Probabilistic Reasoning Evaluation

Adnan Darwiche, Rina Dechter Arthur Choi, Vibhav Gogate and Lars Otten

Scope

- Probability of evidence, PE
- Node marginals, MAR
- Most probable explanation, MPE
- Exact and approximate solvers
- Bayesian and Markov networks
- More than a thousand benchmarks
- 26 solvers from 7 groups

Evaluation Environment

- Cluster lent to us by Prof. Eleazar Eskin (UCLA)
- 5 Linux machines (CentOS 4.5)
 - Intel Xeon, Dual Quad-Core, 2.33GHz, 8GB RAM
 - 2 solvers per machine (1 solver per CPU)
 - 10 solvers running concurrently
 - Each solver limited to:
 - 20 minutes CPU time, 3GB RAM

Agenda

- Benchmark description
- Solver description
- Evaluations:
 - MPE
 - Exact PE/MAR
 - Approximate PE/MAR
- Concluding remarks and discussion

Benchmark Description

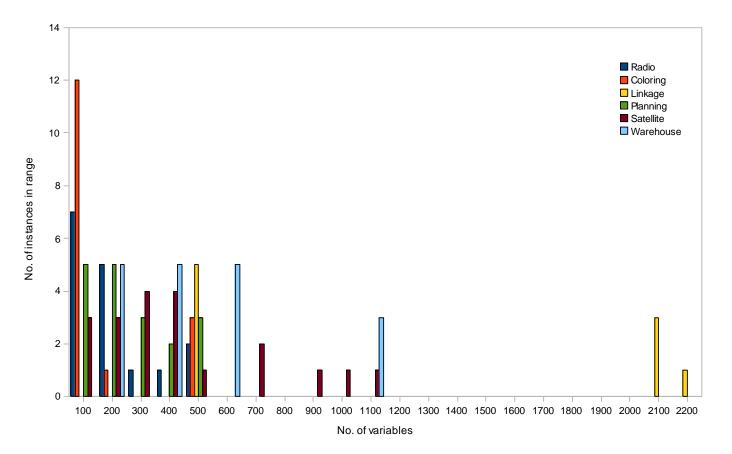
- Linkage 1 / WCSP
 - Submitter: Thomas Schiex (INRA France)
 - Domain: Linkage and converted weighted CSPs
 - Type: Linkage is Bayes, others Markov, all for MPE

— 9 Linkage:	max. domain size 45
— 16 Radio Freq.:	max. domain size 44
– 16 Coloring:	max. domain size 5
– 18 Planning:	max. domain size 27
– 20 Satellite:	max. domain size 4
– 18 Warehouse:	max. domain size 200

Treewidth: many have width ~30-60

- Linkage 1 / WCSP
 - Submitter: Thomas Schiex (INRA France)
 - weighted CSP networks also submitted as benchmarks for 3rd Max-CSP competition
 - <u>http://cpai.ucc.ie/</u>
 - encourage cross-field comparisons?

• Linkage 1 / WCSP (contd.)



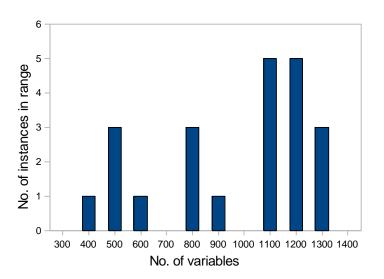
- bn2o
 - Submitter: Jirka Vomlel and Petr Savicky (Academy of Sciences of the Czech Republic)
 - Domain: two-layer noisy-or Bayesian networks
 - Type: Bayes for MAR/PRE
 - 18 instances
 - All variables binary
 - 45, 50, or 55 variables
 - Treewidth: ~24-27
 - some exact PE solvers run out of memory (given 3GB)

- Diagnose
 - Submitter: John M. Agosta (Intel Corp.)
 - Domain: diagnostic Bayesian networks, hand-built
 - Type: Bayes for MAR
 - Randomly generated evidence
 - 2 Instances, each with 50 different sets of randomly generated evidence (leaf nodes only)
 - 203 and 359 variables, respectively
 - Max. domain size 7 and 6, respectively

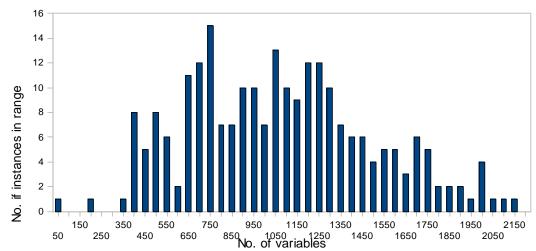
- Diagnose
 - Submitter: John M. Agosta (Intel Corp.)
 - Domain: diagnostic Bayesian networks, hand-built
 - nodes assume causal independence (e.g., noisy-max)
 - relatively large for networks constructed by hand
 - ~200-300 nodes, ~300-600 edges
 - treewidth ~11-18: still easy for exact solvers

- Grids
 - Submitter: Tian Sang (University of Washington)
 - Domain: Grid networks, from 12x12 to 50x50 with varying level of determinism
 - roughly, 50%, 75%, or 90% of the parameters are 0/1
 - treewidth: ~12-50
 - Type: Bayes for PRE
 - 320 Instances
 - Between 144 and 2,500 binary variables
 - Evidence by assigning value 1 to leaf node

- Linkage 2
 - Submitter: Dechter group (UC Irvine)
 - Domain: Genetic linkage
 - Type: Markov for MPE
 - 22 instances
 - Max. domain size between 3 and 7
 - Treewidth: ~20-35



- Promedas
 - Submitter: Vicenc Gomez (University Nijmegen)
 - Domain: Medical diagnosis, real-world cases, converted from noisy-or
 - Type: Markov for MAR/PRE
 - 238 Instances
 - Binary variables



- Promedas
 - Submitter: Vicenc Gomez (University Nijmegen)
 - Domain: Medical diagnosis, real-world cases
 - QMR-DT like networks; layered noisy-or model
 - Bayesian network model converted to Markov network after performing simplifications (pruning unobserved nodes, negative findings, compact representation of noisy-or, etc)
 - Treewidths range from 1 (tree) to ~60
 - most are too difficult for exact algorithms

- UAI-06 MPE and PRE
 - Submitter: Used in UAI'06 evaluation
 - Domain: Various
 - Type: Bayes for MPE and PRE, respectively
 - 57 MPE instances
 - 78 PRE instances
 - For details, see last UAI evaluation

- Relational
 - Submitter: UCLA
 - Domain: Relational Bayesian networks constructed from the Primula tool
 - Type: Bayes for MAR/PRE
 - 251 networks, with binary variables
 - 150 Blockmap: 700 to 59,404 variables
 - 80 Mastermind: 1,220 to 3,692 variables
 - 11 Friends & Smoker: 10 to 76,212 variables
 - 10 Students: 376 variables
 - Large networks with large treewidths, but with high levels of determinism

Benchmark Summary (exact)

•	9 sets:		Bys	Mkv bin
	 weighted-CSP 	(97)		•
	 bn2o (diagnosis) 	(18)	•	•
	– hand-built	(100)	•	
	– grids	(320)	•	•
	— linkage	(22)		•
	 Promedas 	(238)		• •
	— UAI-06 (MPE)	(57)	•	
	— UAI-06 (PE)	(78)	•	
	– relational	(251)	•	•
	- TOTAL	(1181)	(824)	(357) (507)

Benchmark Summary (appr/mpe)

(577)

(220)

(357) (323)

- Mkv bin • 9 sets: Bys weighted-CSP (97) – bn2o (diagnosis) (18) hand-built (0/100)(32/320)– grids linkage (22)(238)– Promedas - UAI-06 (MPE) (57)- UAI-06 (PE) (78)relational (35/251)
 - TOTAL

Solver Description

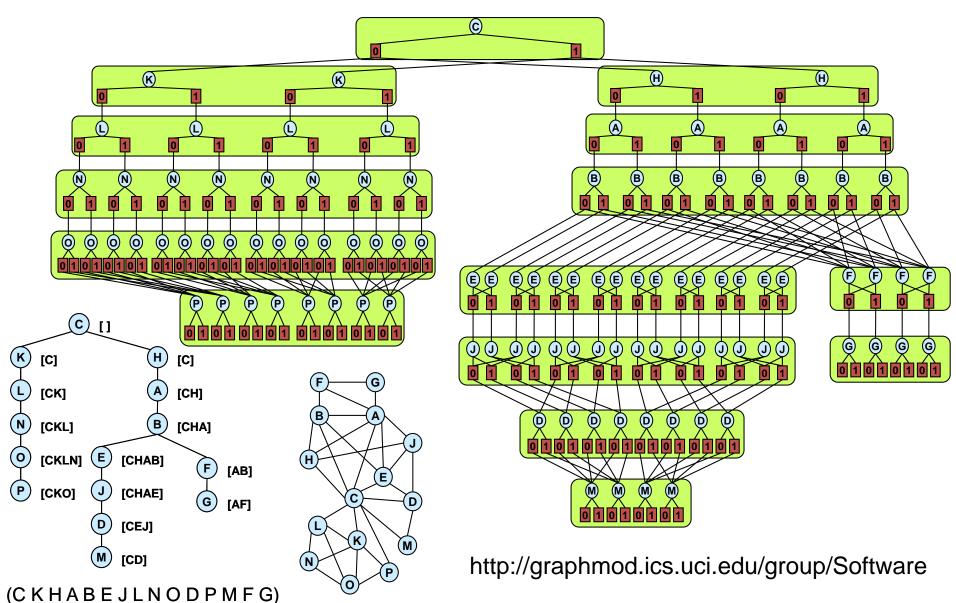
Solvers

- 7 teams and 26 solvers:
 - INRA/ ONERA/ UPC/ LSIS (2)
 - UC-IRVINE (12)
 - UCLA (4)
 - UBC (1)
 - HUGIN (2)
 - Pittsburgh (3)
 - UPF/Radboud University, Nijmegen (2)

UC-Irvine

UCI Team: AOBB/AOBF

Radu Marinescu and Rina Dechter



UCI Team: AOBB/AOBF

Radu Marinescu and Rina Dechter

http://graphmod.ics.uci.edu/group/Software

- Solver Type
 - Exact and anytime (AOBB), exact but not anytime (AOBF)
- Types of problems
 - Combinatorial optimization: mpe, weighted csps
- Types of networks
 - Bayesian and Markov
- Primary Method
 - Best-first and depth-first AND/OR search,
 - full context-based caching,
 - pre-compiled mini-bucket heuristic with an i-bound,
 - pesudo-tree guided by min-fill or hypergraph partitioning.
 - AOBB: Unit resolution for determinism, initial upper bound (gls+)
- AOBB(12), AOBB(16), AOBB(20), AOBF(12), AOBF(16), AOBF(20)

INRA/ ONERA/ UPC/ LSIS

Toulbar2 C++ solver

- Marti Sanchez¹, Sylvain Bouveret², Simon de Givry¹, Federico Heras³, Philippe Jegou⁴, Javier Larrosa³, Samba Ndiaye⁴, Emma Rollon³, Thomas Schiex¹, Cyril Terrioux⁴, Gerard Verfaillie², Matthias Zytnicki¹
 - INRA, Toulouse, France
 ONERA, Toulouse, France
 UPC, Barcelona, Spain
 LSIS, Marseilles, France

toulbar2

- Exact method, only for MPE task
- Depth-First Branch and Bound algorithm
 - Binary branching scheme instead of value enumeration
 - Dynamic variable and value ordering heuristics
 - Basic form of Conflict Back-Jumping (Lecoutre et al, ECAI 2006)
 - Variable elimination of small degree (2) during search (Larrosa et al, JAIR 2005)
- Pruning scheme
 - No initial upper bound
 - Lower bound produced by problem reformulation during search
 - Soft local consistency EDAC for binary (Heras et al, IJCAI 2005) and ternary (Sanchez et al, Constraints 2007) cost functions
 - Larger arity cost functions are delayed until they become ternary (their minimum cost is exploited in preprocessing only)

toulbar2 with tree decomposition (toulbar2/BTD)

- Depth-First Branch and Bound exploiting a Tree Decomposition (Terrioux et al, ECAI 2004) (Givry et al, AAAI 2006)
 - Min-fill tree decomposition heuristic (Marseilles' toolkit) in preprocessing
 - Root selection maximizing cluster size
 - Same search as toulbar2 inside clusters (DVO, CBJ, VE(2))
 - Full caching (no memory restriction)
- Russian Doll Search pruning scheme (Lemaitre et al, AAAI 1996)
 - Solves all cluster subtrees before solving the whole problem
 - Combines RDS, EDAC, and caching lower bounds
- Open-source available at http://mulcyber.toulouse.inra.fr/gf/project/toulbar2 (release 0.7)

UBC

GLS+: efficient local search for MPE

Frank Hutter

The University of British Columbia (UBC), Vancouver, Canada

Joint work with Holger Hoos (UBC) and Thomas Stützle (Universite Libre de Bruxelles, Brussels, Belgium)

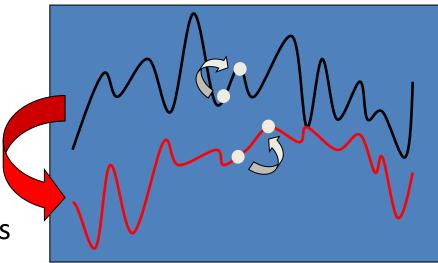
- Problem tackled: MPE
- Solver type: local search
- Characteristics:
 - Anytime algorithm
 - Often finds optimal solutions quickly, but can never prove optimality
 - Conceptually simple
 - Runtime is largely independent of tree width

Guided Local Search [Voudoris 1997]

Subclass of

Dynamic Local Search Iteratively:

- 1) Local search ! local optimum
- 2) Modify evaluation function by penalizing some solution features



First applied to MPE by [Park, 2002]

- Solution features for MPE are partial assignments
- Penalties can be thought of as additional (temporary) factors
- Evaluation fct. = Objective fct. sum of respective penalties

GLS⁺ [Hutter, Hoos & Stützle, 2005]

• Differences to original GLS & avg. speedups

- Modified evaluation function: » 10 times faster
- Caching: » 10 times faster, more for larger instances
- Parameter tuning: » 100 times faster (!)
- Initialization: up to 10 times faster, doesn't always help
- ! With local search the devil is in the detail
- Optional pre-processing with partial Mini-Buckets
 - Large speedups for hard instances with low treewidth
 - Slowdowns for high treewidth ! disabled for UAI evaluation
- Code & datasets online (unchanged since 2005) <u>http://www.cs.ubc.ca/labs/beta/Projects/SLS4MPE</u>
- Possible uses
 - MPE solving under high treewidth & tight time constraints (where proven optimality is not important)
 - Initialize other algorithms (e.g. upper bound in B&B)

Hugin

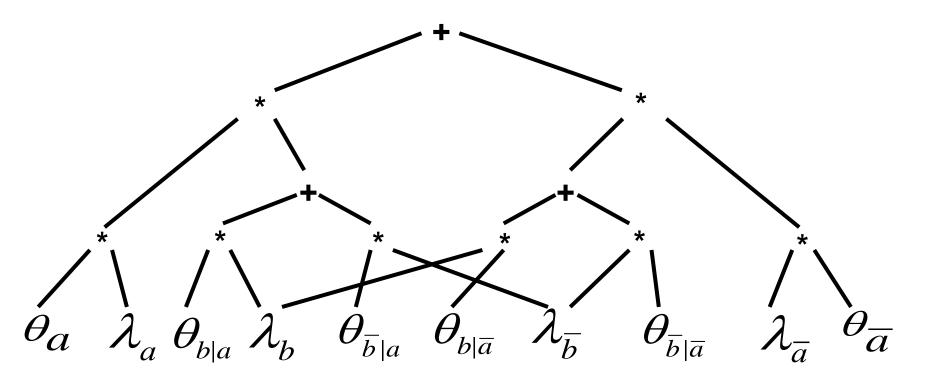
Hugin Solver

Team: Frank Jensen

- Task: Exact MAR (node marginals)
- Built from standard Hugin software components (except the parser), implemented in C
- Handles only Bayesian networks (not Markov networks)
- Algorithm: Preprocessing + Junction-Tree
- Remove links to children from instantiated nodes
- Moralize
- Triangulate using the "Total Weight" method with maxnumber-of-separators = 4000
- Create the junction tree
- Propagate and compute all node marginals

UCLA

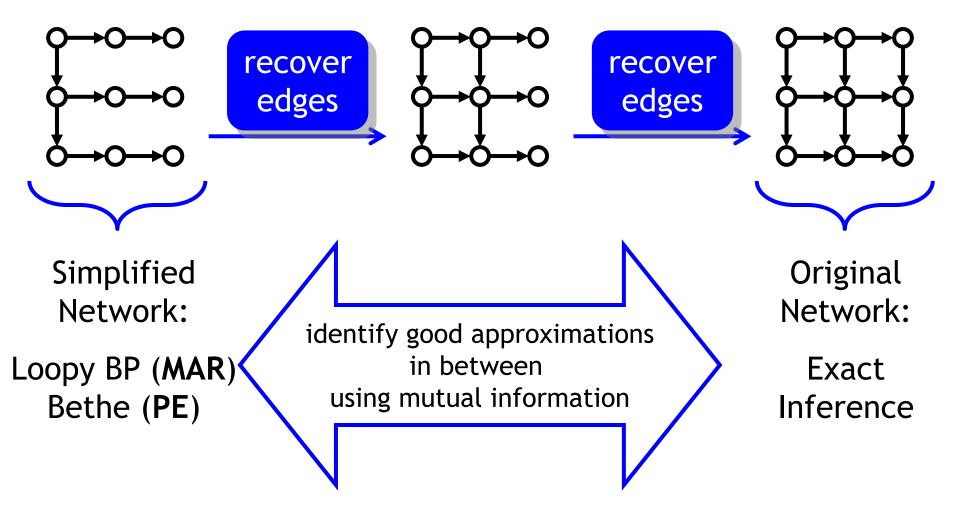
- Solver Type: Exact
- Problems: P(e) and marginals
- Networks: Bayesian and Markov
- Primary Method: Compilation into Arithmetic Circuits (ACs)



Algorithm

- Learn additional evidence
 - For each zero probability and each evidence, create a clause; run unit resolution
- Prune based on original and learned evidence
 - Remove evidence variables from tables
 - Remove variables appearing in a single table if not in query
- If minfill says problem is easy, apply variable elimination
 - If computing P(e), apply standard VE
 - If computing marginals, compile using VE
- If minfill says problem is difficult, apply knowledge compilation
 - Encode network into CNF
 - Encode determinism and equal parameters
 - Run c2d knowledge compiler

ucla-edbp-pe / ucla-edbp-mar Arthur Choi, Adnan Darwiche



UPF/Radboud University, Nijmegen

Truncating the loop series expansion for BP

Vicenç Gómez Hilbert J.Kappen

Department of Biophysics Radboud University, Nijmegen, The Netherlands

Gómez V, Kappen HJ

Truncating the loop series expansion for BP

Jul, 2008 1 / 4

500

3

イロト (雪) (目) (日)

UAI '08 workshop

Truncated Loop Series expansion for Belief Propagation (TLSBP)

Main ideas

- Iterative Belief Propagation (IBP) may provide an accurate approximation in loopy graphs.
- Explicit reconstruction of the exact inference can be done using Loop Calculus (Chertkov & Chernyak, '06).

Finite Loop expansion of the partition function Z, whose first term Z_{BP} corresponds to the **Bethe Free energy** (obtained using IBP):

$$Z = Z_{BP} \left(1 + \sum_{\mathcal{C}} r(\mathcal{C}) \right),$$

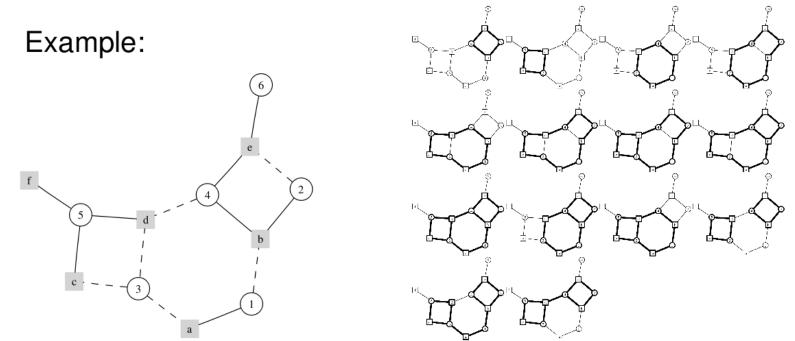
Each r(C) corresponds to a **generalized loop** (*subgraph with all nodes with degree at least two*) and can be computed at the fixed point of IBP.

DQ P

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □

UAI '08 workshop

Truncated Loop Series expansion for Belief Propagation (TLSBP)



We propose the following solver inspired in (Gómez et al '07):

- Run IBP.
- Bounded **search** by length ℓ of *simple* loops (degree exactly 2).
- **Merge** loops iteratively until no new loops of length $\leq \ell$ are found.
- Ompute the approximated partition function $Z_{C'}$ considering a subset $C' \subseteq C$.

 $\mathcal{O} \mathcal{O} \mathcal{O}$

UAI '08 workshop

Truncated Loop Series expansion for Belief Propagation (TLSBP)

Characteristics of TLSBP solver

- Using bitsets to represent generalized loops, operations can be done efficiently. Ex: merge \equiv bitwise OR.
- MAR task is approximated using conditioning: $P_i(x_i) = \frac{Z^{x_i}}{\sum_{x'_i} Z^{x'_i}}$
- Constrained to binary variables.
- Anytime algorithm for approximate inference.
- Combines propagation and search.
- Approximates PE and MAR tasks.

References:

- Gómez V., Mooij J. M., Kappen H. J. "Truncating the loop series expansion for belief propagation", JMLR 8(Sep):1987-2016, 2007
- Chertkov M., Chernyak V. Y., "Loop series for discrete statistical models on graphs", J. Stat. Mech. P06009, 2006

Jul, 2008 4 / 4

JQ P

イロト イ理ト イヨト 一日

University of Pittsburgh

Pr(E) & marginals

Foundations of the algorithms (SMILE[©])

- 1. Clustering algorithm at the foundation of the program [Lauritzen & Spiegelhalter] (Pr(E) as the nor Relevance steps:
- 2. Relevance reasoning, based or ¹. Geiger 1990], as structured in summarized in [Druzdzel & Sue 2.
- For very large models: Relevan 3. 1997] and Relevance-based Inc 1999].
- In p(E), focusing inference on the evidence nodes
- Removal of barren nodes
- **Evidence** absorption
- . Removal of nuisance nodes
- 5. Reuse of valid posteriors

Full references are included in **GeNIe** on-line help, <u>http://genie.sis.pitt.edu/</u>.

Engineering (Tomek Sowinski).

- C++ implementation (SMILE[©])
- Extensively tested (over eight years of academic and industrial use)

Approximate marginals: EPIS-BN

- Importance sampling combined with loopy belief propagation [Yuan & Druzdzel, 2003].
- SMILE[©] algorithm runs for a predefined number of samples; for the competition we run forever.
- No checking for convergence.
- No special treatment of determinism, no caching.

UC-Irvine

UCI Team: VEC

Vibhav Gogate and Rina Dechter

http://graphmod.ics.uci.edu/group/Software

- Solver Type
 - Both Exact and Anytime
- Task: Probability of Evidence, Partition function
- Primary Method.
 - Variable Elimination + Conditioning (Pearl '88)
 - SAT based singleton consistency

VEC Algorithm

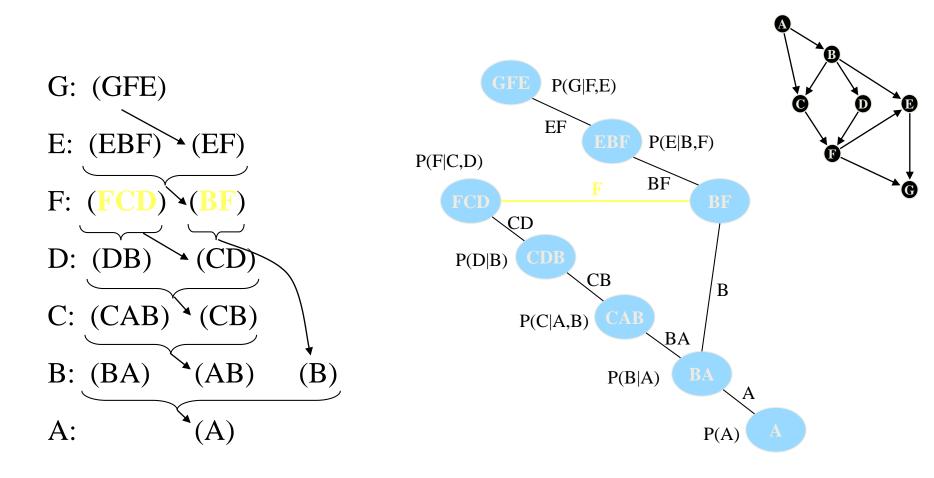
- Algorithm (Network P)
 - Reduction Step (Input: P, Output: P')
 - Convert the zero probabilities in P to a SAT problem F
 - For each variable-value pair X=a
 - if (F and X=a) has no solutions (use minisat Een and Sörensson 06)
 - » Remove X=a from P
 - If the reduced network P' has a "reasonable" treewidth
 - Solve using Bucket elimination
 - Else
 - Remove K variables from P' so that its treewidth is reasonable.
 - z=0
 - For all value assignments **X_k=k** to the K variables
 - If (F and $X_k = k$) has a solution
 - » z=z+Bucket-elimination(P'| X_k=k)
 - Return Z

UCI Team: IJGP

Vibhav Gogate and Rina Dechter http://graphmod.ics.uci.edu/group/Software

- Solver Type
 - Approximate
- Task: Marginals
- Primary Method.
 - Iterative Join Graph propagation (Dechter-Kask-Mateescu, 2002)
 - A variant of Generalized Belief Propagation
 - Algorithm (Network P)
 - Reduction Step (Input: P, Output: P')
 - Sat based reduction as in VEC
 - For i=1 to treewidth do
 - Run IJGP(i) until convergence
 - Report the marginals from the output of IJGP

Structuring IJGP



a) schematic mini-bucket(i), i=3 b) arc-labeled join-graph decomposition

Run Belief propagation on the arc-labeled join-graph until convergence

UCI Team: SampleSearch

Vibhav Gogate and Rina Dechter

- Solver Type
 - Approximate
- Task: Both Marginals and P(E)
- Primary Method.
 - SampleSearch
 - Importance Sampling whose proposal distribution is computed from the output of IJGP
- Algorithm:
 - Reduction Step (Input: P, Output: P')
 - Sat based reduction as in VEC
 - Run IJGP (i=3)
 - Run SampleSearch with proposal from output of IJGP(i=3)

SampleSearch (Gogate and Dechter, 2007)

- Importance sampling may suffer from the rejection problem
 zero weight samples
- Introduce backtracking search in sampling
 Search until a non-zero weight sample is found
- Samples from the backtrack-free distribution
 - Proposal distribution with all zero weight tuples removed

Evaluating Solvers

Evaluating MPE Solvers

MPE results

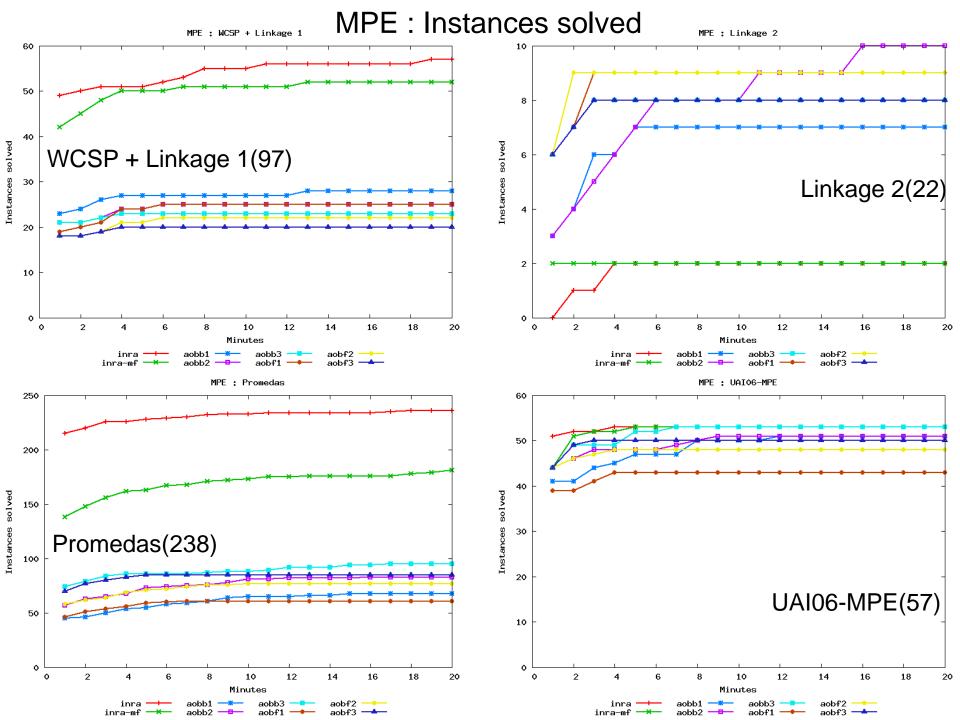
- 9 Solvers:
 - inra* : Anytime, exact
 - aobb*: Anytime, exact
 - aobf* : not anytime, exact
 - *ubc*: anytime, approximate
- Benchmarks specifics:
 - 32 Grids and 35 Relational instances.
 - No Diagnose.
- Measures: cumulative times, number-solved, average error

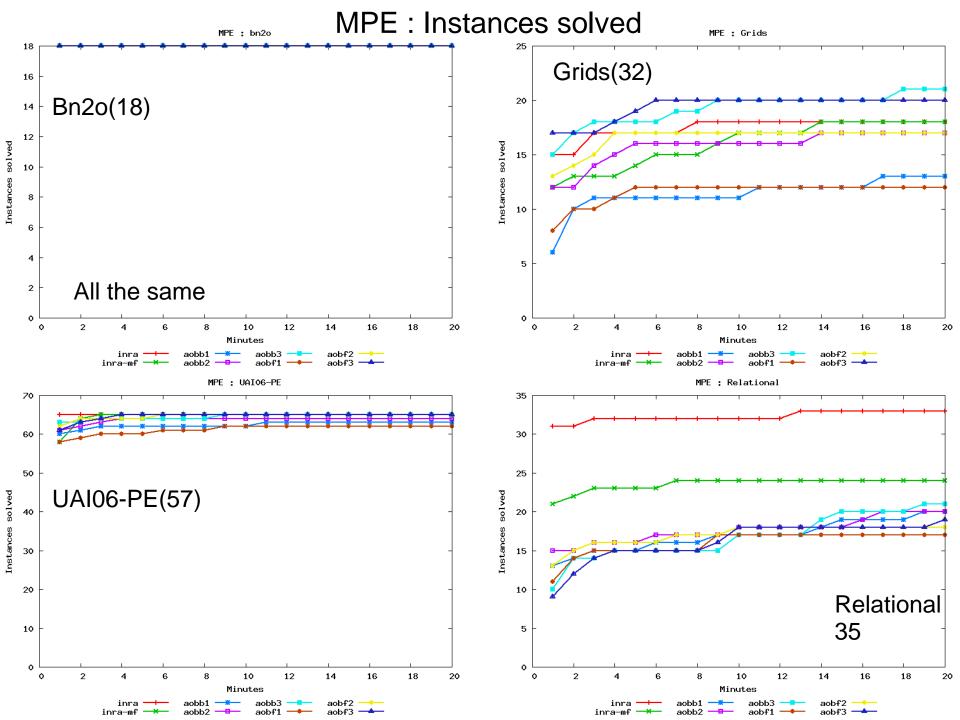
MPE results

- 9 Solvers:
 - inra*: Anytime, exact
 - Branch and Bound style algorithm (Schiex, Jegou, Larossa et al.)
 - Toulbar solver available online
 - aobb*: Anytime, exact
 - Branch and Bound style algorithm (Marinescu and Dechter, 2006)
 - aobf* : not anytime, exact
 - Best first search style algorithm (Marinescu and Dechter, 2006)
 - *ubc*: anytime, approximate
 - Local Search technique
- Benchmarks specifics:
 - 32 Grids and 35 Relational instances.
 - No Diagnose.
- Measures: cumulative times, number-solved, average error

MPE : Instances solved

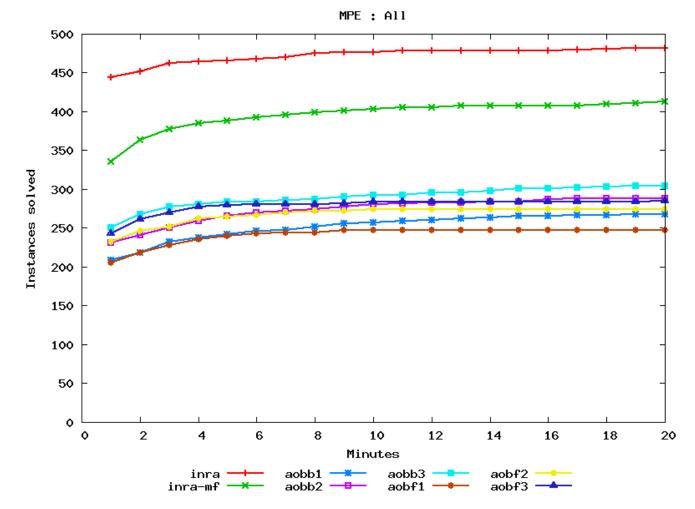
- Plot number of instances solved over time.
 - "Solved" = solver reports solution and terminates with exit status 0.
 - Note: some runs of INRA (~1%) seem to not produce exact results.
- Only for 8 exact solvers.
- Plotted per benchmark class.





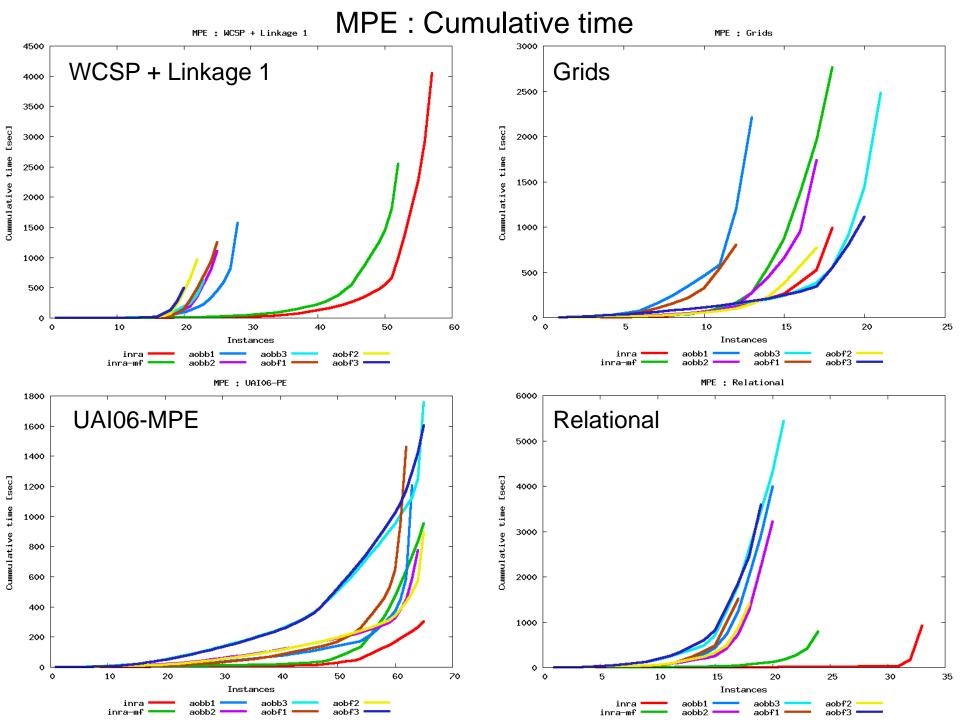
MPE : Instances solved overall

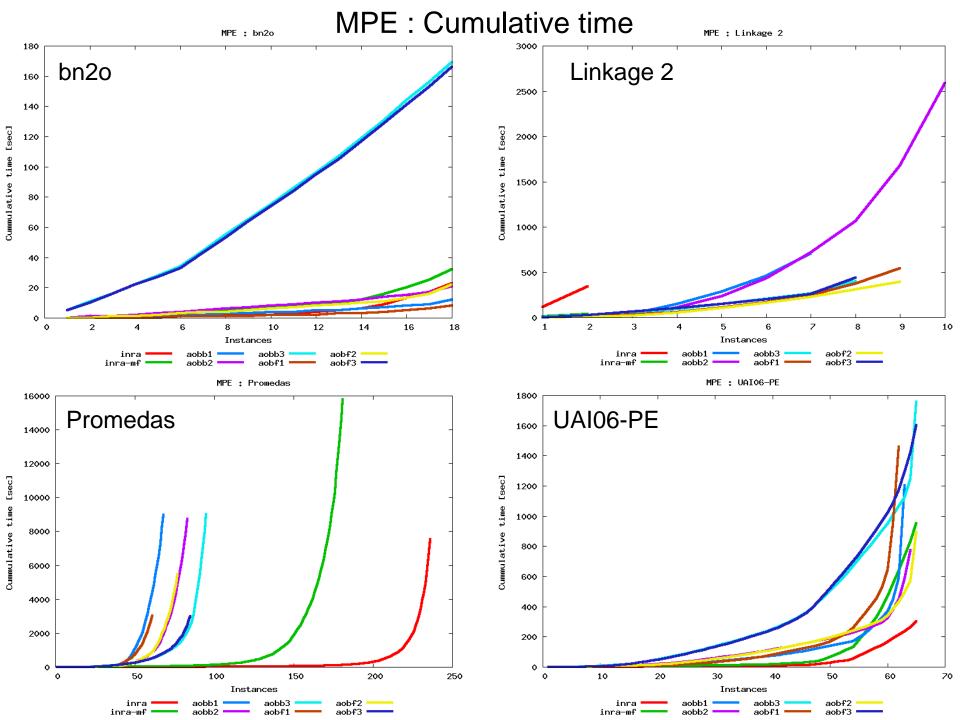
• Note: Not weighed by problem class size, biased to some classes/solvers.



MPE : Cumulative time

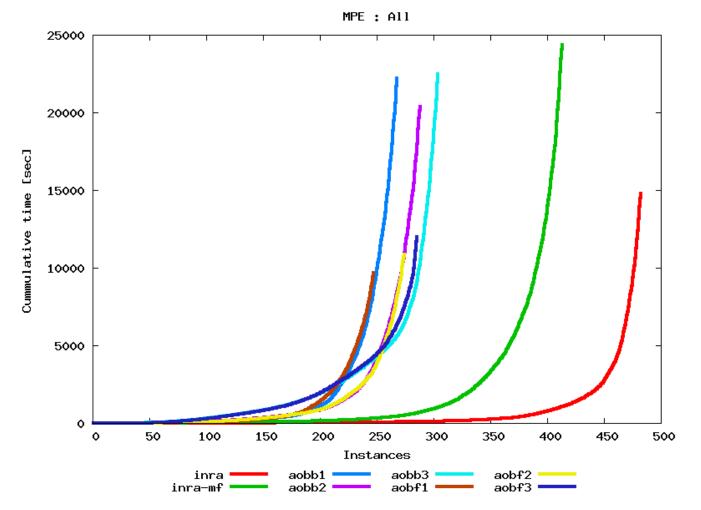
- For each solver:
 - Order solved instances by time.
 - Value at point x : Cumulative time to solve first x instances.
- Interpretation:
 - Further right = more instances solved.
 - Lower = less time needed to solve instances.
- Only for 8 exact solvers.
- Plotted per benchmark class and overall.





MPE : Cumulative time overall

• Note: Not weighed by problem class size, biased to some classes/solvers.



Summary

• #solved

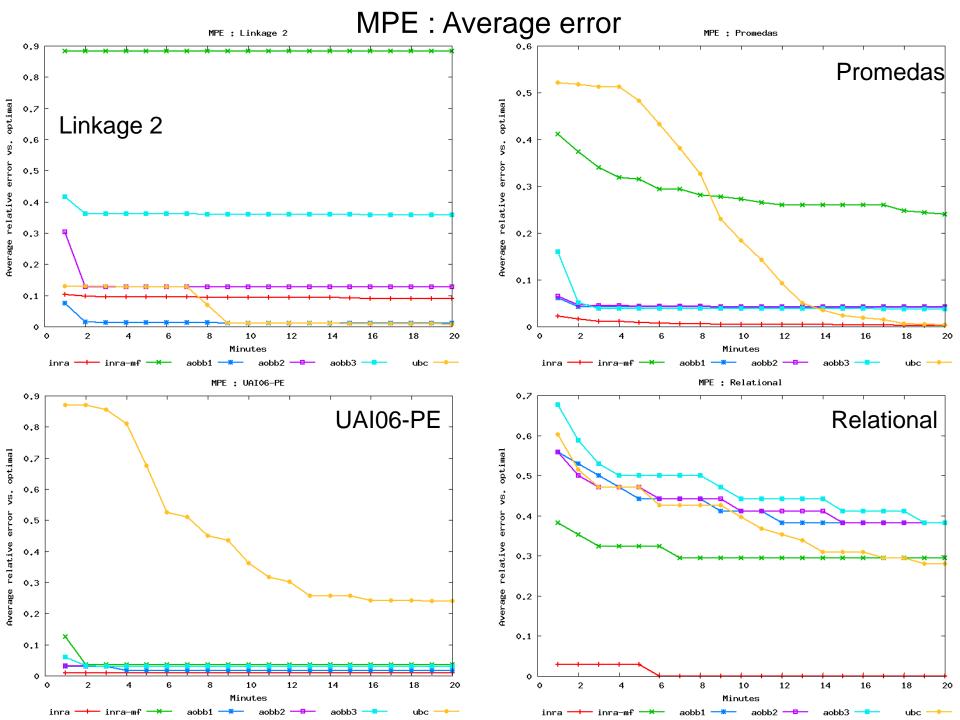
- INRA best on 3: promedas, wcsp, relational
- AOBB3 best on 2: linkage, grids
- On 3: performance comparable

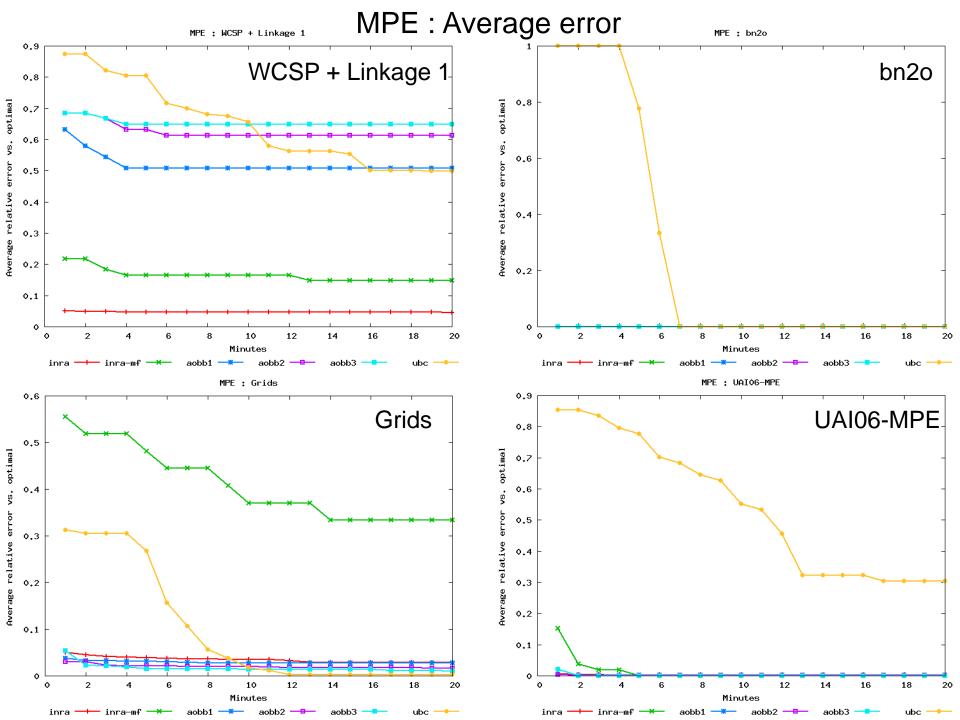
Cumulative time

- INRA best on 5
- AOBB best on 3

MPE : Average error

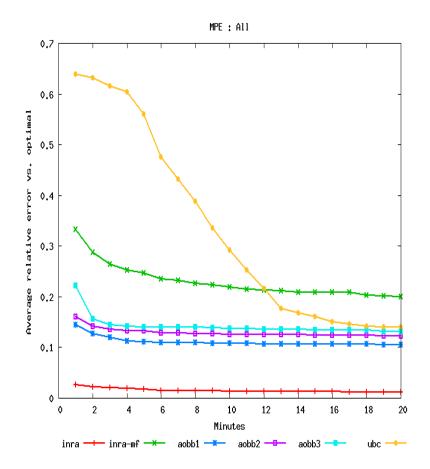
- Only for anytime solvers (not AOBF, with ubc).
- Collect subset of solved instances.
 Get solution *z* from exact solvers.
- For each solver and instance, look at approximate solution at time *t* :
 - No solution present : Error = 1
 - Solution z' present: Error =
 0.5 * (1 10[^] | (log z log z') / log z |)
 - Average over instances.
 - Lower error score is better





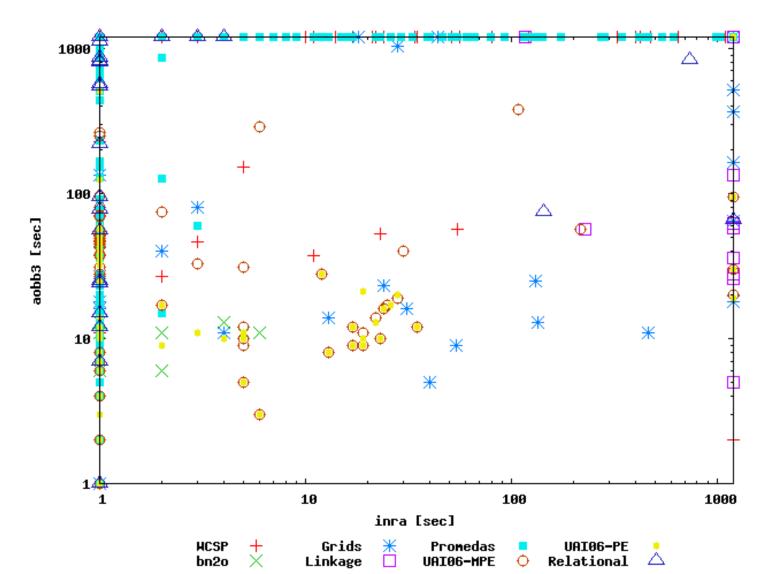
MPE : Average error overall

• Note: Not weighed by problem class size, biased to some classes/solvers.



- INRA better by far on 3
- AOBB1 better by far on 1
- AOBB3 better 1
- **UBC** better on **1**
- Anytime behavior:
 - INRA's change very little with time
 - AOBB changes somewhat with time
 - UBC is truly anytime

Scatter diagrams, exact mpe depicting times for Inra vs AOBB3



Evaluating Exact PE/MAR Solvers

Benchmark Summary (exact)

•	9 sets:		Bys	Mkv bin
	 weighted-CSP 	(97)		•
	 bn2o (diagnosis) 	(18)	•	•
	– hand-built	(100)	•	
	– grids	(320)	•	•
	— linkage	(22)		•
	 Promedas 	(238)		• •
	— UAI-06 (MPE)	(57)	•	
	— UAI-06 (PE)	(78)	•	
	 relational 	(251)	•	•
	- TOTAL	(1181)	(824)	(357) (507)

Exact PE results

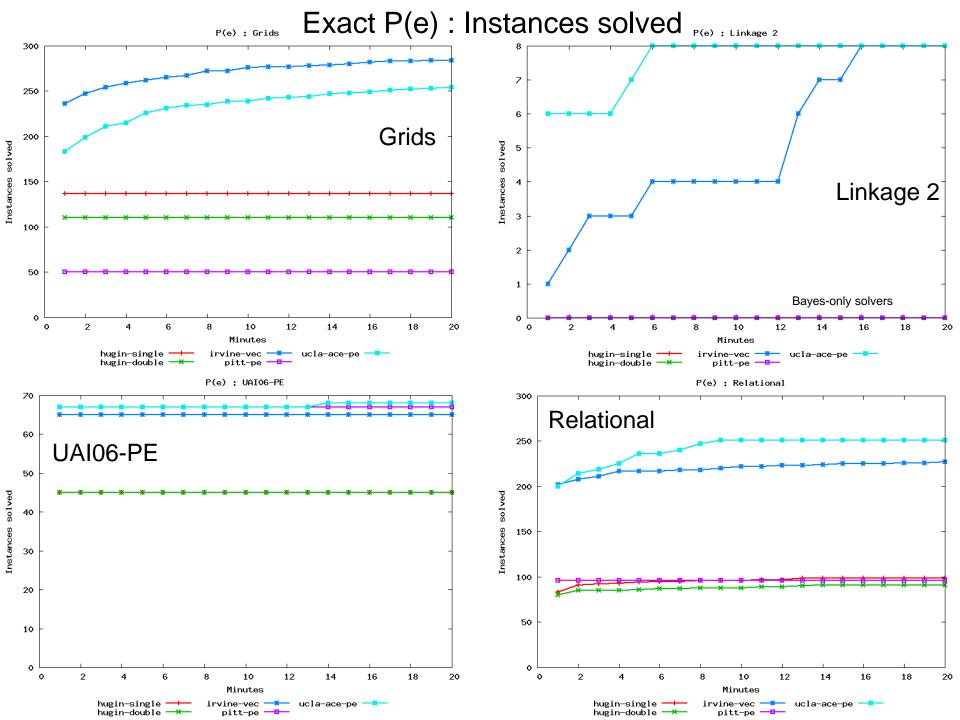
- 5 Solvers:
 - Bayes only:
 - hugin-single, hugin-double, pitt-pe
 - Bayes and Markov:
 - *irvine-vec*, *ucla-ace-pe*

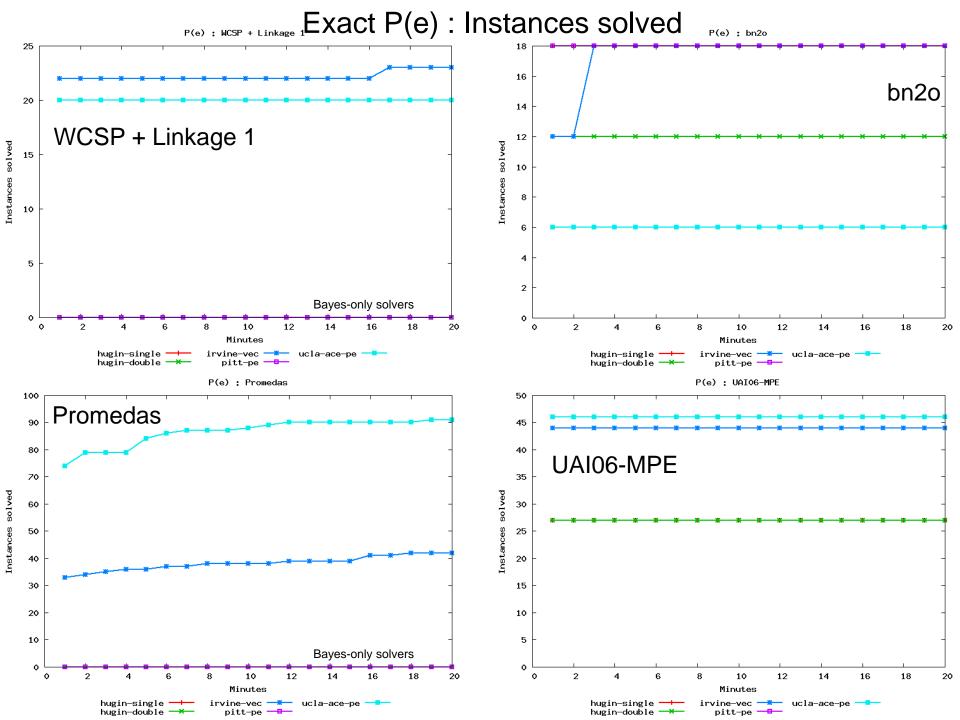
Exact PE results

- 5 Solvers:
- Bayes only:
 - 1. hugin-single,
 - 2. hugin-double
 - Based on Hugin software (hugin.com)
 - 3. pitt-pe
 - Based on smile Genie library
 - University of Pittsburgh (Druzdzel et al.)
 - Relevance based reasoning

Exact PE results

- 1. Irvine-VEC
 - Based on Bucket-elimination + conditioning approach
 - Minisat used internally to remove determinism from the network
- 2. UCLA-ACE
 - Based on C2D compiler
 - SAT based reasoning to remove and infer evidence



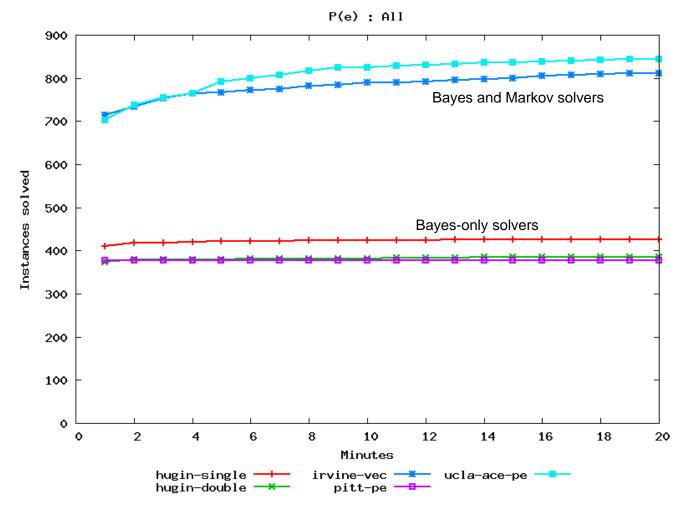


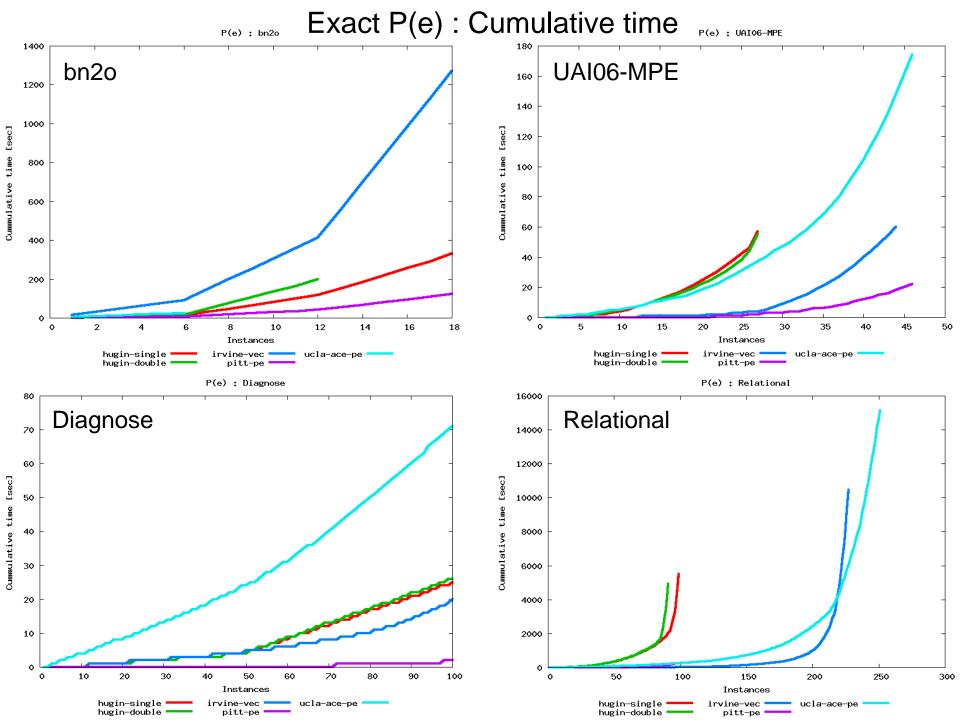
Summary

- Bayes only:
 - ucla-ace-pe solved more on 3 families
 - Irvine-vec solved more on 2 families
 - pitt-pe solved more on 1 family
- Markov only:
 - ucla-ace-pe solved more on 2 families
 - Irvine-vec solved more on 2 family
- All networks:
 - ucla-ace-pe solved more on 5 families
 - Irvine-vec solved more on 4 family

Exact PE : Instances solved overall

• Note: Not weighed by problem class size, biased to some classes/solvers.

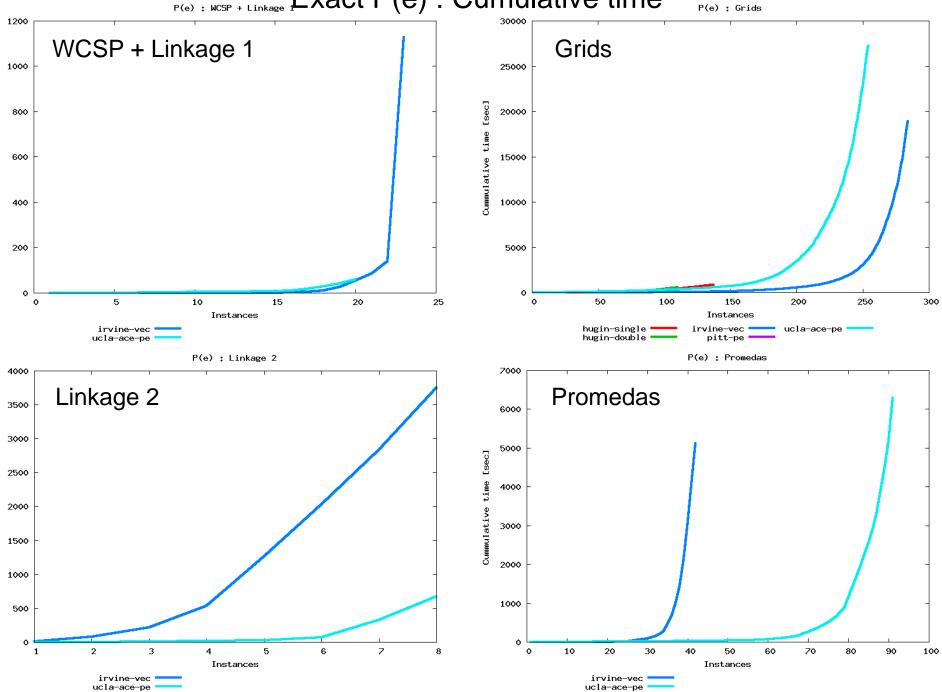




P(e): WCSP + Linkage Exact P(e): Cumulative time

Cummulative time [sec]

Cummulative time [sec]



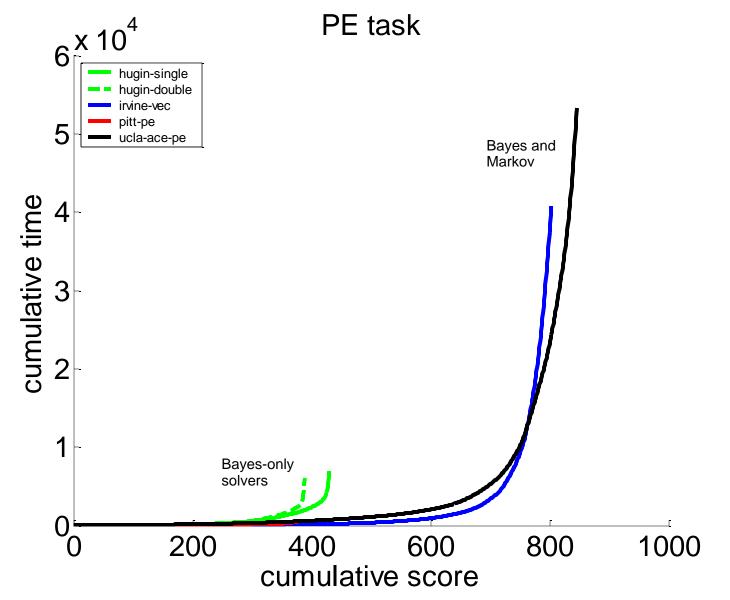
Summary

(some families show no dominance)

- Bayes only:
 - pitt-pe slightly better on 3 families
 - Irvine-vec dominates on 1 family
- Markov only:
 - ucla-ace-pe dominates on 2 families
 - Irvine-vec dominates on 1 family
- All networks:
 - ucla-ace-pe dominates on 2 families
 - Irvine-vec dominates on 2 families

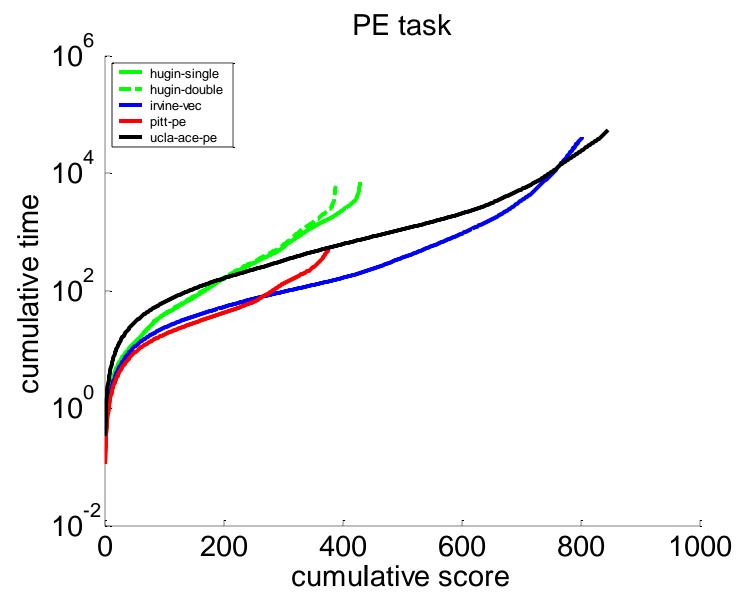
Cumulative time overall

Note: Not weighed by problem class size, biased to some classes/solvers



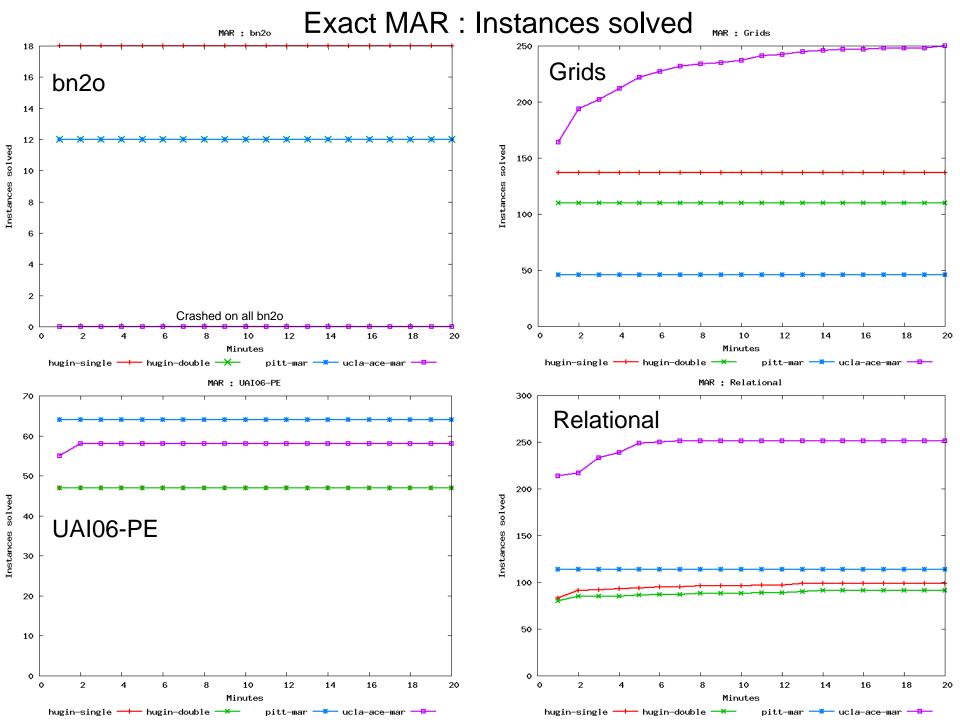
Cumulative time overall

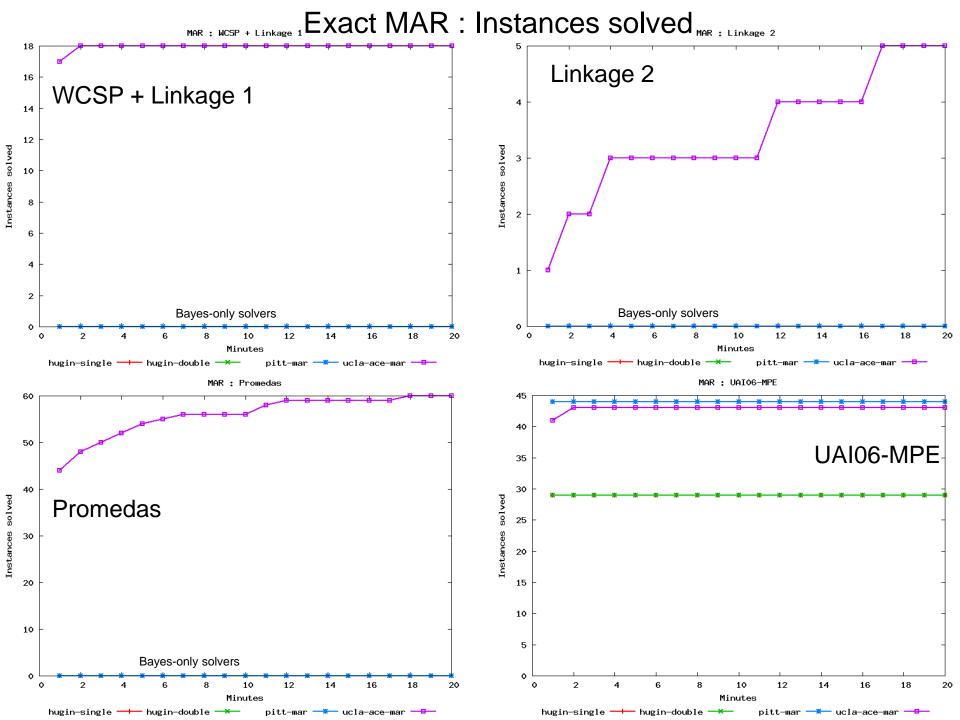
Note: Not weighed by problem class size, biased to some classes/solvers



Exact MAR results

- 4 Solvers:
 - Bayes only:
 - hugin-single, hugin-double, pitt-mar
 - Bayes and Markov:
 - ucla-ace-mar



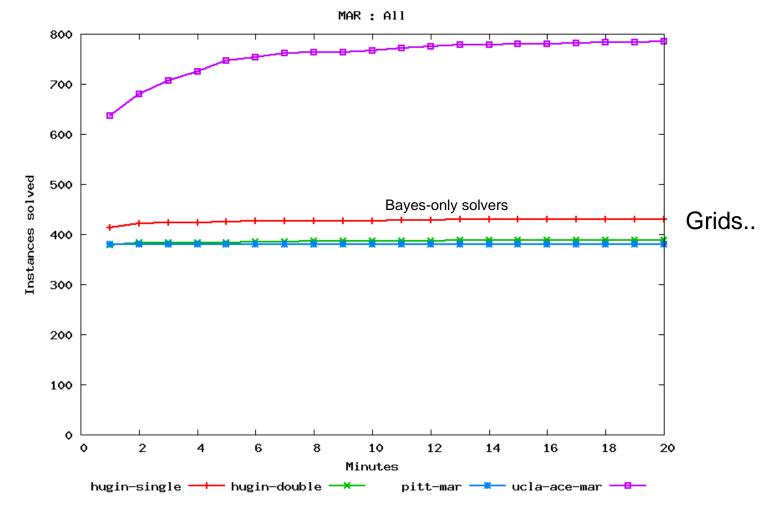


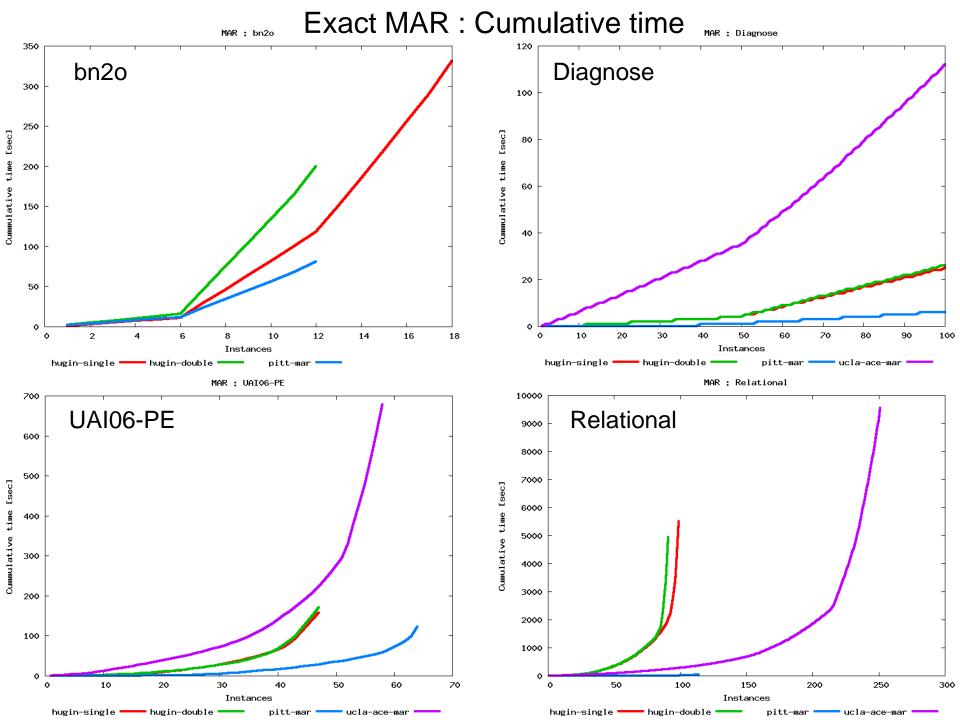
Summary

- Bayes only:
 - pitt-mar solved more on 3 families
 - ucla-ace-mar solved more on 2 families
 - hugin-single solved more on 1 family

MAR : Instances solved overall

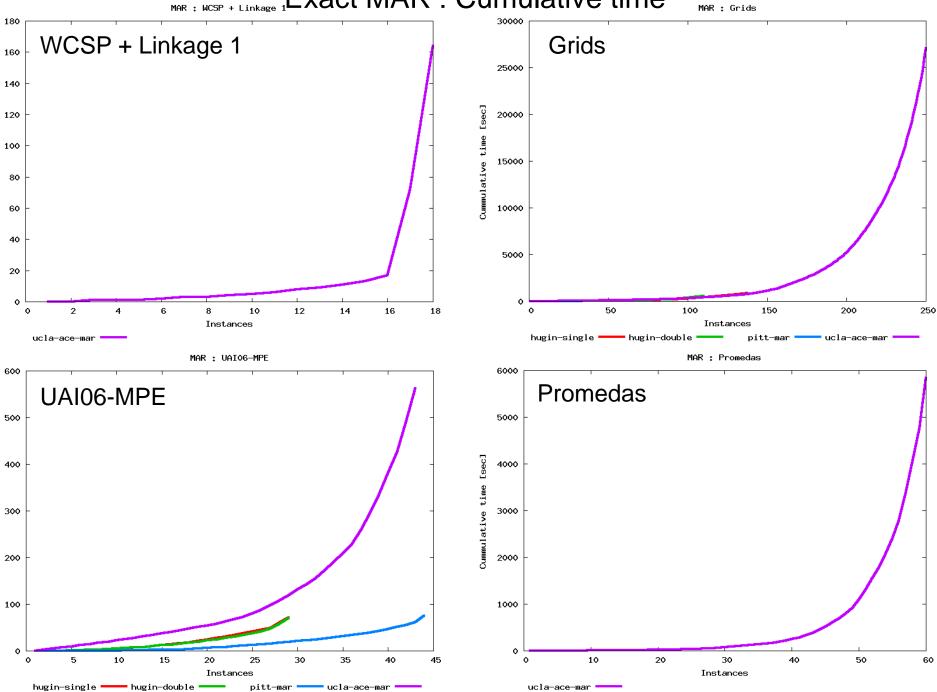
• Note: Not weighed by problem class size, biased to some classes/solvers.





Cummulative time [sec]

Cummulative time [sec]

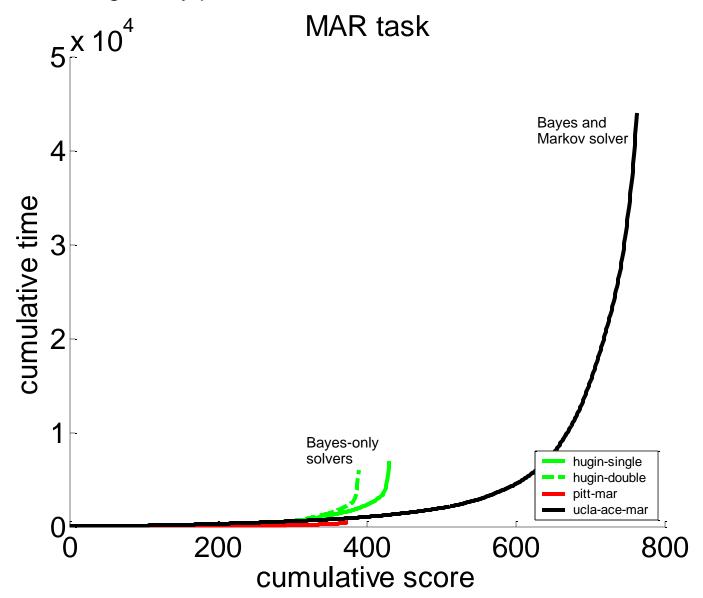


Summary

- Bayes only:
 - pitt-mar dominated on 3 families
 - ucla-ace-mar dominated on 1 family

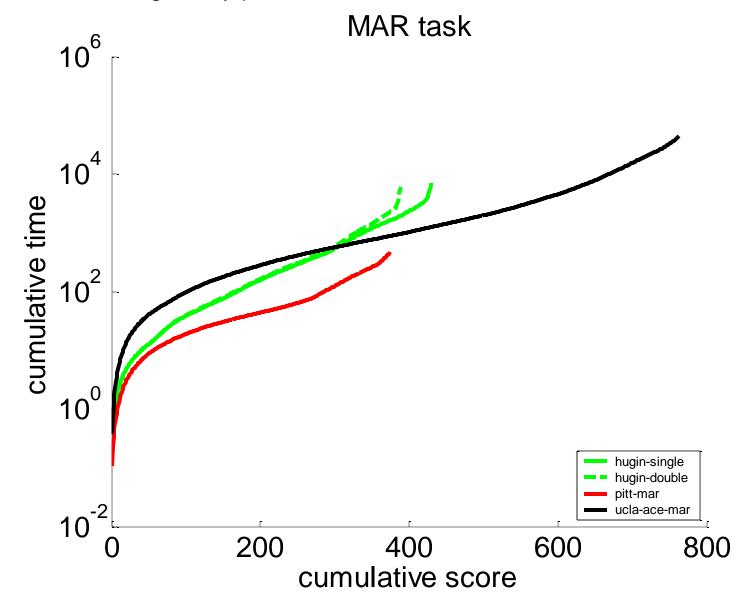
Exact MAR: Cumulative time overall

Note: Not weighed by problem class size, biased to some classes/solvers.



Exact MAR: Cumulative time overall

Note: Not weighed by problem class size, biased to some classes/solvers.



Evaluating Approximate PE Solvers

Benchmark Summary (appr/pe)

- 9 sets:
 - weighted-CSP
 - bn2o (diagnosis)
 - hand-built
 - grids
 - linkage
 - Promedas
 - UAI-06 (MPE)
 - UAI-06 (PE)
 - relational
 - Total

	Bys	Mkv	bin
(97)		•	
(18)	•		•
(0/100)	•		
(32/320)	•		•
(22)		•	
(238)		•	٠
(57)	•		
(78)	٠		
(35/251)	٠		٠
(577)	(220)	(357)	(323)

Approximate PE

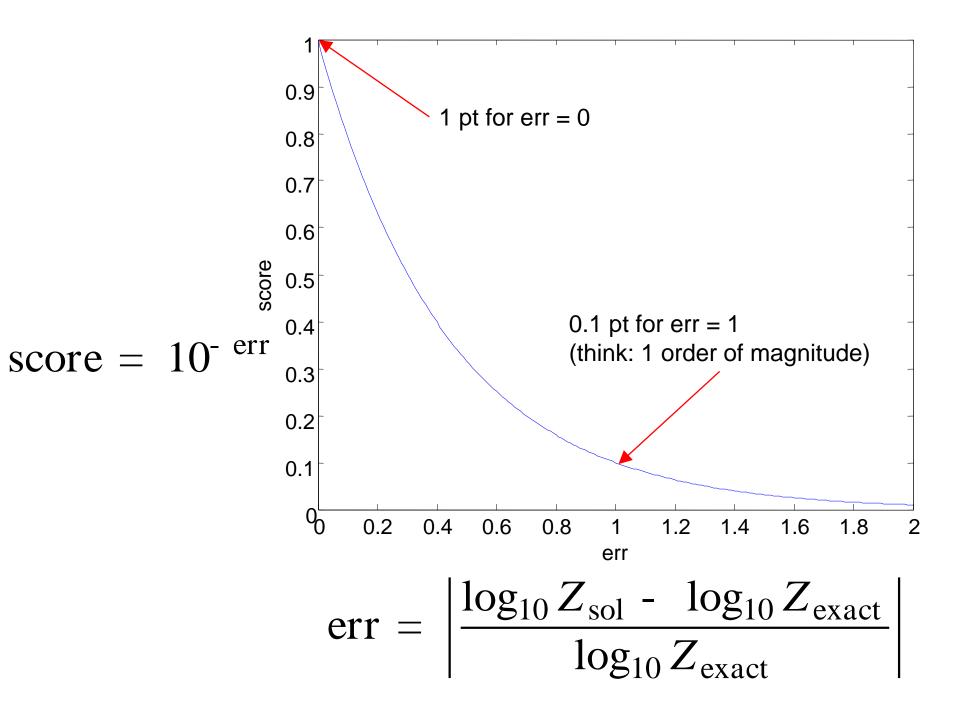
- 4 Solvers:
 - All problems:
 - irvine-samplesearch, irvine-vec, ucla-edbp-pe
 - Binary-variable problems only:
 - upf-pe

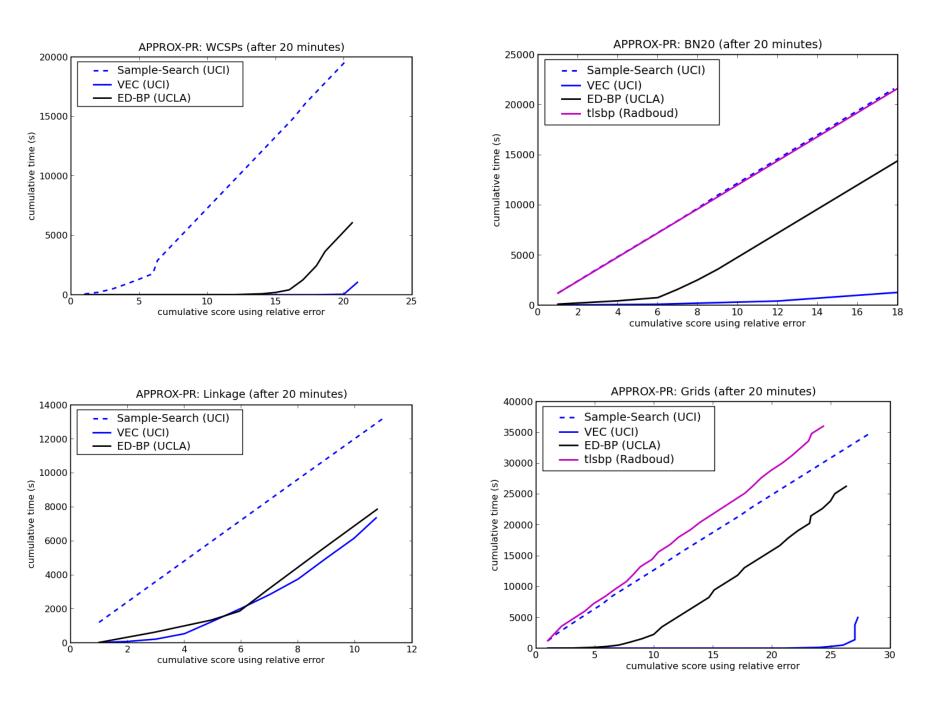
Approximate PE

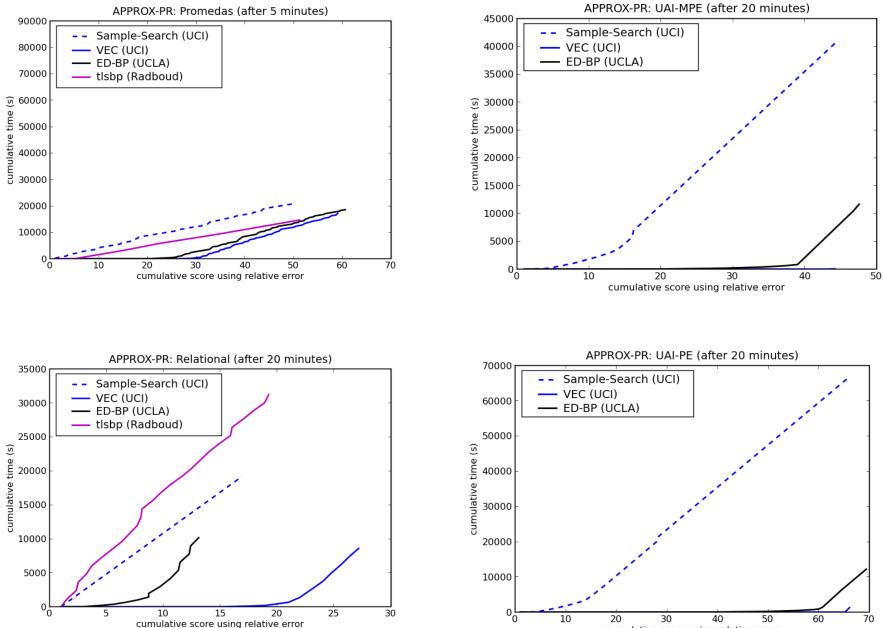
- 4 Solvers:
 - All problems:
 - irvine-samplesearch
 - Special importance sampling technique for problems with zero probabilities
 - irvine-vec,
 - variable elimination+conditioning based solver
 - ucla-edbp-pe
 - Generalized Belief propagation based solver
 - Choi and Darwiche 2007
 - Binary problems only
 - upf-pe
 - Belief propagation style solver
 - Truncated loop series (Gomez et al., 2007)

Approximate PE Score

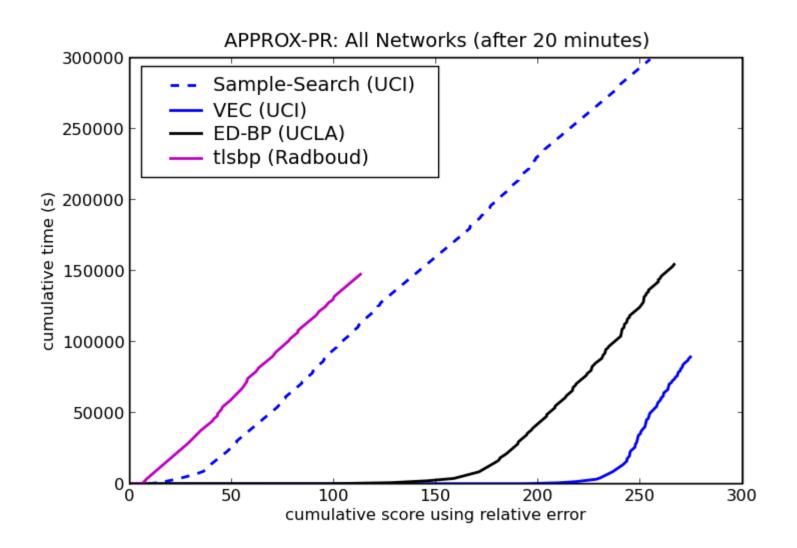
- No solution
 - score = 0
- Otherwise, given the relative error: $\operatorname{err} = \left| \frac{\log Z_{\text{sol}} - \log Z_{\text{exact}}}{\log Z_{\text{exact}}} \right|$
- Compute the score: score = 10^{-err}

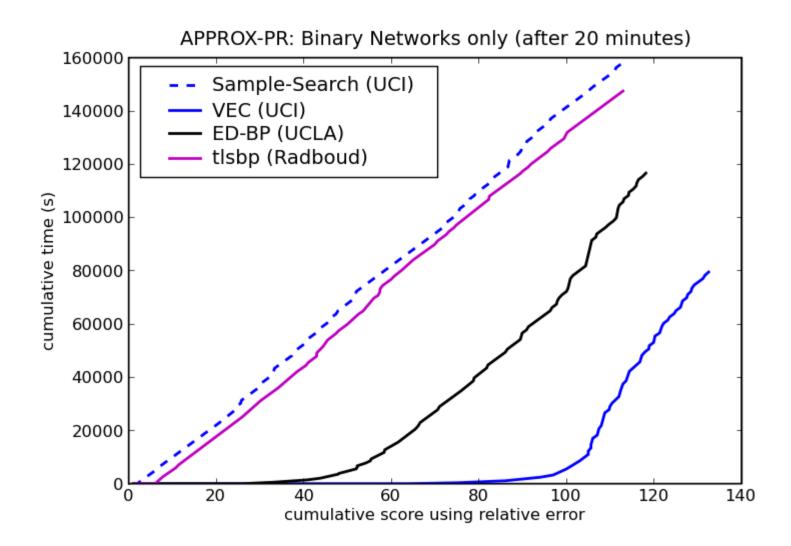






cumulative score using relative error



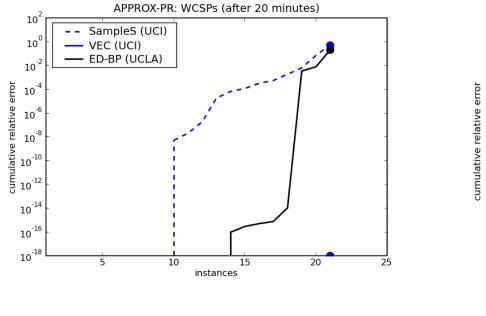


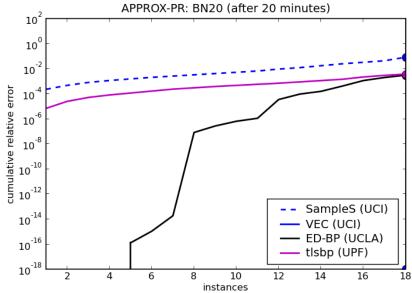
Approximate PE Error plots

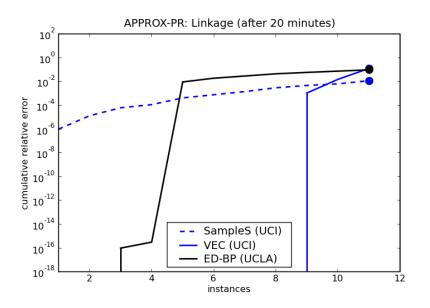
• Relative error:

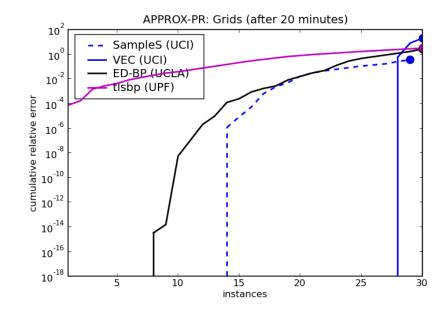
$$err = \left| \frac{\log Z_{sol} - \log Z_{exact}}{\log Z_{exact}} \right|$$

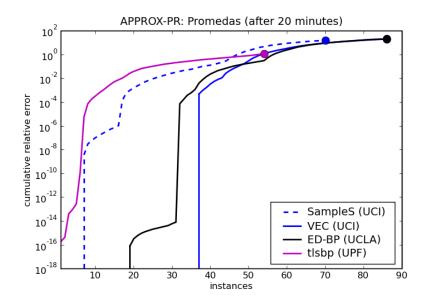
- Sort instances based on err
- Plot cumu error vs instances

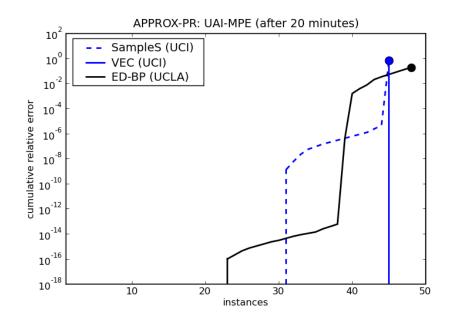


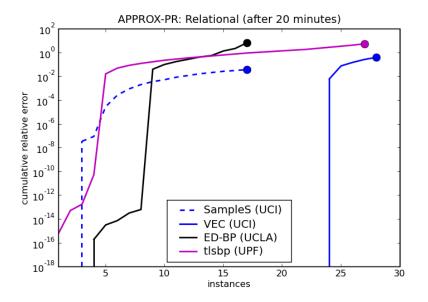


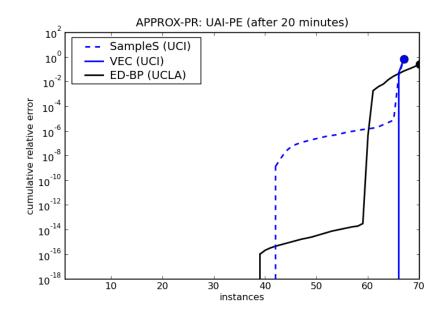


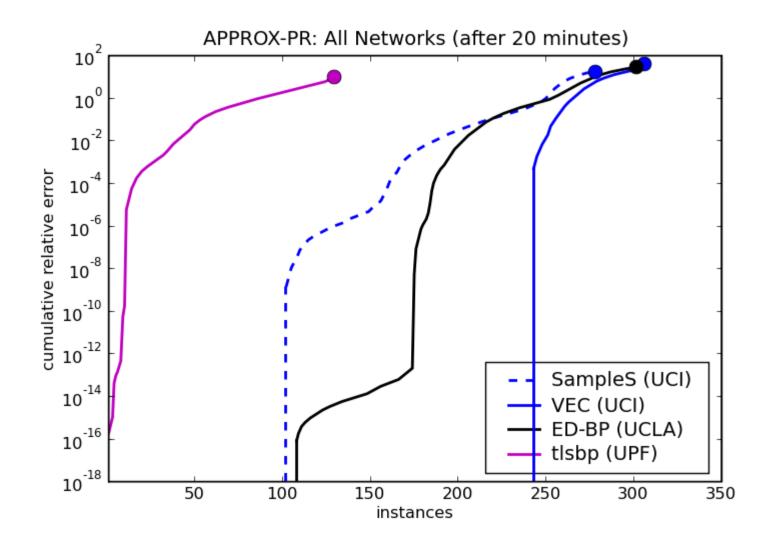


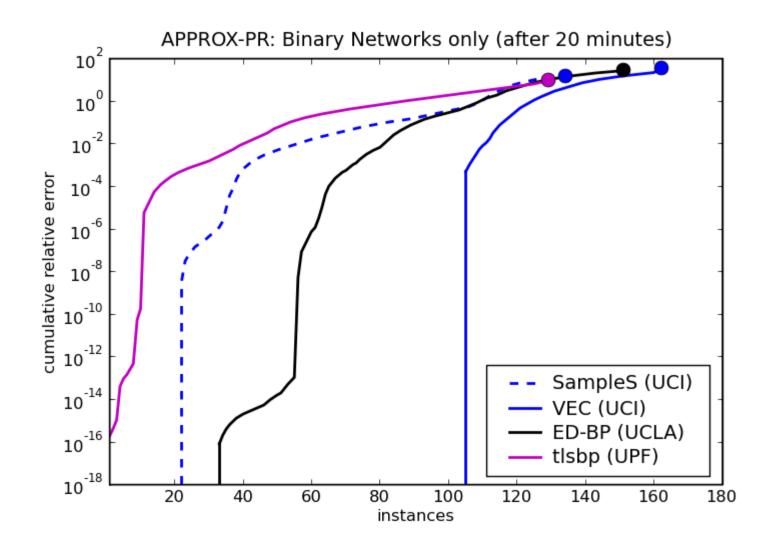


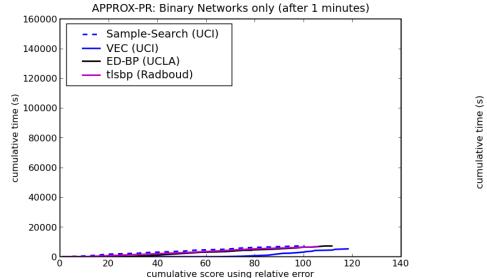


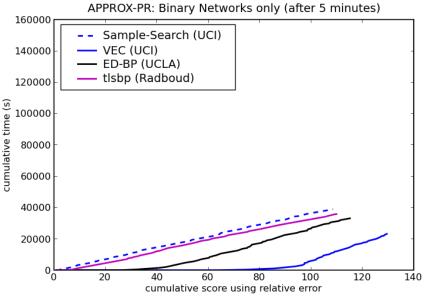


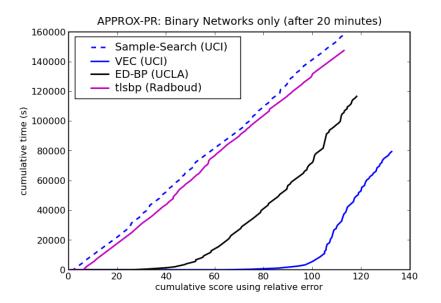


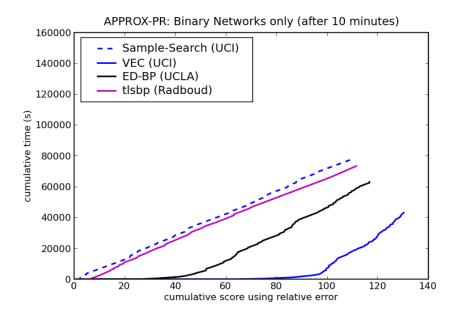












Evaluating Approximate MAR Solvers

Benchmark Summary (mar)

• 9 sets: Mkv bin Bys weighted-CSP (97) bn2o (diagnosis) (18)(0/100) hand-built (32/320)– grids linkage (22)(238)– Promedas - UAI-06 (MPE) (57)- UAI-06 (PE) (78) relational (35/251)(577) (357) (323) (220) - TOTAL

Approximate MAR

- 5 Solvers:
 - All problems:
 - irvine-SampleSearch (Gogate and Dechter, 2007)
 - importance sampling based solver with emphasis on zero probabilities
 - irvine-ijgp (Dechter et al., 2002)
 - generalize belief propagation based solver
 - ucla-edbp (Choi and Darwiche, 2007)
 - generalized belief propagation based solver
 - Binary-variable problems only:
 - upf-mar (Gomez et al, 2007)
 - Bayesian networks only
 - pitt-epis (Changhe and Druzdzel, 2004)
 - adaptive importance sampling based solver

Approx MAR Score (KL error)

• No solution

- score = 0

• Otherwise, given the average error:

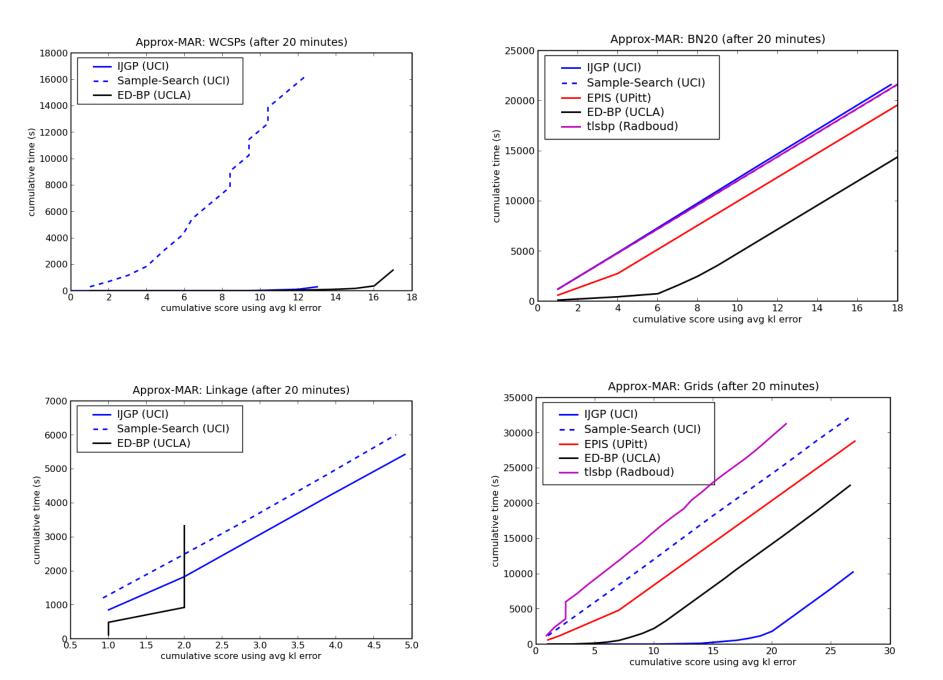
$$err = \frac{1}{N} Avg_{X} [KL(\Pr_{exact}(X), \Pr_{sol}(X))]$$

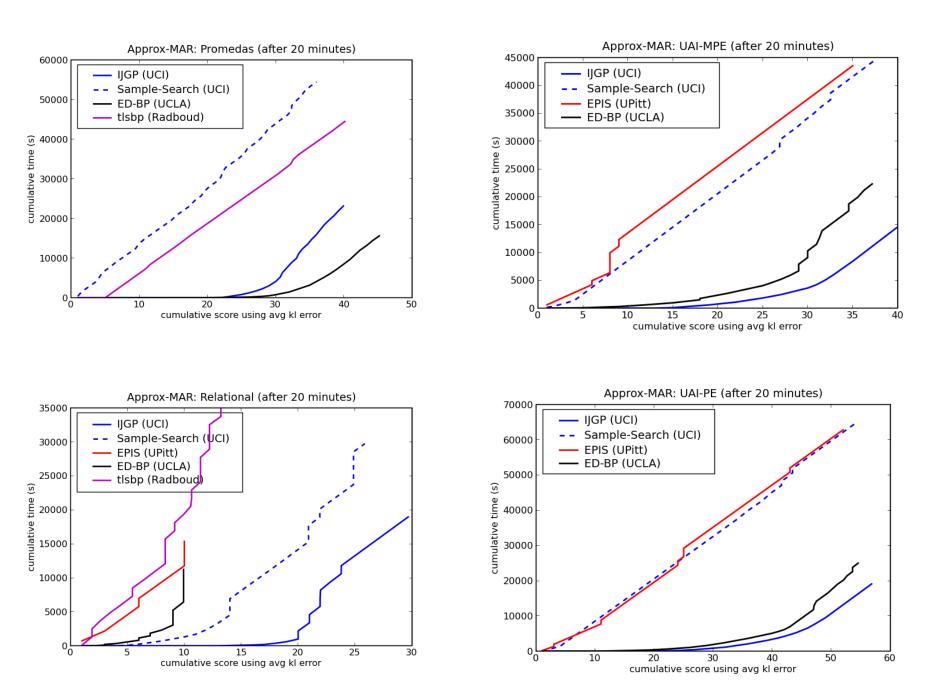
• Compute the score:

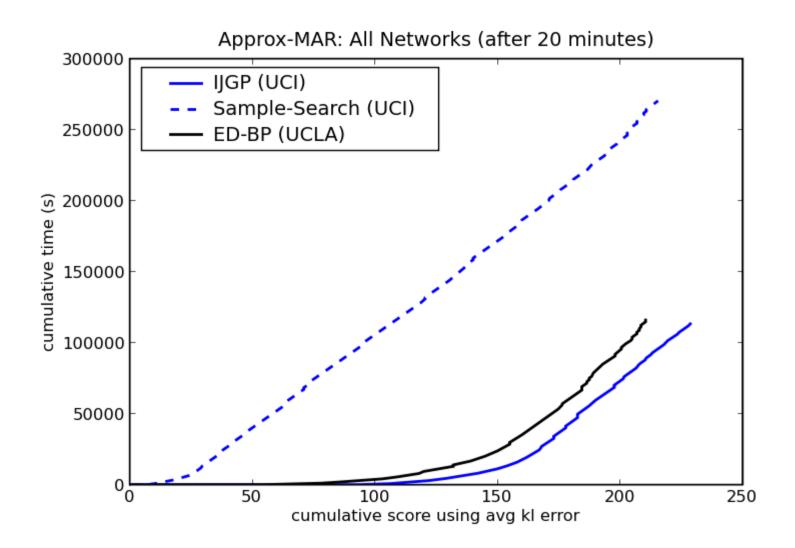
score = $10^{-\text{err}}$

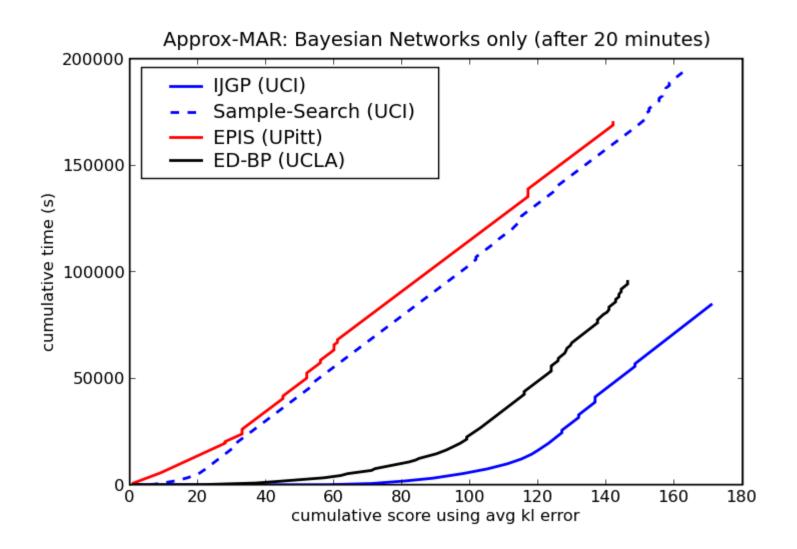
1 point for exact

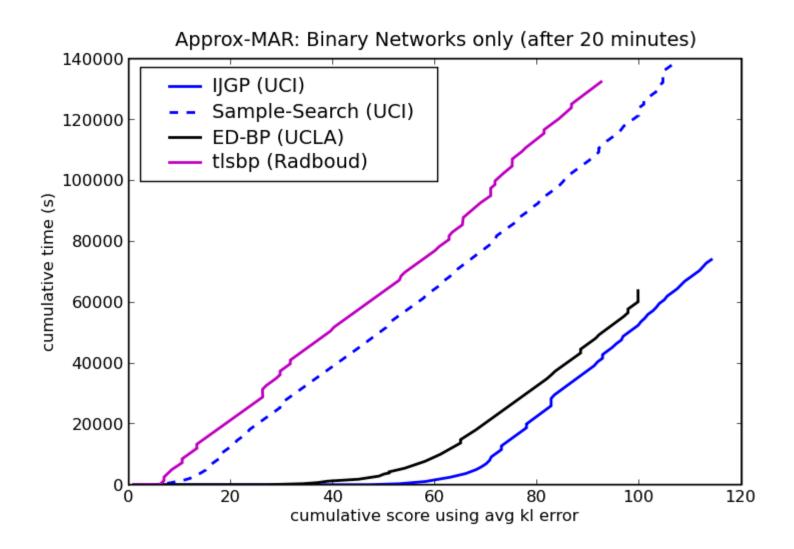
over minutes: 1, 2, 5, 10, 20

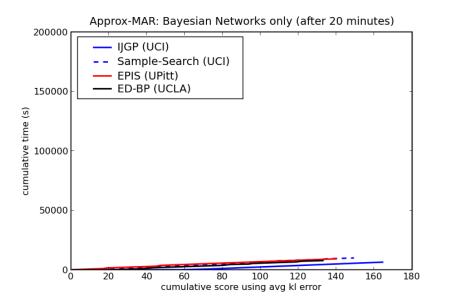


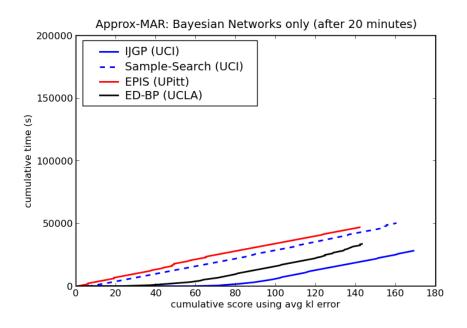


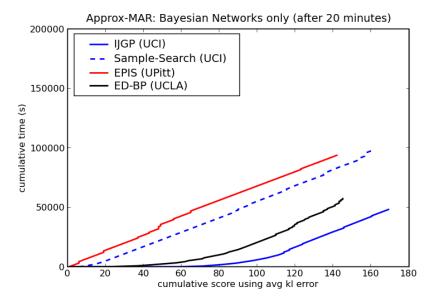


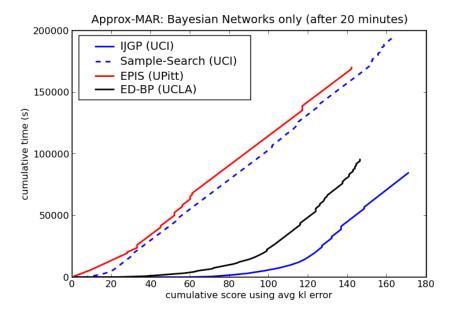


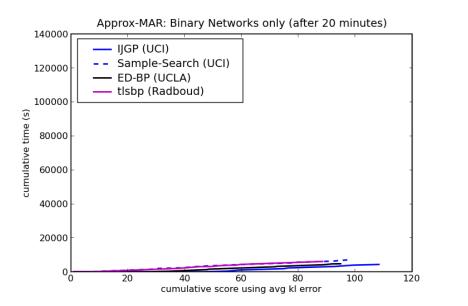


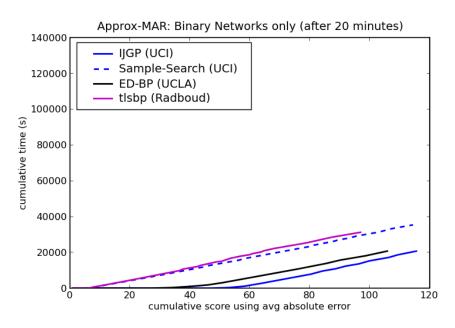


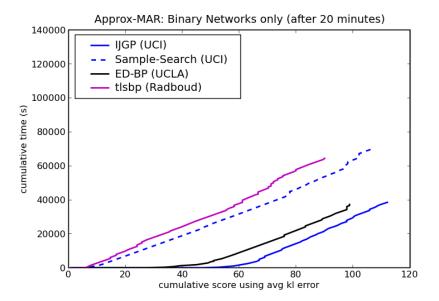


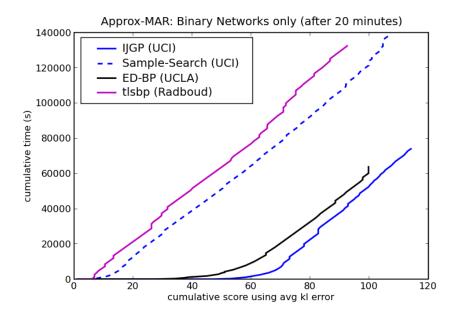


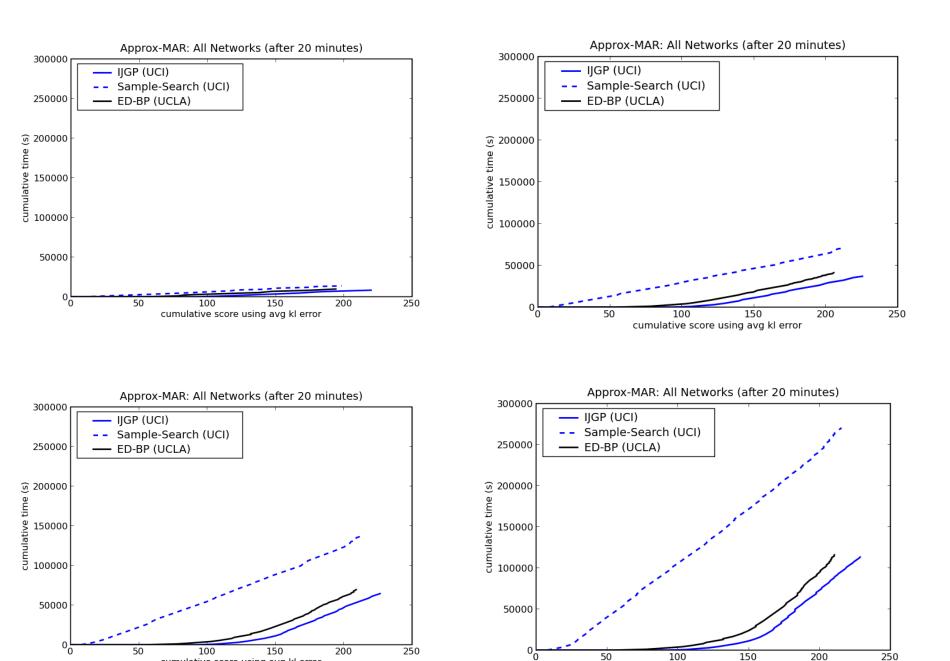












cumulative score using avg kl error

cumulative score using avg kl error

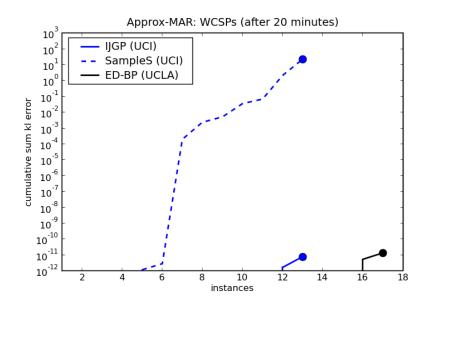
Approx MAR Error plots (KL error)

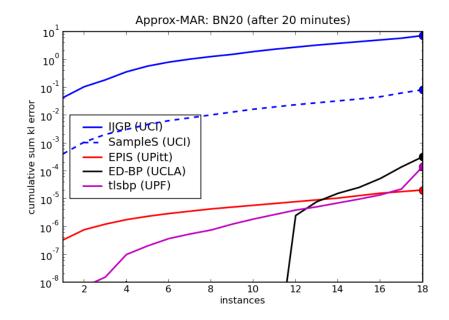
• For each instance compute Average error:

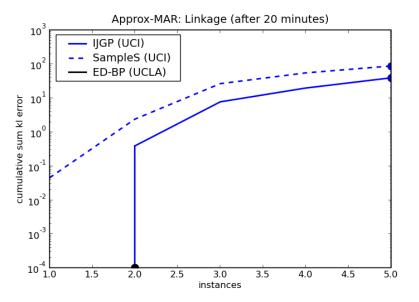
$$err = \frac{1}{N} Avg_{X} [KL(\Pr_{exact}(X), \Pr_{sol}(X))]$$

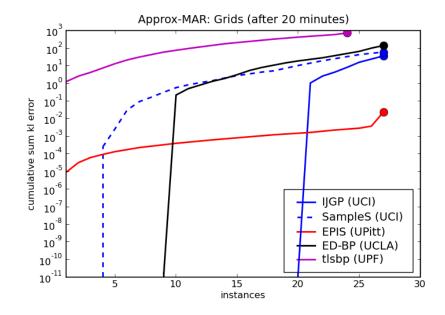
- Sort instances based on err
- Plot cumulative err vs instances

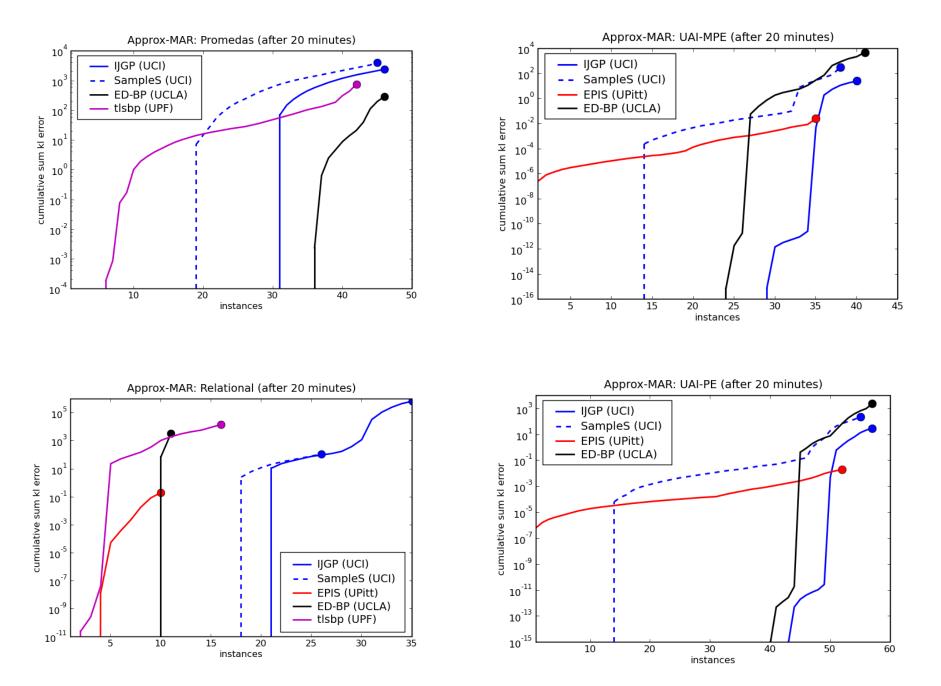
over minutes: 1, 2, 5, 10, 20

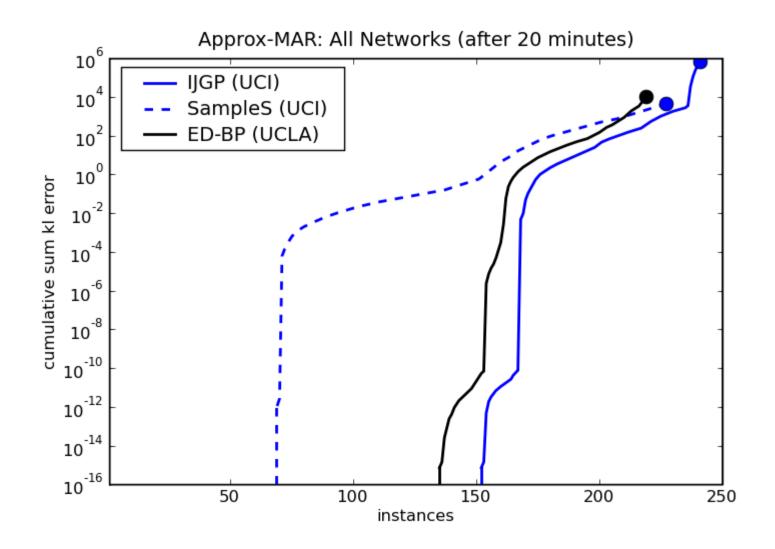


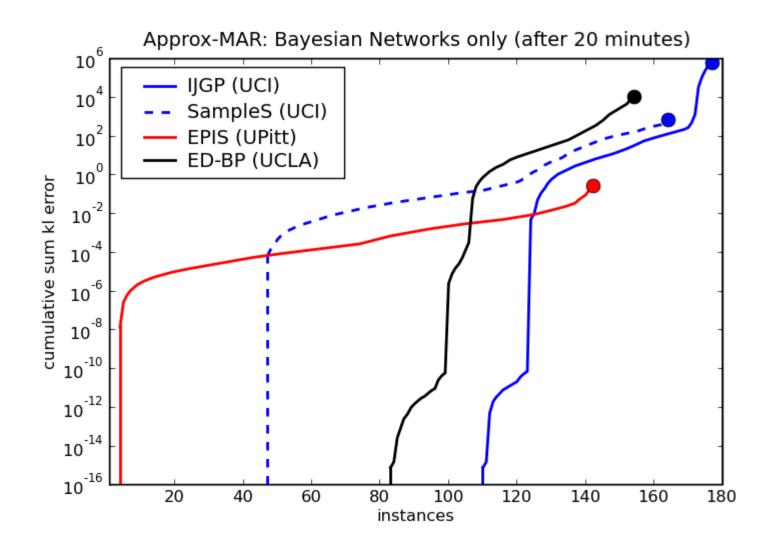


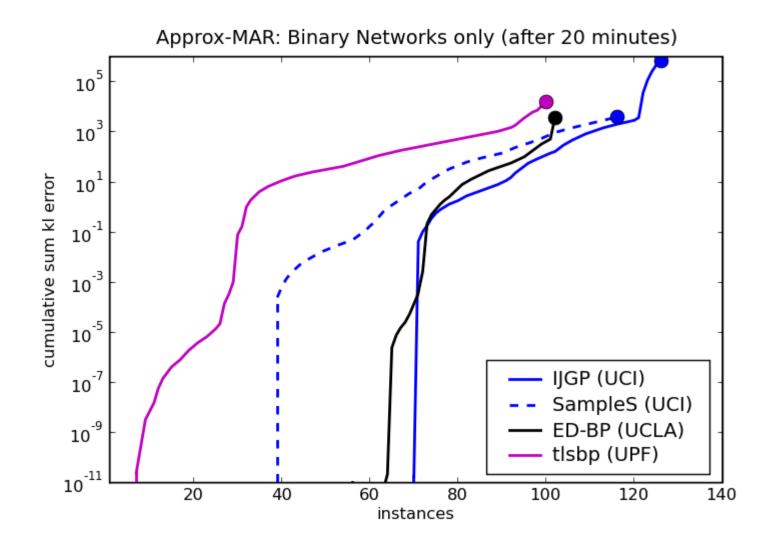












What we plotted for Approx mar

- Cumulative Score vs Cumulative Time
- Cumulative Error vs Instances
 - KL, Hellinger, MSE, Absolute and Relative (5)
 - Sum and Average (2)
 - After 1, 2, 5, 10 and 20 minutes (5)
 - For each benchmark and each overall type (11)
 - Total plots (5 * 2*5*11 = 550 plots)

Concluding Remarks

- Need more difficult networks (with answers)
- Markov networks harder than Bayesian networks
- More time for evaluation
- Further investigations into the performance measures of approximate solvers and how they can be combined
- Computational clusters
- Benchmark normalization
- Split exact PE/MAR into two tracks?
- Post-workshop report