internal nodes in the
computation tree is bounded bys well (since the branching factor of each internal
node is atleast 2). Thus the total amount of computation over all internal nodes in the
computationtree istime and spa@é -d') in general, which becomes@(n-d') for
belief networks. [J

The above proof, suggested in [Larrosa 2000], refines the original proof given in
[Dechter and Rish 1997].

We next identify cases for which the mini-bucket scheme coincides with the
exact algorithm, and is therefore complete.

THEOREM 4. Givenanordering ofthe variables, o, algorithmbe{, n) applied
along o is complete for networks having <.

PrROOF. The claim trivially follows from the observation that each full bucket
satisfies the condition of being ain §)-partitioning and it is the only one which is
refinement-maximal. [

7.2. THE CASE OF MINI-BUCKET (n, 1). Another case isbé€n, 1), which al-
lows only one nonsubsumed function in a mini-bucket. It is easy to seeninat
buckefn, 1) is complete for polytrees if applied along somegal orderings. A
legal orderingof a polytree (see Figure 14) is one where (1) all evidence nodes
appear last in the ordering, and (2) among the remaining variables, each child node
appears before its parents and all the parents of the same family are consecutive
in the ordering. Such an ordering is always feasible for polytrees, and using this
ordering, each bucket contains only one nonsubsumed function. Clearly, algorithm
mini-buckefn, 1) is complete along such orderings and is therefore complete for
polytrees.

In summary,

THEOREM 5. Given a polytree, there exists an ordering o such that algorithm
mben, 1) finds an exact solution in time and spac€nOexd|F|)), where|F| is
the largest scope size of any input function.
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FiG.14. (a) A polytree and (b) alegal ordering, assuming that ndges,, Z; andY; are observed.

Example6. Consider a legal orderiry= (X1, Uz, Uy, Uy, Y1, Z1, Zo, Z3) Of
the polytree in Figure 14(a), where the last four variaMgsZ,, Z,, Zzin the
ordering are observed. Processing the buckets from last to first, after the last four
buckets were already processed as observation buckets, we get (observed values
shown in low-case):

bucke(U;) = P(U1), P(X1|U1, Uz, Us), P(21|Uy),
bucke(U,) = P(U,), P(z|U>),

bucke(Usz) = P(Us), P(z3|U3)

buckefX1) = P(y1] X1).

It is easy to see that the only legal partitionings correspond to full buckets.

Note also that on polytreembdn, 1) is similar to Pearl’s well-known propa-
gation algorithm. One difference, however, is that Pearl’s algorithm records only
functions defined on a single variable, while mini-buckef() may record functions
whose scope is at most the size of a family.

8. Anytime Inference

An important property of the mini-bucket scheme is that it provides an adjustable
trade-off between accuracy of solution and computational complexity. Both the
accuracy and the complexity increase with increasing paranmietesgm. While,
in general, it may not be easy to predict the algorithm’s performance for a particular
parameter setting, it is possible to use this scheme withiarnlygmeframework.
Anytime algorithmgan be interrupted at any time producing the best solution
found thus far [Horvitz 1987, 1990; Dean and Boddy 1988; Boddy and Dean 1989].
As more time is available, better solutions are guaranteed by such algorithms. In
the context of Bayesian networks, anytime algorithms were first considered by the
name offlexible computatiorunder computational resource constraints [Horvitz
1987, 1988, 1990]. One of the first probabilistic anytime inference algorithms was
bounded conditioninglgorithm [Horvitz et al. 1989] that works by conditioning
on a small, high probability cutset instances, including more of the instances as
more computational resources become available.
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Algorithm anytime-mpe(e)

Input: Initial values of ¢ and m, 2o and mo; increments ¢s¢ep and Msiep,
and desired approximation error €.

Output: U and L

1. Initialize: i = 79, m = mo.

2. do

3. run mbe-mpe(i,m)

4. U < upper bound of mbe-mpe(i,m)

5. L < lower bound of mbe-mpe(i,m)

6.  Retain best bounds U, L, and best solution found so far

7. if1 < U/L <1+ e, return solution

8. elseincrease ¢ and m: @ <— ¢ + tstep aNd M <— M + Mestep

9. while computational resources are available
10. Return the largest L
and the smallest U found so far.

FiG. 15. Algorithmanytime-mpe).

In general, any inference algorithm that adapts to limited computational re-
sources by ignoring some information about the problem, and is able to recover
that information incrementally as more resources become available, can be called
an anytime inference algorithm [Guo and Hsu 2002; Wellman and Liu 1994]. Many
approximation schemes can be used by anytime methods since they are based on
exploiting only partial information about the problem, for example, ignoring a
subset of “weak” edges [Kjaerulff 1994; van Engelen 1997], using partial vari-
able assignments [Poole 1996; Santos and Shimony 1998] (including partial cutset
assignments [Horvitz et al. 1989]), using only a subset of nodes [Draper 1995],
or a subset of (relatively high) probability entries in CPTs [Jensen and Andersen
1990]. In particular, our mini-bucket scheme exploits partial (bounded) dependen-
cies among the variables. Clearly, an iterative application of such schemes with
less restrictions on the amount of information they use, results in anytime inference
algorithms that eventually become exact, if sufficient computational resources are
available.

Our idea of extending the mini-bucket scheme to an anytime algorithm is to
run a sequence of mini-bucket algorithms with increasing valuésaofim until
either a desired level of accuracy is obtained, or until the computational resources
are exhausted. The anytime algorittamytime-mpe{) for MPE is presented in
Figure 15. The parametelis the desired accuracy level. The algorithm uses initial
parameter settingse and mp, and incrementsg,, and Mg, Starting withi =
io andm = mg, mbe-mpe(i, mpomputes a suboptimal MPE solution and the
corresponding lower bound, and an upper boundJ() for increasing values of
i andm. The algorithm terminates when either<lU/L < 1+ ¢, or when the
computational resources are exhausted, returning the largest lower bound and the
smallest upper bound found so far, as well as the current best suboptimal solution.
Note that the algorithm is complete whenr= 0.

Another anytime extension of the mini-bucket, is to embed it within a complete
anytime heuristic search algorithm suchkaanch-and-boundSince, the mini-
bucket approximations computes bounds (upper or lower) of the exact quantities,
these bounds can be used as heuristic functions to guide search algorithms as
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well as for pruning the search space. In other words, rather than stopping with
the first solution found, as it is done in the forward stepmdfe-mpewe can
continue searching for better solutions, while using the mini-bucket functions to
guide and prune the search. This approach was explored recently and demonstrated
great promise both for probabilistic optimization tasks such as MPE as well as for
constraint satisfaction problems [Kask et al. 2001].

9. Empirical Evaluation

9.1. METHODOLOGY. Our empirical study is focused on approximating the
MPE. We investigate the impact of the parameieaesid m on the performance
of mbe-mpe(i, mpy varying one parameter at a timdbe-mpe(m)enotes the
algorithm with an unrestricted and a varyingm, while mbe-mpe(ijassumes an
unrestrictedn and a varying. Both algorithms use the following brute-force strat-
egy for selecting a mini-bucket partitioning. First, a canonical partitioning is found,
i.e. all subsumed functions are placed into mini-buckets of one of their subsum-
ing functions. Then, fombe-mpe(m)each group ofm successive mini-buckets is
combined into one mini-bucket. Fotbe-mpe(i)we merge the successive canonical
mini-buckets into a new one until the total number of variables in that mini-bucket
exceeds. Thenthe process is repeated for the next group of canonical mini-buckets,
and so on. Also, in our implementation, we use a slightly different interpretation of
the parameter. We allowi < |F|, where|F| is maximum family size, and bound
the number of variables in a mini-bucket by nfiaxF |} rather than by.

The accuracy of an approximation is measured by the error nstiRis/L and
U/MPE, whereU andL are, respectively, the upper and the lower bounté
found bymbe-mpewhereMPE is the probability of the exact MPE solution found
by elim-mpe When computing the exact MPE assignment is infeasible, we report
only the ratioU /L (note thatU /L is an upper bound on the error rativdPE/L
andU/MPE). The efficiency gain is represented by timae ratio TR= T/ T,,
whereT, is the running time forelim-mpeand T, is the running time fombe-
mpe We also report the widthy,, and the induced widthyj, of the network’s
graph along thenin-degreé orderingo [Bertele and Brioschi 1972; El Fattah and
Dechter 1995] used by the algorithms. When there is no confusion, we omit the
explicit specification of the ordering and use notatieandw* instead ofw, and
w3, respectively. Remember that for- w*, mbe-mpe(ipoincides withelim-mpe
For diagnostic purposes, we also report the maximum number of mini-buckets
created in a single buckefjax mb(we report averages wheneax mbis rounded
to the nearest integer).

We present empirical results for randomly generated networks and for applica-
tions such as medical diagnos@BRCSnetworks [Pradhan et al. 1994]) and prob-
abilistic decoding [McEliece et al. 1997; Frey 1998; MacKay and Neal 1996; Frey
and MacKay 1998]. Our objective is to assess the effectiveness of the mini-bucket
algorithms for different problem classes and to understand how structural domain

4 The min-degree ordering procedure works as follows: Given a moralized belief network with
nodes, a node with minimum degree is assigned imdgkaced last in the ordering). Then the node’s
neighbors are connected, the node is deleted from the graph, and the procedure repeats, selecting the
n — 1th node, and so on.
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TABLE I. AVERAGE PERFORMANCE OFmbe-mpedN 200 INSTANCES OFBINARY -VALUED UNIFORM
RANDOM NETWORKS

mbe-mpe) for m=1, 2,3 mbe-mpef) fori =5,8,11

m|MPE/LJU/MPE] TR | T, [maxmb| i [MPE/L]UMPE| TR [ T, [ maxmb

30 nodes, 80 edge$w = 8, w* = 11) 30 nodes, 80 edge@y = 8, w* = 11)
1] 432 46.2 |296.1] 0.1 4 5] 29.2 20.7 [ 254.6]0.1 3
2 4.0 3.3 250 | 2.2 2 8| 173 7.5 |151.0(/0.2 3
3 1.3 1.1 14 |26.4 1 11| 5.0 3.0 45.3 | 0.6 2

60 nodes, 90 edge$w = 4, w* = 11) 60 nodes, 90 edgeay = 4, w* = 11)
1 9.9 21.7 [1315] 0.1 3 5 2.8 6.1 [112.8]0.1 2
2 1.8 2.8 279 0.6 2 8 1.9 2.8 71.7 | 0.2 2
3 1.0 1.1 1.3 (119 1 11 1.4 1.6 242 | 0.5 2

(a) mbe-mpeat) (b) mbe-mps()

properties affect its performance. In the following four sections, we present the
results for randomly generated networks (uniform random networks and noisy-OR
networks), for CPCS networks, and for coding networks.

9.2. WINIFORM RANDOM PROBLEMS.

9.2.1 Random Problem GeneratorsOur uniform random problem generator
takes as an input the number of nodeghe number of edges, and the number of
values per variable;. An acyclic directed graph is generated by randomly picking
e edges and subsequently removing possible directed cycles, parallel edges, and
self-loops. Then, for each node and its parents,, , the conditional probability
tables (CPTsP(xi|Xp3) are generated from the uniform distribution over I
Namely, eactP (x;[Xps ) is replaced byP(Xi [Xpa )/ >y P (Xi[Xpa)-

9.2.2 Results. In Tables I and Il, we present the results obtained when running
mbe-mpe(mandmbe-mpe(ipn 200 instances of uniform random networks having
30 nodes and 80 edges (referred to as “dense” networks), and on 200 instances
of networks having 60 nodes and 90 edges (referred to as “sparse” networks). We
computed the MPE solution and its approximations assuming no evidence nodes.

Tables I(a) and I(b) show the mean valueStHE/L, U /MPE, TR, T;, max mb
w, andw*, form =1, 2, 3, and fori =5, 8, 11. Tables ll(a) and lI(b) present the
approximation errorIPE/L andU /MPE, showing the percentage of instances
whose error ratio belongs to one of the intervals [+ 1], wherer = 1, 2, 3,
or to the interval [400]. For each interval, we also show the mean time ratio
TR computed on the corresponding instances. Table Il presents the results on
larger networks where the exact inference was often infeasible, so that we report
onlyU/L.

The main observation is that the approximation algorithm solves many prob-
lem instances quite accurateMPE/L € [1, 2] andU/MPE € [1, 2]), spending
1-2 orders of magnitude less time than the complete algorithm. For instance, in
Table I(a),mbe-mpén = 2) on sparse instances solved all problems with mean
MPE/L ratio less than 2 and with speedup of almost 28. When controllédtbhg
performance was even better. An accursifE/L < 2 was achieved with speedup
of almost 72 {( = 8) on sparse networks.

As expected, the average errtd®E/L andU /MPE decrease with increasing
m andi, approaching 1, while the time complexity of the approximation algo-
rithms, T,, increases, approaching the runtime of the exact algorifhnTable I
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TABLE Il. APPROXIMATION RESULTS FORUNIFORM RANDOM NETWORKS WITH30 NODES 80 EDGES
AND WITH 60 NODES 90 EDGES (200 INSTANCESPER EACH NETWORK CLASS)
mbe-mpem) mbe-mpe()
30 nodes, 80 edges 30 nodes, 80 edges
MPE/L | Mean| U/MPE | Mean MPE/L | Mean| U/MPE | Mean
range | m % TR % TR range | i % TR % TR
[L2][2] 48 [208] 295 [109]| [L.2] | 8| 31 [150.1} 25 | 33.0
(23 2| 16 | 257 | 275 | 222 (23] | 8 10 | 1005 7 101.1
3.4 |2 7.5 53.1 17 2211 (3,4 | 8 10.5 | 114.7| 125 | 1329
(4,00)| 2| 295 | 253 | 26 | 46.0| (4 00)| 8 | 485 |169.8] 78 |162.1
[1,2] [ 3 92 1.4 97 14 [1,2] [11]| 51 41.3 29 27.0
(2,31 | 3 5 2.0 3 4.9 (2,3] |11 15 41.3 32 50.5
(3,4 | 3 1 1.2 1 1.3 (3.4] |11 11 69.2 17 45.4
(4,00) | 3 3 1.6 0 0.0 || (400)|211| 23 445 22 60.6
60 nodes, 90 edges 60 nodes, 90 edges
MPE/L [ Mean]| U/MPE | Mean MPE/L | Mean| U/MPE | Mean
range | m % TR % TR range i % TR % TR
[1,2] | 1] 26,5 |172.8 0 0.0 [1,2] | 5| 575 | 914 3 28.5
2,31 |1 16 64.3 0 0.0 2,3 | 5 15 158.3| 155 | 71.0
3.4 |1 9 43.5 1 174 (3,4] | 5 9 823 | 175 | 57.2
(4,00) | 1| 485 |1475| 99 132.7)| (4,00) | 5 185 | 157.2| 64 142.0
[1,2] [ 2] 795 | 26.1 41 212 1,21 | 8 80 64.9 | 385 | 36.9
2,31 | 2 10 28.0 31 326 (23] | 8 115 | 88.9 25 72.0
(3,4] | 2 5.5 42.4 14 2441 (3,4] | 8 3 27.4 21 96.3
(4,00) | 2 5 40.5 14 403 || (4,00) | 8 55 |158.4| 15,5 |124.5
[1,2] | 3 100 1.3 100 13 [1,2] [11] 855 | 24.4 81 235
(2,31 | 3 0 1.0 1 1.0 (2,3] 11| 115 | 29.7| 135 | 29.1
(3,4] | 3 0 0.0 0 0.0 (3,4 (11| 05 11.4 5 37.3
(4,00) | 3 0 0.0 0 0.0 || (4,00) 11| 25 211 0.5 14.0
(a) mbe-mpet) (b) mbe-mpei()
TABLE lll. ResuLTs ONRANDOM NETWORKS OFTWO TYPES (A) mbe-mpe(mAND (B) mbe-mpe(ipN

100 INSTANCES OFNETWORKS WITH100 NODES AND 130 EDGES(WIDTH 4), AND (C) mbe-mpe(iFoRrR
i =2T0 200N 100 INSTANCES OFNETWORKS WITH 100 NODES AND 200 EDGES (WIDTH w = 6)

mbe-mpefm) mbe-mpef) mbe-mpe()
max max max
m | U/L Ta mb i U/L Ta mb i U/L Ta mb
1]78L1| 01 3 2 | 4758 0.1 3 2 | 1350427.6] 0.2 4
2| 104 3.4 2 5] 363 | 0.2 2 5 | 234561.7| 0.3 3
3 12 | 1325| 1 8 | 146 | 0.3 2 8 9054.4 0.5 3
4 1.0 | 2096| 1 11| 71 0.8 2 11 2598.9 1.8 3
14| 3.0 3.7 2 14 724.1 10.5 3
17 1.7 24.8 1 17 401.8 75.3 3
20 99.5 550.2| 2

(a) 100 nodes, 130 edges (b) 100 nodes, 130 edges (c) 100 nodes, 200 edges

demonstrates how the distribution of error changes with increasargli . Namely,
a larger percentage of problems can be solved with a lower error.

On sparse random problems, we observe a substantial time speedup accompanied
with low error. For examplembe-mpé = 8) andmbe-mpé = 11) achieve a
relatively small error MPE/L < 2 andU/MPE < 2) in approximately 80% of
cases, while being up to 2 orders of magnitude more efficienlmrmpgsee the
data for the 60-node networks in Table Ii(b)). Clearly, for dense random problems
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the approximation quality is worse since they tend to have larger induced width.
However, even for dense networks we observe that fer 11 and form = 2,
approximately 50% of the instances were solved with an accuviRl/L < 2
accompanied with an order of magnitude speedup over the exact algorithm (see
Tables ll(a) and ll(b) for 30-node networks).

We observe that the lower bound provided by the (suboptimal) solution tuple
is closer toMPE than the upper bound. Namely]PE/L < [1, 2] in a larger
percent of cases thah/MPE < [1, 2] for both problem classes and for athndm
(see Table ).

The parameter, bounding the number of variables in a mini-bucket, allows
a better control over the approximation quality thanthe number of (nonsub-
sumed) functions in a mini-bucket. This results in a more accurate approximation
scheme and in a larger time speedup. For example, as we can see from Table II,
mbe-mpém = 2) solved about 80% of the instances with accuM&E/L € [1, 2]
and average speeddjR = 26, whilembe-mpé = 8) solved 80% of the sparse
instances in the sanMPE/L range with time speedupR = 65.

The results in Tables lli(a) and llli(b) demonstrate further the advantages of
more refined control allowed by the parametefor example, in Table Ili(a),
U/L < 104 is achieved in 3.4 seconds bybe-mpém = 2), whileU/L < 7.1
requires 0.8 seconds on the averageriine-mpé = 11) (Table Ili(b)). On denser
problems having 100 nodes and 200 edgéxe-mpe(mijs inaccurate fom = 1
andm = 2, and already infeasible space-wiserfoe= 3 andm = 4. Therefore, we
report only the results fanbe-mpe(i)which allowed smaller error in a reasonable
amount of time. However, its accuracy was still not acceptable( ~ 100),
even when the number of mini-buckets was bounded just by 2 (Table Ili(c)). Note,
however, that) /L may be a very loose upper bound on the actual accuracy.

9.3. RANDOM NoISY-OR PrROBLEMS.  The second set of experiments was per-
formed on randomly generataedisy-ORnetworks? A noisy-OR conditional prob-
ability table (CPT) is defined on binary-valued nodes as follows: given a child
nodex, and its parentys, ..., Y, eachy; is associated with aoise parameter
g = P(x =0y, =1, v« = 0),k #i. The conditional probabilities are defined as
follows [Pearl 1988]:

l_[yi=lqi ifX=0,
P(XIy1, ..., ¥n) = {1_nyi:1qi if x =1. (7)

Obviously, when al; = 0, we have a logical OR-gate. The parameter ¢ =
P(x =1ly; =1, yx = 0) fork # i is also calledink probability.

We generated random noisy-OR networks using the random graph generator
described earlier, and randomly selecting the conditional probabilities for each
CPT from the interval [0qg], whereq was the bound on the noise parameter.

Table IV presents the results of evaluating algorithmse-mpe(mand mbe-
mpe(i) We observe a good approximation qualifE/L < 1.5) accompanied
by one or two orders of magnitude efficiency improvementitre-mpe(i)using
i = 11 andi = 14. In these cases the number of mini-buckets in a single bucket
was at most two. The parametamwas too coarse to allow accurate approximation

5 Noisy-OR is an example afausal independengeleckerman and Breese 1995], which implies that
several causes (parent nodes) contribute independently to a common effect (child node).
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TABLE IV. AVERAGE RESULTS FORelim-mpevERSUSmbe-mpe(mAND mbe-mpe(ioN 200 RANDOM
NoIsY-OR NETWORK INSTANCES WITH30 NODES 90 EDGES(w = 9, w* = 12), ONE EVIDENCE NODE
X1 = 1,AND MAXIMUM NOISELEVELQ =1

mbe-mpe(m) mbe-mpe(i)
max max
m | MPE/L | UMPE | TR Ta mb i MPE/L | UMPE | TR To | mb
1| 12858| 59.0 |441.2| 0.0 4 5 | 48585.6| 47.7 | 5783 00| 4
2| 179.9 5.5 30.8 | 1.0 2 7 126.2 222 | 347601 3
3 13 1.2 12 | 155| 1 11 13 164 | 105.1| 02| 2
4 1.1 11 10 | 180| 1 14 1.2 15 192 | 12| 2
- lOO T T T T T T T T T
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FiG. 16. Results on 200 random noisy-OR networks, each having 50 nodes, 150 edges, and 10
evidence nodes: (a) frequency of problems solved exactly (U/L=1) versusqfuisdifferent values
of i; (b) a histogram of U/L foq = 0.1 andq = 0.5.

that also yields a good performance. For example, the case-02 mwas fast but
very inaccurateNIPE/L ~ 180), while for m= 3 the mini-bucket approximation
often coincided with the exact algorithm since the averagg mb(rounded to the
nearest integer) equals 1.

Subsequently, we present resultsridse-mpe(ipn larger networks (Figure 16).
Algorithm elim-mpewas intractable on these problems. The most apparent phe-
nomenon here is that the approximation improves with decreasing gpibat
is,U/L — 1forg — 0. In Figure 16(a), the percentage of instances for which
U/L = 1 is plotted against] for mbe-mp€B), mbe-mpg€l4), andmbe-mpg0).
Wheng = 0 (deterministic dependenges y; Vv - - - vy between a chilat and its
parentsy;,i = 1,..., k), we observe almost 100% accuracy, which then decreases
with increasingg for all values ofi = 8, 14, 20. One possible explanation is that,
in the absence of noise, we get loosely connected constraint-satisfaction problems
that can be easily solved by local constraint propagation techniques coinciding in
this case with the mini-bucket scheme.

Notice that the behavior ahbe-mpe(i)s “extreme”: it is either very accurate, or
very inaccurate (Figure 16(b)). This phenomenon is more noticeable forgmall

9.4. CPCS MTWORKS To evaluate the mini-bucket approach on realistic
benchmarks, we used the CPCS networks derived from the Computer-based Pa-
tient Case Simulation system [Parker and Miller 1987; Pradhan et al. 1994]. CPCS
network representation is based on INTERNIST-1 [Miller et al. 1982] and Quick
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Medical Reference (QMR) [Miller et al. 1986] expert systems. The nodes of CPCS
networks correspond to diseases and findings. In the original knowledge base, the
probabilistic dependencies between the nodes are represeritedumncy weights

that specify the increase in the probability of a finding (child node) given a certain
disease (parent node). This representation was later converted into a belief network
using several simplifying assumptions: (1) conditional independence of findings
given diseases, (2) noisy-OR dependencies between diseases and findings, and (3)
marginal independence of diseases [Shwe et al. 1991].

In CPCS networks, the noisy-OR CPTs may also incledd& probabilitiesnot
specified in Eqg. 7. Namely, given a child nodland its parentys, .. ., yn, theleak
probabilityis defined ateak = P(x = 1]y, =0, ..., y, = 0). The definition of a
noisy-OR CPT is then modified as follows:

P(x=0lys,...,yn) = (1 — Ieak)]_[q., (8)

whereq; are noise parameters defined earlier. Some CPCS networks include mul-
tivalued variables andoisy-MAXCPTs, which generalize noisy-OR by allowing
k values per node, as follows:

i=PXxX=ily2=0,..., ¥, =0),i=1,...k—1, and
n .
Px=ilyn.....yo)=li[]a].i=0.... k-2,
ji=1

i=k-2 n

Px=k=1ys,....y)=1- > L []q]. 9

i=0  j=1

whereqyJ is a noise coefficient for pareptnd the parent’s valug . This def|n|t|on
comudes with the one given by Eq. (8) foe= 2, assumindy = 1 —leak, qJ =1,
andqJ = ;.

We experimented with both binary (noisy-OR) and non-binary (noisy-MAX)
CPCS networks. The noisy-MAX netwoidpcs179(179 nodes, 305 edges) has
2 to 4 values per node, while the noisy-OR networkss360b(360 nodes, 729
edges) andpcs422(422 nodes, 867 edges) have binary nodes (the letter ‘b’ in
the network’s name stands for “binary”). Since our implementation used standard
conditional probability tables the non-binary versions of the larger CPCS networks
with 360 and 422 nodes did not fit into memory. Each CPCS network was tested
for different sets of evidence nodes.

9.4.1 Experiments Without Evidenceln Table V we present the results ob-
tained oncpcs179cpcs360bandcpces422metworks assuming no evidence nodes
(i.e., there is only one network instance in each case) and using a min-degree elim-
ination ordering, as before. Note thrabe-mpe(i= w* + 1) is equivalent to exact
elim-mpe Each row contains the usual parameters and measures as well as an ad-
ditional parameter called theffectiveinduced width,w} , defined as the size of
largest mini-bucket minus one. This parameter does not exceéador the largest
family size.
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TABLE V. mbe-mpé) oN CPCS NETWORKS IN CASE OFNO EVIDENCE

i] M | U J L JUMPE[MPEL] To | T [Te/Ta[maxmb] w;
cpcsl79 networkw = 8, w* = 8
Greedy value= 6.9e-3, MPE/greedy: 1.0, greedy time= 0.0

(S

1 [ 6.9e-3| 9.1e-3]| 6.9e-3 1.3 1.0 0.3 1.0 3.3 4 8
4 | 6.9e-3| 9.1e-3| 6.9e-3 1.3 1.0 0.3 1.0 3.3 3 8
6 | 6.9e-3| 6.9e-3| 6.9e-3 1.0 1.0 04 1.0 25 2 8
8 | 6.9e-3| 6.9e-3| 6.9e-3 1.0 1.0 1.0 1.0 1.0 1 8
cpcs360b network,w = 18, w* = 20
Greedy value=2.0e-7, MPE/greedy 1.0, greedy time= 0.0
1 [ 2.0e-7| 3.7e-7| 2.0e-7 1.8 1.0 0.4 | 115.8 | 289.5 8 11
6 | 2.0e-7| 4.0e-7| 2.0e-7| 2.0 1.0 0.4 | 115.8 | 289.5 9 11
11| 2.0e-7| 2.4e-7 | 2.0e-7 1.2 1.0 0.5 | 115.8 | 231.6 6 11
16 | 2.0e-7| 2.2e-7 | 2.0e-7 1.1 1.0 49 | 1158 | 23.6 3 15
19| 2.0e-7| 2.0e-7 | 2.0e-7 1.0 1.0 30.4 | 1158 | 3.8 3 18

cpcs422b networkw = 22, w* = 23
Greedy value=1.19e-4, MPE/greedy 41.2, greedy time=0.1
1 [ 0.0049| 0.1913| 0.0049| 3.88 1.00 7.7 | 1697.6| 220.5
6 | 0.0049| 0.0107| 0.0049| 2.17 1.00 7.7 | 1697.6| 220.5
11| 0.0049| 0.0058| 0.0049| 1.17 1.00 7.8 | 1697.6| 217.6
18 | 0.0049| 0.0050| 0.0049| 1.01 1.00 | 34.6 | 1697.6| 49.1
20 | 0.0049| 0.0069| 0.0049| 1.40 1.00 | 98.8 | 1697.6| 17.2
21| 0.0049| 0.0049| 0.0049( 1.00 1.00 | 156.1| 1697.6| 10.9

e
Nwwo s
[y
\‘

In addition, we compute a lower bound MPE (called Greedyhere) using a
simple greedy strategys follows. Before applying a mini-bucket algorithm we
generate a tuple (forward step) using only the original functions in each bucket.
Namely, for each variabl&; along the given ordering we assign Xp a value
X" = argmax [[; fj, where f; is a function inbucket. The probability of the
generated tuple is another lower bound onMRE. For each network, we report
the Greedylower bound and the ratiMPE/Greedyin a separate row.

We observe that for the above three instances, the lower bound computed by
mbe-mpé = 1) already provides the probability of the exact MPE solution. For
cpcsl7@ndcpes360beven the greedy solution coincides with the MPE. The upper
bound converges slowly and reachesMieE probability at higher values of such
asi = 6 for cpcs179i = 19 forcpcs360bandi = 21 for cpcs422bStill, those
values are smaller than* 4 1, which is 9 forcpcs17921 forcpcs360band 24 for
cpcs422bTherefore, the exact solution is found before the approximate algorithm
coincides with the exact one (we see that there are still two or three mini-buckets in
a bucket). Note the nonmonotonic convergence of the upper bound. For example, on
thecpcs360metwork, the upper bound equals 3.7e-7 for = 1, but then jumps
to 4.0e-7 fori = 6. Similarly, oncpcs422network,U = 0.0050 fori = 18,
butU = 0.0069 fori = 20. We also observe that the greedy approximation for
cpcs422his an order of magnitude less accurate than the lower bound found by
mbe-mpé = 1) (see Table V), demonstrating that the mini-bucket scheme with
i = 1 can accomplish a nontrivial task very efficiently.

The results in Table V are reorganized in Figure 17 from the perspective of
algorithmanytime-mpe{). Anytime-mpe{) runsmbe-mpe(i¥or increasing un-
til U/L < 1+ e. We started withh = 1 and were incrementing it by 1. We
present the results far = 0.0001 in Figure 17. The table compares the time of
anytime-mp¢0.0001) and ofanytime-mpg.1) against the time of the exact
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Anytime-mpe(0.0001)
U/L error vs time

3.8
—— cpcs422b
34 —o— c%csseob
o 30
g 2.6
<
g 22
% 1.8 0
1.4 H
1.0 i ‘
i
0.6 U T I,‘
=1y 10 100 =21 1000
Time and parameter i
Time (sec)
Algorithm cpes360 | cpes422
elim-mpe 1158 1697.6
anytime-mpe(e), e = 0.0001 70.3 505.2
anytime-mpe(c), € = 0.1 70.3 110.5

FiG. 17. anytime-mp.0001) oncpcs360kandcpes422metworks for the case of no evidence.

algorithm. We see that the anytime approximation can be an order of magni-
tude faster.

9.4.2 Likely and Random EvidenceSubsequently, we experimented with
likely evidence andrandom evidenceA random evidence set of sideis gen-
erated by randomly selectiignodes and assigning value 1 to all of them. This
approach usually produces a highly unlikely evidence set that results iR
probability. Alternatively, likely evidence is generated a&iecestral simulatioifor-
ward samplingas follows: Starting with the root nodes and following an ancestral
ordering where parents precede children, we simulate a value of each node in accor-
dance with its conditional probability table. A given number of evidence nodes is
then selected randomly. Ancestral simulation results in relatively high-probability
tuples, which produce higher valueMPEthan those for random evidence. As we
demonstrate below, this has a dramatic impact on the quality of the approximation.

In Table VI, we show the results fapcs360bWe generated 1000 instances of
likely evidence and 1000 instances of random evidence, each of size 10. We first
show the results for a single “typical” instance (one per each type of evidence), and
then the average results over the complete sample set. We see that the probability
of MPE solution decreases dramatically when switching from likely to random
evidence. We observe thatbe-mpé = 1) and the simple greedy approximation
compute the exact MPE solution, while the upper bound converdéB Eonly for
larger values of. The averag®PE/L ratio, however, is greater than 1 fox 5
(e.g.MPE/L = 2.1fori = 1), whichtells usthatthe lower bound differs frdvPE
probability on some instances. The averdjeE/Greedy= 17.2 is significantly
larger. For random evidence the approximation error increases. The average lower
bound is strictly less than thil fori < 17, and the averagdPE/L = 25 for
i = 1. Theresults focpcs422i§not shown here) were similar to those épcs360b
Note thatU /L is an order of magnitude lower for likely evidence than for random
evidence (especially when< 8), but is still about an order of magnitude higher
than in the case of no evidence.
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TABLE VI. mbe-mpé) oN cpcs3604360 NODES, 729 EDGES w = 18, w* = 20)

ONE SAMPLE of each evidence type
i] M ] U | L [ UL JUMPEIMPEL] To | Te | Te/Ta [ max mb] w;
LIKELY evidence: 10 nodes
Greedy= 4.5e-10, MPE/greedy 1.0, greedy time= 0.0

1 | 4.5e-10| 4.1e-9 | 4.5e-10| 9.0 9.0 1.0 | 0.4]115.8] 289.5 8 11
7 | 4.5e-10| 3.3e-9|4.5e-10| 7.3 7.3 1.0 | 0.4|115.8| 289.5 9 11
11| 4.5e-10| 1.9e-9|4.5e-10| 4.1 4.1 1.0 | 0.5|115.8| 231.6 6 11
17| 4.5e-10| 4.7e-10| 4.5e-10| 1.1 1.1 1.0 | 9.8 |115.8| 11.9 3 16
RANDOM evidence: 10 nodes
Greedy= 1.1e-29, MPE/greedy 7.0, greedy time= 0.0
1|7.7e-29 8.9e-27| 7.7e-29| 115.4| 1154 | 1.0 | 0.4 [116.0] 290 7 11
7 | 7.7e-29 2.2e-26| 7.7e-29| 284.4| 284.4 | 1.0 | 0.4|116.0{ 290 7 11
11| 7.7e-29| 4.0e-28| 7.7e-29| 5.2 5.2 1.0 | 0.5|116.0f 232 5 11
17| 7.7e-29| 8.3e-29| 7.7e-29, 1.1 1.1 1.0 8.0 | 116.0| 14.5 3 16

AVERAGES on 1000 instances
i] M [ U | L [ UL JUMPEJMPEL] T, | T [ Te/Ta [ max mb] wi

LIKELY evidence: 10 nodes

Greedy= 1.18e-7, MPE/Greedy= 17.2, greedy time= 0.0

1| 1.2e-7| 2.4e-7| 1.2e-7| 82 11 2.1 |0.40|41.44[104.16| 7.98 |11
7| 12e-7| 2.1e-7| 1.2e-7| 8.6 8.2 1.0 |0.40|41.44|/103.53] 8.94 |11
11| 1.2e-7| 1.5e-7| 1.2e-7| 3.5 3.3 1.0 |0.51|41.44| 80.93| 5.86 |11
17| 1.2e-7| 1.3e-7| 1.2e-7| 1.3 1.3 1.0 |9.59|41.44| 4.35 3.04 |16
RANDOM evidence: 10 nodes
Greedy= 5.01e-21, MPE/Greedy= 2620, greedy time= 0.0
1 [ 6.1e-21] 2.3e-17| 2.4e-21]| 2.5e+6| 2.8e+5| 25 [0.40{40.96]/102.88] 7.95 |11
7 |6.1e-21| 7.3e-17| 5.9e-21| 1.3e+5| 1.2e+5| 1.5 |0.40|40.96|102.41| 8.89 |11
11| 6.1e-21| 2.4e-18| 6.0e-21| 2.4e+4| 2.1e+3| 3.1 |0.51|40.96| 80.02| 5.81 |11
17| 6.1e-21| 1.8e-20| 6.1e-21| 15 15 1.0 |9.53/40.96| 4.31 3.03 |16

Since the variance dfi /L is high, we also present histogramslo§(U /L) in
Figures 18 and 19, which summarize and highlight our main observations. The
accuracy increases for larger values ghistograms in Figure 18 shift to the left
with increasing ). As before, we see a dramatic increase in accuracy in case of
likely evidence (Figure 18), and observe that the lower bound is often much closer
to M than the upper boundAPE/L is closer to 1 thatd /L (see Figure 19).

In summary, on CPCS networks

(1) mbe-mpe(i) computed accurate solutions for relatively small At the
same time, the algorithm was sometimes orders of magnitude faster than
elim-mpe

(2) As expected, both the upper and the lower bounds converge to theMiREct
asi increases. The lower bound is much closetomeaning thatmbe-mpe(i)
can find a good (suboptimal) MPE assignment before it is confirmed by the
upper bound. In other words, we can find a good solution much faster than we
can find a tight bound on the quality of the approximation.

(3) The preprocessing done bybe-mpe(ijs necessary. A simple greedy assign-
ment often provided a much less accurate lower bound.

(4) The approximation is significantly more accurate for likely than for unlikely
evidence.
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Fic. 18. Histograms ot /L fori = 10, 20 on thecpcs360metwork with 1000 sets of likely and

random evidence, each of size 10.

9.5. AROBABILISTIC DECODING.

In this section, we evaluate the quality of the

mini-bucket algorithmmbe-mpédor the task of probabilistic decoding. We compare
it to the exact elimination algorithm®lfm-mpe elim-mapand elim-be) and to
the state-of-the-art approximate decoding algoritiigrative belief propagation
(IBP), on several classes tfiear block codessuch asHamming codesandomly
generated block codeandstructured low-induced-width block codes

9.5.1 Channel Coding. The purpose othannel codings to provide reliable

communication through a noisy channel. Transmission errors can be reduced by

adding redundancy to the information source. For exampk;stematic error-
correcting coddMcEliece et al. 1997] maps a vector Kf information bits u=

(U, ..
bits X = (X, ..

., Uk), u; € {0, 1}, into anN-bit codeword c= (u, x), addingN — K code
., XN—k), Xj € {0, 1}. Thecode rate R= K/N is the fraction of
the information bits relative to the total number of transmitted bits. A broad class

of systematic codes includes linear block codes. Given a binary-vgkeerator
matrix G, an(N, K) linear block codeés defined so that the codewoed= (u, x)
satisfiesc = uG, assuming summation modulo 2. The bitsare also called the
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FiG. 19. Histograms ofJ /L andMPE/L fori = 10 and RANDOM evidence on thgpcs360b
network. Each histogram is obtained on 1000 randomly generated evidence sets, each of size 10.

FiG. 20. Belief network for a (7, 4) Hamming code.

parity-checkbits. For example, the generator matrix

1000110
G= 0100101
0010011
0001111

defines a (7, 4Hamming code

The codeword = (u, x), also called thehannel inputis transmitted through a
noisy channel. Acommonly used Additive White Gaussian Noise (AWGN) channel
model assumes that independent Gaussian noise with varidnsadded to each
transmitted bit, producing eeal-valued channel output. \Giveny, the decoding
task is to restore the input information vectofFrey 1998; McEliece et al. 1997;
MacKay and Neal 1996].

It was observed that the decoding problem can be formulated as a probabilistic
inference task over a belief network [McEliece et al. 1997]. For example, a (7, 4)
Hamming code can be represented by the belief network in Figure 20, where the
bits of u, x, andy vectors correspond to the nodes, the parent set for eachxhode
is defined by non-zero entries in thi€ ¢ i)th column ofG, and the (determinis-
tic) conditional probability functiorP(x;| pa) equals 1 ifx; = uj, & --- @ u;
and 0 otherwise, wher® is the summation modulo 2 (also, XOR, or parity—cF\eck
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operation). Each output by; has exactly one parent, the corresponding channel
input bit. The conditional density functioR(y; |c;) is a Gaussian (normal) distri-
bution N(c;j; o), where the mean equals the value of the transmitted bitgansl
the noise variance.

The probabilistic decoding task can be formulated in two ways. Given the ob-
served outputy, the task ofbit-wise probabilistic decoding is to find the most
probable value of eadnformation bit namely:

Ug = argLIkrerggﬁ P(ukly), forl<k<K.

The block-wisedecoding task is to find a maximum a posteriori (maximum-
likelihood) information sequence

u’ = arg rrlaxP(uly).

Block-wise decoding is sometimes formulated as finding a most probable explana-
tion (MPE) assignment(, x’) to the codeword bits, namely, finding

(v, x") = argmaxP(u, x|y).
(u,x)

Accordingly, bit-wise decoding, which requests the posterior probabilities for each
information bit, can be solved by belief updating algorithms, while the block-wise
decoding translates to the MAP or MPE tasks, respectively.

Inthe coding community, decoding error is measured bytterror rate (BER)
defined as the average percentage of incorrectly decoded bits over multiple transmit-
ted words (blocks). It was proven by Shannon [1948] that, given the noise variance
o2, and a fixed code ratB = K/N, there is a theoretical limit (calleBhannon’s
limit) on the smallest achievable BER, no matter which code is used. Unfortu-
nately, Shannon’s proof is nonconstructive, leaving open the problem of finding
an optimal code that achieves this limit. In addition, it is known that low-error
(i.e., high-performance) codes tend to be long [Gallager 1965], and thus intractable
for exact (optimal) decoding algorithms [McEliece et al. 1997]. Therefore, finding
low-error codes is not enough; good codes must be also accompanied by efficient
approximatedecoding algorithms.

Recently, several high-performance coding schemes have been propwbed (
codes[Berrou et al. 1993]Jow-density generator matrix cod¢€heng 1997],
low-density parity-checkodes [MacKay and Neal 1996]), that outperform by far
the best up-to-date existing codes and get quite close to Shannon’s limit. This is
considered “the most exciting and potentially important development in coding
theory in many years” [McEliece et al. 1997]. Surprisingly, it was observed that the
decoding algorithm employed by those codes is equivalentto an iterative application
of Pearl'sbelief propagatioralgorithm [Pearl 1988] that is designed for polytrees
and, therefore, performs only local computations. This successful performance of
iterative belief propagation (IBP) on multiply-connected coding networks suggests
that approximations by local computations may be suitable for this domain. In the
following section, we discuss iterative belief propagation in more detail.

9.5.2 lterative Belief Propagation. Iterative belief propagation (IBP) com-
putes an approximate belief for each variable in the network. It applies Pearl’s belief
propagation algorithm [Pearl 1988], developed for singly-connected networks, to
multiply-connected networks, as if there are no cycles. The algorithm works by
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Iterative belief propagation (IBP)

Input: A Belief Network BN = {Px, ..., P, }, evidence e, an activation schedule A,
the number of iterations I.

Output: Bel(X;) = P(Xjle) foralli =1,...,n.

1. Initialize A\ and 7.

For evidence node z; = j, set Ay, (k) to 1 for j = k and to O for j # k. For node
x having no parents set 7, to prior P(z). Otherwise, set A, and 7, to (1, ..., 1).
2. For iterations = 1 to I:

For each node z along A, do:

e For cach x = j, compute

Az (J) = Z,’ Az (4) Zu,:l;’:i Ple=jlui,.., um) H[;{:i Tup,x

/* « is a normalization constant */

e For each x = j, compute

Tay; () = Hk;;si Ayi.z () Eu, Pz =j[u1, .., um) I]; Tu; 2

3. Belief update: For each x along A

e For each z = j, compute A, (j) = []; Ay;,=(j), where y; are ’s children.

e Foreach z = k, compute 7. (j) = 35, Pz =j| w1, .., um)[]; Tu;,a
where u; are x’s parents.

e Compute BEL(2) = @,y

FiG. 21. lterative belief propagation (IBP) algorithm.

sending messages between the nodes: each pareht nodex sends aausal
support message,, x to X, while each ofx’s children, y;, sends ta a diagnos-

tic support message,, x. The causal support from all parents and the diagnostic
support from all children are combined into vectatsandiy, respectively.

Nodes are processed (activated) in accordance with a variable ordering called
an activation scheduleProcessing all nodes along the given ordering yields one
iteration of belief propagation. Subsequentiterations update the messages computed
during previous iterations. Algorithm IBP(l) stops afteiterations. If applied to
polytrees, two iterations of the algorithm are guaranteed to converge to the correct
a posteriori beliefs [Pearl 1988]. For multiply-connected networks, however, the
algorithm may not even converge, or it may converge to incorrect beliefs. Some
analysis of iterative belief propagation on networks with cycles is presented in
[Weiss 1997] for the case of a single cycle.

For the sake of completeness, algorithm IBP(I) is shown in Figure 21. In our
implementation, we assumed an activation schedule that first updates the input
variables of the coding network and then updates the parity-check variables. Clearly,
evidence variables are not updatBel(x) computed for each node can be viewed
as an approximation to the posterior beliefs. The tuple generated by selecting the
most probable value for each node is the output of the decoding algorithm.

9.5.3 Experimental Methodology.We experimented with several types of
(N, K) linear block codes, which include,(@) and (1511) Hamming codes, ran-
domly generated codes, and structured codes with relatively low induced width.
The code rate wafRR = 1/2, that is, N = 2K. As described above, linear
block codes can be represented by four-layer belief networks ha¢impdes
in each layer (see Figure 12). The two outer layers represent the channel out-
puty = (yY, y*), wherey" and y* result from transmitting the input vectots
andx, respectively. The input nodes are binary (0/1), while the output nodes are
real-valued.
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Random codes are generated as follows: For each parity-check Bitparents
are selected randomly out of thé information bits. Random codes are similar
to thelow-density generator matrigodes [Cheng 1997], which randomly select a
given numbe(C of childrennodes for each information bit.

Structured codes are generated as follows. For each parixy, b#t sequential
parents{Ug+jmodk. 0 < j < P} are selected. Figure 12 shows a belief network
of the structured code witk = 5 andP = 3. Note that the induced width of the
network is 3, giventhe ordeg, . . ., X4, Uo, . . ., Us. In general, a structured\| K)
block code withP parents per each code bit has induced widimo matter how
largeK andN are.

Given K, P, and the channel noise varianeé, a coding networknstanceis
generated as follows: First, the appropriate belief network structure is created. Then,
aninputsignal is simulated, assuming uniform prior distribution of information bits.
The parity-check bits are computed accordingly and the codeword is “transmitted”
through the channel. As a result, Gaussian noise with variafceadded to each
information and parity-check bit yielding the channel outguinamely, a real-
valued assignment to thg' and y* nodes® The decoding algorithm takes as an
input the coding network and the observation (evideg@e)d returns the recovered
information sequence’.

We experimented with iterative belief propagati&fr(l ), with the exact elimi-
nation algorithms for belief updatingl{m-be), for finding MAP (elim-mayp), and
for finding MPE g€lim-mp#@, and with the mini-bucket approximation algorithms
mbe-mpe(i)In our experimentglim-mapalways achieved the same bit error rate
(BER) aselim-mpe and, therefore, only the latter is reported.

For each Hamming code network and for each structured code network, we
simulate 10,000 and 1,000 input signals, respectively, and report the corresponding
BERs associated with the algorithms. For the random code networks, the BER is
computed over 1,000 random networks while using only one randomly generated
signal per network.

Note that in our previous experiments we compared actual probabiliBE (
and its bounds), while in the coding domain we use a secondary error measure,
the BER. The bit error rate is plotted as a function of the channel noise and is
compared to the Shannon limit and to the performance of a high-quality turbo-code
reported in Frey [1998] and used as a reference here (this code has a very large
block sizeK = 65,536 code rate 1/2, and was decoded using 18 iterations of
IBP until convergence [Frey 1998]). In the coding community, the channel noise
is commonly measured in units of decibels (dB),|a,,En/No, WhereE, /N, is
called signal-to-noise-ratio and defined as

P
202R’
P is the transmitter power, that is, bit O is transmitted-a¢P, and bit 1 is trans-

mitted asv/P; Ris the code rate, ang? is the variance of Gaussian noise. We use
0/1 signaling (equivalent te-3/ + 1 signaling ), so thaP = 3.

Eb/ No =

6 Note that simulation of the channel output is akin to the simulation of likely evidence in a general
Bayesian network (i.e., forward sampling, or ancestral simulation). As observed in the previous
sectionsmbe— mpeis more accurate, on average, when evidence is likely. Not surprisingly, similar
results were observed on coding networks.
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TABLE VII. BEROFEXACT DECODING ALGORITHMS elim-bel(DENOTED bel) AND elim-mpe
(DENOTED MpE ON SEVERAL BLOCK CODES (AVERAGE ON 1000 RANDOMLY GENERATED INPUT

SIGNALS)
o Hamming code Random code Structured code
(7,4) (15,11) |K=10,N=20, P=3[K=10,N=20, P=5[K =10, N=20, P=7| K=25,P=4
bel | mpe | bel | mpe | bel mpe bel mpe bel mpe bel mpe

0.3 6.7e-3| 6.8e-3| 1.6e-2| 1.6e-2| 1.8e-3| 1.7e-3 5.0e-4 5.0e-4 2.1e-3 2.1e-3 6.4e-4) 6.4e-4
0.5|9.8e-2| 1.0e-1| 1.5e-1| 1.6e-1| 8.2e-2| 8.5e-2 8.0e-2 8.1e-2 8.7e-2 9.1e-2 3.9e-2| 4.1e-2

9.5.4 Results.

9.5.4.1. XACT MPE VERSUSEXACT BELIEF-UPDATE DECODING. Before ex-
perimenting with the approximation algorithms for bit-wise and for block-wise
decoding (namely, for belief updating and for MPE), we tested whether there is a
significant difference between the corresponding exact decoding algorithms. We
compared the exaetim-mpealgorithm against the exaelim-belalgorithm on sev-
eral types of networks, including two Hamming code networks, randomly generated
networks with different number of parents, and structured code. The BER on 1000
input signals, generated randomly for each network, are presented in Table VII.
When the noise is relatively lows(= 0.3), both algorithms have practically the
same decoding error, while for larger noise=£ 0.5) the bit-wise decodinge{im-
bel) gives a slightly smaller BER than the block-wise decodelgr{-mp8. Conse-
quently, comparing an approximation algorithm for belief updating (IBP(l)) to an
approximation algorithm for MPEh{be-mpe())makes sense in the coding domain.

9.5.4.2. SRUCTURED LINEAR BLoCK CODES In Figure 22, we compare the
algorithms on the structured linear block code networks Wth= 50 and 100,
K =25and 50, and® = 4 andP = 7. The figures also displays the Shannon limit
and the performance of IBP(18) on a state-of-the-art turbo-code having input block
sizeK = 65,536 and rate /R (the results are copied from Frey [1998]). Clearly,
our codes are far from being optimal: even the exdich-mpe decoding yields a
much higher error than the turbo-code. However, the emphasis of our preliminary
experiments was not on improving the state-of-the-art decoder but rather on evalu-
ating the performance ohbe-mpend comparing it to the performance of IBP(
andmbe-mpen different types of networks.

We observe that:

(1) Asexpected, the exaglim-mpedecoder always gives the smallest error among
the algorithms we tested;

(2) IBP(10) is more accurate on average than IBP(1);

(3) mbe-mpe(i)even fori = 1, is close teelim-mpe due to the low induced width
of the structured code networks{ = 6 for P = 4, andw* = 12 for P = 7),
and it outperforms IBP on all structured networks;

(4) Increasing the parents set size frén= 4 (Figures 22(a) and 22(b)) 18 = 7
(Figures 22(c) and 22(d)), makes the difference between IBRrdoempe(i)
become even more pronounced. On networks With= 7 both mbe-mpe(1)
and mbe-mpe(7) achieve an order of magnitude smaller error than IBP(10).

Next, we consider the results for each algorithm separately, while varying the
number of parents fror® = 4 to P = 7. We see that the error of IBP(1) remains
practically the same, the error of the exact elim-mpe changes only slightly, while
the error of IBP(10) andnbe-mpe(i)increases. However, the BER of IBP(10)
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FiIG. 22. The average performanceatim-mpe mbe-mpé), and IBP(l) on rate 1/2tructured block
codesand 1000 randomly generated input signals. The induced width of the networks is: (a), (b)
w* = 6; (c), (d)w* = 12. The bit error rate (BER) is plotted versus the channel noise measured
in decibels (dB), and compared to the Shannon limit and to the performance of IBP(18) on a high-
quality code reported [Frey 1998] (a turbo-code having input block Isize 65,536 and rate 1/2.
Notice thatmbe-mpé&7) coincides withelim-mpein (a) and (b), while in (c) and (d) it coincides with
mbe-mpél).

increased more dramatically with increased parent set. Note that the induced width
of the network increases with the increase in parent set size. In the cBse-af
(induced width 6)mbe-mpé€r7) coincides withelim-mpe in the case ofP = 7
(induced width 12), the approximation algorithms do not coincide efitin-mpe

Still, they are better than IBP.

9.5.4.3. RNDOM LINEAR BLock CobeE.  On randomly generated linear block
networks (Figure 23(a)), the picture was reversatie-mpe(ifor bothi = 1 and
i = 7 was worse than IBP(10), although as good as IBElin-mpealways ran
out of memory on these networks (the induced width exceeded 30). The results
are not surprising sincenbe-mpe(ixan be inaccurate ifis much lower than the
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FiG. 23. The average performance&im-mpe mbe-mp@), and IBP(I) on (a) 1000 instances of
rate 1/2random block code®ne signal instance per code; and on (b) (7, 4) and (c) (13{/adming

codes 1000 signal instances per each code. The induced width of the networks is:€a)36< 45;

(b) w* = 3; (c) w* = 9. The bit error rate (BER) is plotted versus the channel noise measured in
decibels (dB), and compared to the Shannon limit and to the performance of IBP(18) on a high-
quality code reported [Frey 1998] (a turbo-code having input block ISize 65,536 and rate 1/2.
Notice thatmbe-mpé7) coincides withelim-mpein (a) and (b), while in (c) and (d) it coincides with
mbe-mpél).

induced width. However, it is not clear why IBP is better in this case. Also, note
that the experiments on random networks differ from those described above. Rather
than simulating many input signals for one network, we average results over many
random networks with one random signal per each network. To be more conclusive,
one needs to compare our algorithms on other random code generators such as
the recently proposed low-density generator matrix codes [Cheng 1997] and low-
density parity-check codes [MacKay and Neal 1996]. However, such experiments
are outside the scope of the current paper.
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9.5.4.4. H\MMING CoDeEs We tested the belief propagation and the mini-
bucket approximation algorithms on two Hamming code networks, oneNvith7,
K = 4, and the other one wittN = 15 K = 11. The results are shown in
Figures 23(b) and 23(c). Again, the most accurate decoder was theeiraotpe
Since the induced width of the (7, 4) Hamming network is onlynke-mpé€r)
coincides with the exact algorithm. IBP(1) is much worse than the rest of the algo-
rithms, while IBP(5) is very close telim-mpe Algorithm mbe-mpél) is slightly
worse than IBP(5). On the larger Hamming code network, the results are similar,
except that botmbe-mpgl) andmbe-mpé7) are significantly inferior to IBP(5).
Since the networks were quite small, the runtime of all the algorithms was less than
a second, and the time of IBP(5) was comparable to the time of exact elim-mpe.

9.5.5 Channel Coding: SummaryWe showed that

(1) On a class of structured codes having low induced width the mini-bucket ap-
proximationmbe-mpeutperformdBP;

(2) On a class of random networks having large induced width and on some
Hamming code$BP outperformanbe-mpe

(3) As expected, the exact MPE decodimiri-mpé outperforms approximate
decoding. However, on random networks, finding exact MPE was not feasible
due to the large induced width.

(4) On some classes of problems, thactmaximum-likelihood decoding using
elim-mpeand theexactbelief update decoding usimdim-belhave comparable
error for relatively low channel noise; for higher noise, belief-update decoding
gives a slightly smaller (by 0.1%) bit error rate than the MPE decoding.

As dictated by theory, we observed a correlation between the network’s induced
width and the quality of the mini-bucket’s approach. In summary, our results on
structured codes demonstrate that the mini-bucket scheme may be a better decoder
than IBP on coding networks having relatively low induced width. Additional ex-
periments are required in order to generalize this result for practical codes having
large block size (e.gN ~ 10%).

Our experiments were restricted to networks having small parent sets since the
mini-bucket and the belief propagation approaches are, in general, time and space
exponential in the parent set. This limitation can be removed by using the specific
structure ofdeterministicCPTs in the coding networks, which is a special case
of causal independendéleckerman and Breese 1995; Zhang and Poole 1996].
Such networks can be transformed into networks having families of size three only.
Indeed, in coding practice, the belief propagation algorithm exploits the special
structure of the CPTs and is linear in the family size.

10. Related Work

The basic idea for approximating dynamic-programming type algorithms appears
in the early work of Montanari [1972] who proposed to approximate a discrete
function of high arity by a sum of functions having lower arity. Montanari uses the
mean square error in choosing the low-arity representation.

The mini-bucket approximation is the first attempt to approximate all bucket elim-
ination algorithms within a single principled framework. The bucket elimination



Mini-Buckets: A General Scheme for Bounded Inference 147

framework [Dechter 1999] provides a convenient and succinct language for
expressing elimination algorithms in many areas. In addition to dynamic program-
ming [Bertele and Brioschi 1972], constraint satisfaction [Dechter and Pearl 1987],
and Fourier elimination [Lassez and Mahler 1992], there are variations on these
ideas and algorithms for probabilistic inference [Cannings et al. 1978; Tatman and
Shachter 1990; Zhang and Poole 1996].

Our approach is inspired kgdaptive-consisten¢y full bucket elimination al-
gorithm for constraint satisfaction whose approximatiirectional i-consistency
and its relational variandirectional-relational-consistency(i, mMPRG; m)), en-
force bounded levels of consistency [Dechter and van Beek 1997]. For example,
directional relational arc-consistendp,RC,, is similar to mini-bucketm = 1);
directional path-consistencyp) RC,, corresponds tamini-buckefm = 2); and
So on.

Note that mini-bucket approximations can be used as heuristics for subse-
guent search, similar to pre-processing by local consistency prior to backtrack
search for constraint solving. Indeed, this direction was recently pursued quite suc-
cessfully embedding mini-bucket heuristics in branch and bound search [Kask
and Dechter 1999, 2001; Kask 2000]. In propositional satisfiabiioynded-
directional-resolutionwith boundb [Dechter and Rish 1994; Rish and Dechter
2000] corresponds tmini-buckefi = b). It bounds the original resolution-based
Davis—Putnam algorithm [Davis and Putham 1960].

Further comparisons of the mini-bucket scheme with search algorithms (for
MPE task), as well as combinations of mini-bucket preprocessing with search
were reported in [Kask and Dechter 1999b]. Empirical results show that on some
classes of random problems the mini-bucket algorittmne-mpeoutperforms
greedy local search, stochastic local search (SLS), a combination of greedy with
SLS, simulated annealing, and iterative belief propagation (unlike in coding net-
works). The overall winner is the combination of greedy search with SLS ap-
plied on top of the mini-bucket scheme (i.e., using the mini-bucket solution as an
initial assignment).

Another idea related to bounding dependencies is that of remawéalf depen-
denciedn a join-tree clustering scheme presented in [Kjaerulff 1994]. This work
suggests the use of Kullback—Leibler distance (KL-distance, or relative entropy)
in deciding which dependencies to remove. Both the KL-distance measure and the
mean square error can be used to improve the mini-bucket partitioning scheme. A
similar approximation idea based on ignoring some dependencies was proposed by
[Boyen and Koller 1998] for stochastic processes, and can be perceived as similar
to mini-bucket(, 1).

The mini-bucket scheme is closely related to other local approximations, such
as iterative belief propagation (IBR)generalized belief propagation (GBR)-
gorithms [Yedidia et al. 2001] and in particular the recently propdsedtive
Join-Graph PropagatiofiDechter et al. 2002] that were successfully used in prac-
tical applications such as probabilistic error-correcting coding [Frey and MacKay
1998]. The mini-bucket algorithms can be viewed as a noniterative version of all
those approaches.

The mini-bucket scheme was recently extended to tree-elimination algorithms
such as bucket tree elimination and join-tree clustering schemes and ismalled
bucket tree-elimination (MBTE)This extension allows approximating updated
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beliefs of all the variables at once, as well as computing other quantities of in-
terest, using single additional function generation pass in the reverse direction.
This approach was tested empirically for updating beliefs and showed highly com-
petitive results in many cases, compared with Gibbs sampling and iterative belief
propagation [Mateescu et al. 2002].

A collection of approximation algorithms for sigmoid belief networks was
recently presented [Jaakkola and Jordan 1996] in the context of a recursive
algorithm similar to bucket elimination. Upper and lower bounds are derived
by approximating sigmoid functions by Gaussian functions. This approximation
can be viewed as a singleton mini-bucket algorithm £ 1) where Gaussian
functions replace thenin or max operations applied in each mini-bucket. Ap-
proximations for sigmoid belief networks belong to a wider classvafia-
tional methoddor approximate inference [Jordan et al. 1998]. Finally, there is
a large family of approximation techniqgues somewhat orthogonal to local prop-
agation, namely, sampling techniques (Markov-Chain Monte-Carlo, or MCMC
mehtods) often applied to approximate inference in Bayesian networks [Pearl
1988; MacKay 1998]. However, sometimes slow convergence of these methods
calls for hybrid algorithms that combine sampling with local propagation and
other approaches, thus exploiting different kinds of structure present in joint prob-
ability distributions.

11. Conclusions

The article describes a new approximate inference scheme, called mini-buckets,
that trades accuracy for efficiency when computational resources are bounded. The
scheme bounds the dimensionality of dependencies created by inference algorithms.
The mini-bucket scheme is based on the bucket-elimination framework [Dechter
1997a] that is applicable across a wide variety of areas.

We presented and analyzed the mini-bucket approximation algorithms for
the probabilistic tasks of belief updating, finding the most probable expla-
nation (MPE), and finding the maximum a posteriori hypothesis (MAP) as
well as for general combinatorial optimization tasks. We identified regions of
completeness and demonstrated promising empirical results obtained both on
randomly generated networks and on realistic domains such as medical diag-
nosis and probabilistic decoding. The complexity bounds of the mini-bucket al-
gorithms provide some guidelines for selecting algorithm’s parameters based
both on memory considerations and on the problem’s graph structure. An any-
time version of the algorithm iteratively increments the controlling parame-
ters and guarantees an increase in accuracy as long as computational resources
are available.

Our experimental work focused on evaluatinge-mpgthe mini-bucket approx-
imation algorithm for MPE. We demonstrated that the algorithm provides a good
approximation accompanied by a substantial speedup in many cases. Specifically,
we observed that

(a) As expected, the algorithm’s performance (whes fixed) decreases with
increasing network density.

(b) The algorithm works significantly better for structured rather than for uniformly
distributed CPTs. For example, for noisy-OR random networks and for CPCS
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networks (noisy-OR and noisy-MAX CPTs), we often computed an accurate
solution in cases when the exact algorithm was much slower, or infeasible.

(c) For probabilistic decoding we demonstrated that the mini-bucket scheme out-
performs the state-of-the-art iterative belief propagation decoding algorithm on
problems having lovw*. However, on randomly generated high-codes, the
mini-bucket approximation was inferior to IBP.

(d) The lower bound computed bypbe-mpewas often closer to the MPE than
the corresponding upper bound, indicating that good solutions are found long
before this can be verified by the generated upper bound.

(e) The approximation accuracy is significantly better for problems having high
MPE (e.g., likely evidence), as observed on CPCS networks and coding prob-
lems. Also, the algorithm’s performance improves considerably with decreasing
noise in noisy-OR CPTs, yielding an exact solution in practically all zero-noise
cases while using a relatively low bound/Ne believe that these results can also
be attributed to high MPE values that normally accompany noisy-OR problems
having low noise.

The mini-bucket scheme can be improved along the following lines. Instead
of using the brute-force procedure for partitioning a bucket into mini-buckets
we can improve the decomposition by minimizing a distance metric between
the exact function and its approximation. Candidate metrics are relative entropy
(KL-distance) [Kjaerulff 1994] and the min-square error [Montanari 1972].
The approximation may be further improved for the special cases of noisy-OR,
noisy-MAX, and noisy-XOR (also known asausal independendgieckerman
and Breese 1995; Zhang and Poole 1996; Rish and Dechter 1998]) structures that
are often present in real-life domains (e.g., CPCS and coding networks). Also,
it was shown that combining the mini-bucket scheme with heuristic search has a
great potential [Kask and Dechter 1999].

Finally, theoretical explanation of our empirical results (e.g., on relatively high-
MPE and low-noise problems) and prediction of mini-bucket accuracy still remain
open questions. Initial theoretical analysis and certain optimality conditions are
given in [Rish et al. 2002] for the simplest member of the mini-bucket family,
greedy forward assignment (no preprocessing) for finding MPE, on problems hav-
ing high MPE probability, such as some problems with nearly deterministic CPTs
(e.g., noisy-OR networks with low noise). Interestingly, the greedy approxima-
tion is guaranteed to give an exact solution when MPE values are high enough
(a frequent situation in low-noise problems), but its accuracy drops dramatically
after certain threshold MPE value. Investigating the behavior of more complex
mini-bucket approximations under similar conditions remains the topic of fur-
ther research.
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