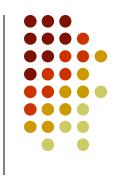
Lifted MAP Inference for Markov Logic

- Somdeb Sarkhel
- Deepak Venugopal
 - Happy Mittal
 - Parag Singla
 - Vibhav Gogate

Outline



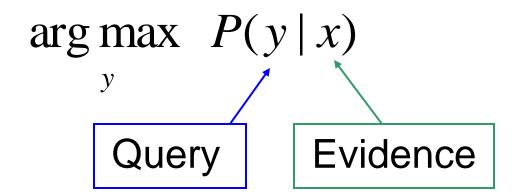
- Introduction
- Lifted MAP Inference for Markov Logic Networks
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate AISTATS'14
- An Integer Polynomial Programming Based Framework for Lifted MAP Inference
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate NIPS'14
- New Rules for Domain Independent Lifted MAP Inference
 - H. Mittal, P. Goyal, V. Gogate, P. Singla NIPS'14

Outline

- Introduction
- Lifted MAP Inference for Markov Logic Networks
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate AISTATS'14
- An Integer Polynomial Programming Based Framework for Lifted MAP Inference
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate NIPS'14
- New Rules for Domain Independent Lifted MAP Inference
 - H. Mittal, P. Goyal, V. Gogate, P. Singla NIPS'14

MAP Inference

 Problem: Find most likely state of world given evidence



MAP Inference

 Problem: Find most likely state of world given evidence

$$\underset{y}{\text{arg max}} \frac{1}{Z_x} \exp \left(\sum_{i} w_i n_i(x, y) \right)$$

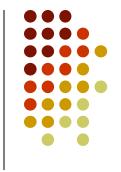
MAP Inference

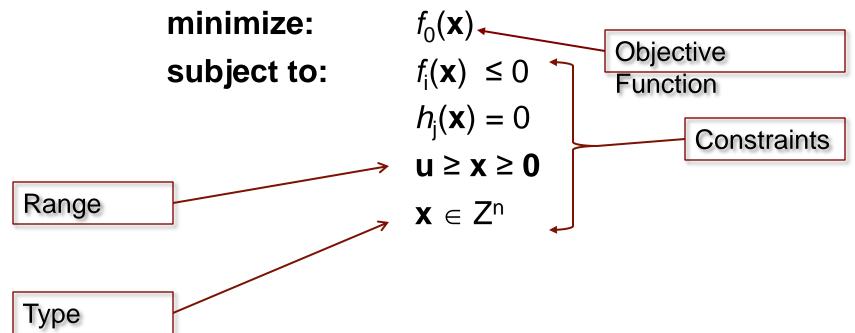
 Problem: Find most likely state of world given evidence

$$\underset{y}{\text{arg max}} \sum_{i} w_{i} n_{i}(x, y)$$

- Same as maximizing satisfied weight clause
- (Or minimizing unsatisfied weight clause)
- Alchemy solve using weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997])

Optimization Problems





- Constraints are linear
- Variable type is integer

Integer Linear Programming

minimize: c^Tx

subject to: $Ax \le b$

 $u \ge x \ge 0$

 $x \in Z^n$

- Objective function is linear
- NP-Complete problem
- MAP can be solved using ILP solver (Used in ROCKIT [Noessner et al., 2013])

Outline

- Introduction
- Lifted MAP Inference for Markov Logic Networks
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate AISTATS'14
- An Integer Polynomial Programming Based Framework for Lifted MAP Inference
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate NIPS'14
- New Rules for Domain Independent Lifted MAP Inference
 - H. Mittal, P. Goyal, V. Gogate, P. Singla NIPS'14

- Lifted Algorithms ...
- Group indistinguishable atoms together
 - 'Super atom'
- Given assignment to these groups compute the weight (probability) of the assignment

- For a subclass of MLNs "non-shared MLN"
 - All possible assignments can be grouped by number of true groundings of its predicates
- Non-shared MLN: no logical variable is shared between the atoms in a formula.
 - Example: R(x) v S(y)

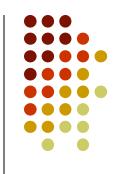
	R(A)	R(B)	S(A)	S(B)	Weight	Groups	
	0	0	0	0	0	(0,0)	
	0	0	0	1	$2w_1 + w_3$	(0,1)	Croup (0, 1)
U	0	0	1	0	$2w_1+w_3$	(0,1)	Group (0, 1)
	0	0	1	1	$4w_1 + 2w_3$	(0,2)	
	0	1	0	0	$2w_1 + w_2$	(1,0)	
	0	1	0	1	$3w_1 + w_2 + w_3$	(1,1)	
	0	1	1	0	$3w_1 + w_2 + w_3$	(1,1)	
	0	1	1	1	$4w_1 + w_2 + 2w_3$	(1,2)	
	1	0	0	0	$2w_1 + w_2$	(1,0)	
	1	0	0	1	$3w_1 + w_2 + w_3$	(1,1)	
	1	0	1	0	$3w_1 + w_2 + w_3$	(1,1)	
	1	0	1	1	$4w_1 + 2w_3 + w_2$	(1,2)	
	1	1	0	0	$4w_1 + 2w_2$	(2,0)	
	1	1	0	1	$4w_1 + 2w_2 + w_3$	(2,1)	Group (2, 1)
U	1	1	1	0	$4w_1 + 2w_2 + w_3$	(2,1)	G10up (2, 1)
	1	1	1	1	$4w_1 + 2w_2 + 2w_3$	(2,2)	

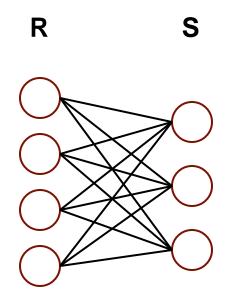
Figure 1: Weights of all assignments to ground atoms and (lifted) groups for the non-shared MLN: $[R(x) \vee S(y), w_1]$; $[R(x), w_2]$; and $[S(y), w_3]$ with domains given by $\Delta_x = \Delta_y = \{A, B\}$.

- All possible assignments of a non-shared MLN can be grouped by number of true groundings of its predicates
- Counting Assignment: ground assignments can be grouped as (R_i, a_i)

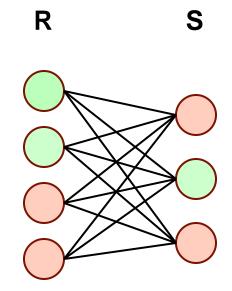
Predicate # True Groundings

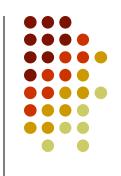
- Simple Lifted Algorithm: Iterate over all counting assignment of all predicates to find the one that has maximum weight
- Ground search space: O(2nd)
- Lifted search space: O(dⁿ)
- Domain Lifted (dependent on domain)
- Can we do better?
- Yes, in fact we can do much better!

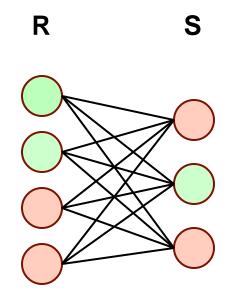




- Consider the MLN: R(x) v S(y), w₁
- $\Delta x = 4$, $\Delta y = 3$
- Let's compute weight for assignment [(R, 2), (S, 1)]







- No of unsatisfied clauses = 2 × 2
- Let's generalize for assignment ω = [(R, r), (S, s)]
- $N(f, \omega) = \Delta R. \Delta S (\Delta R r)(\Delta S s)$

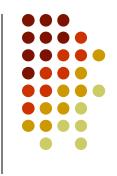
minimize: $\Sigma_i \Pi_j X_j$

subject to: $u \ge x \ge 0$

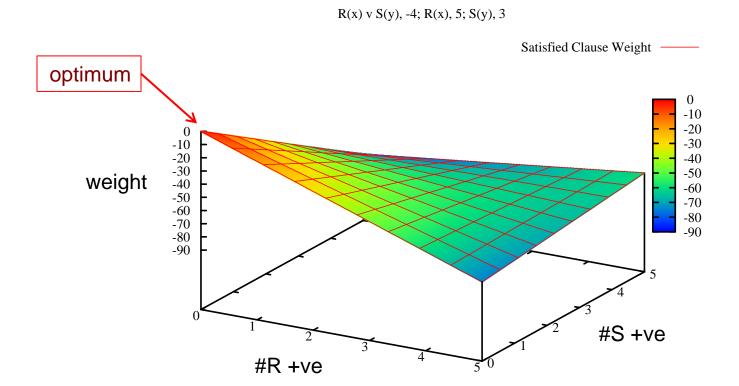
 $\boldsymbol{x} \in Z^n$

No Constraints!

- Objective function is multilinear (i.e.- linear in each variable)
 - e.g. $f(x_1, x_2, x_3) = x_1 + x_2x_3 2x_1x_3 + x_2 x_1x_2x_3$
- Optimization problem has no constraint (except range and type)!



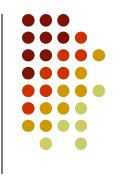
Non-shared MLN w/o self-joins

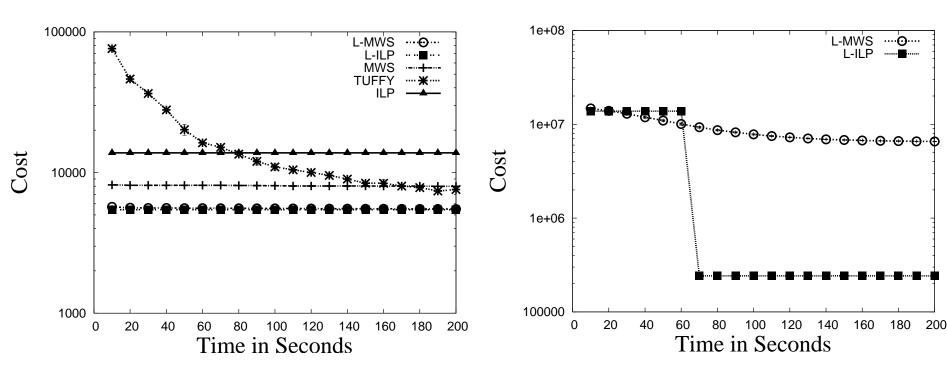


Satisfied clause weight as a surface plot of counting assignment

- Non-shared MLN w/o self-joins
 - Optimum values lie on extreme points.
 - Uniform Assignment,
 - New Lifted Algorithm: Iterate over uniform assignment of all predicates to find the one that has maximum weight
 - Can be reduced to weighted SAT over predicates
 - Search Space: O(2ⁿ)

Experiments





Citation Information Extraction MLN

- Contribution
 - Inference is domain independent and hence can scale for huge domains
 - No need to develop new solvers (use existing weighted SAT solver like WalkSAT or ILP based)
 - Inference time is guaranteed to be no worse than ground inference (no overhead)!

Outline

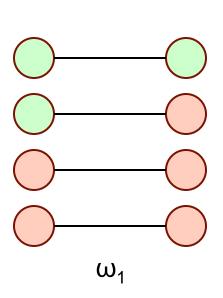
- Introduction
- Lifted MAP Inference for Markov Logic Networks
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate AISTATS'14
- An Integer Polynomial Programming Based Framework for Lifted MAP Inference
 - S. Sarkhel, D. Venugopal, P. Singla, V. Gogate NIPS'14
- New Rules for Domain Independent Lifted MAP Inference
 - H. Mittal, P. Goyal, V. Gogate, P. Singla NIPS'14

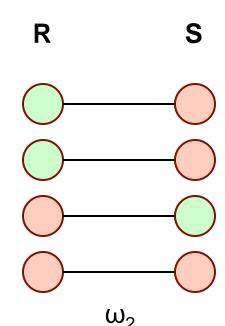
- Limitations of Lifted MAP [AISTATS'14]
 - Only applicable for formulas that have no shared terms.
 - Do not use many existing research on lifted inference (like the 'decomposer rule')

R	S
<u> </u>	
<u></u>	$\overline{}$
<u></u>	$\overline{}$
$\widetilde{\bigcirc}$	<u> </u>

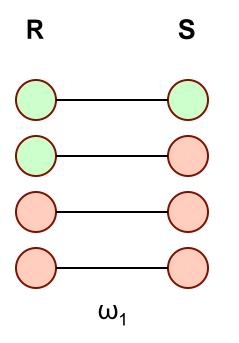
- Consider the MLN: R(x) v S(x), w₁
- $\Delta x = 4$
- Can we compute the weight for assignment [(R, 2), (S, 1)]

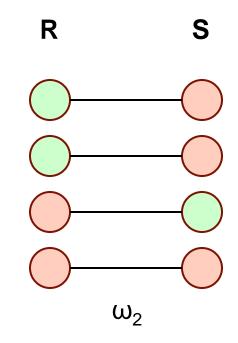
R S



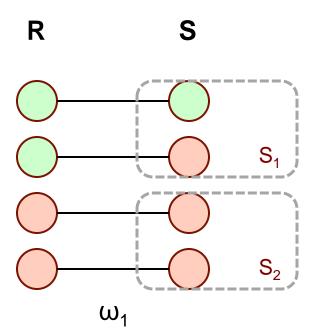


- $N(f, \omega_1) = N(f, \omega_2)$?
- No!

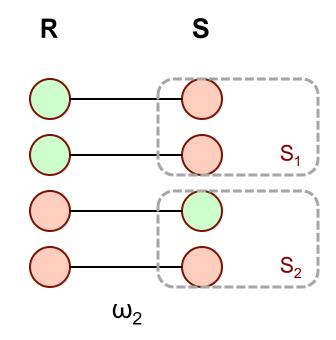




- Solution = Shattering
- (S, s) is not sufficient. We need more info
- Which of the (S, s) joins with (R, r)



$$[(R, 2), (S_1, 1), (S_2, 0)]$$



$$[(R, 2), (S_1, 0), (S_2, 1)]$$

- Probabilistic theorem proving [1]
 - Advanced lifted inference technique
 - Extended for MAP Inference
- The weight of an assignment is calculated as:

$$w(\mathbf{A}, i) = \sum_{k=1}^{2} \sum_{f_j \in F(\mathbf{A}_k)} w_j \prod_{y \in V(f_j)} D(i_{\mathbf{R}}(y))$$

Algorithm 1 PTP-MAP(MLN M)

if M is empty return 0 Simplify(M)

if M has disjoint MLNs M_1, \ldots, M_k then return $\sum_{i=1}^k \text{PTP-MAP}(M_i)$

if M has a decomposer \mathbf{d} such that $D(i \in \mathbf{d}) > 1$ then return PTP-MAP $(M|\mathbf{d})$

if M has an isolated atom R such that $D(i_R) > 1$ then return PTP-MAP $(M|\{1_R\})$

if M has a singleton atom A then return $\max_{i=0}^{D(1_{\mathbb{A}})}$ PTP-MAP $(M|(\mathbb{A},i))+w(\mathbb{A},i)$

Heuristically select an argument i_R

return PTP-MAP $(M|G(i_{\mathtt{R}}))$

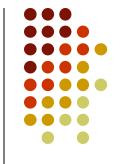
minimize: $f_0(\mathbf{x})$

subject to: $Ax \le b$

 $u \ge x \ge 0$

 $x \in Z^n$

- Objective function is polynomial in x
 - e.g. $f(x_1, x_2, x_3) = x_1^2 + x_2 x_3 x_1 x_3^2 + x_2 + 2x_1 x_2 x_3$



- PTP-MAP performs an exhaustive search over all possible lifted assignments and can be slow
- To improve is encode as an IPP problem
- Algorithm 2 runs PTP-MAP schematically and forms the IPP
- Each variable corresponds to counting assignment

Algorithm 2 SMLN-2-IPP(SMLN S)

```
if S is empty return (0, \emptyset, \emptyset)
Simplify(S)
if S has disjoint SMLNs then
   for disjoint SMLNs S_i...S_k in S
      \langle f_i, G_i, X_i \rangle = \text{SMLN-2-IPP}(S_i)
   return \langle \sum_{i=1}^k f_i, \cup_{i=1}^k G_i, \cup_{i=1}^k X_i \rangle
if S has a decomposer d then
   return SMLN-2-IPP(S|\mathbf{d})
if S has a isolated singleton R then
   return SMLN-2-IPP(S|\{i_R\})
if S has a singleton atom A then
   Introduce an IPP variable 'i'
   Form a constraint g as '(0 \le i \le D(1_A))'
   \langle f, G, X \rangle = \text{SMLN-2-IPP}(S|(\mathbf{A}, i))
   return \langle f + w(A, i), G \cup \{g\}, X \cup \{i\} \rangle
Heuristically select an argument i_R
return SMLN-2-IPP(S|G(i_R))
```

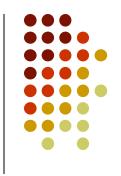

minimize: $f_0(\mathbf{x})$

subject to: $Ax \le b$

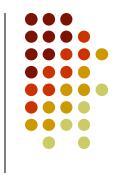
 $u \ge x \ge 0$

 $\boldsymbol{x} \in Z^n$

- Constraints are linear
- Very general problem
- Not many off-the-shelf software present
- Difficult to solve!

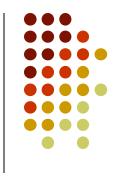


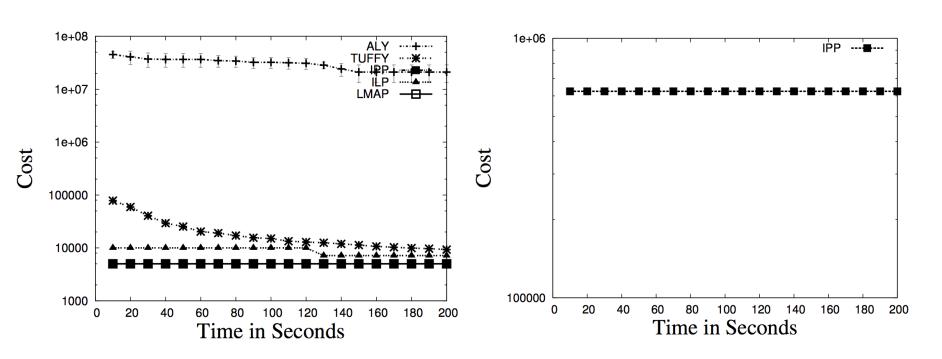
- Solving the IPP problem:
 - Solved by converting to Integer Linear Program
 - The classic method outlined in [2]
 - Convert IPP to 0-1 Polynomial Programming Problem
 - Replace each variable by binary sum expression
 - Simplify
 - Linearize it by adding additional variables
 - ILP can be solved using any ILP solver



- Solving the IPP problem:
 - Example
 - $f(x_1, x_2) = x_1 + x_2 x_1x_2$ $[0 \le x_1, x_2 \le 3]$
 - $x_1 = d_0^{(1)} + 2d_1^{(1)}, \quad x_2 = d_0^{(2)} + 2d_1^{(2)}$
 - $f(d_0^{(1)}, d_1^{(1)}, d_0^{(2)}, d_1^{(2)}) = d_0^{(1)} + 2d_1^{(1)} + d_0^{(2)} + 2d_1^{(2)}$ - $(d_0^{(1)} + 2d_1^{(1)}) (d_0^{(2)} + 2d_1^{(2)})$
 - Replace d₀⁽¹⁾.d₀⁽²⁾ by another variable d₀₀ ...
 - Add constraints $d_0^{(1)} + d_0^{(2)} d_{00} \le 1$ Ensures $d_{00} = d_0^{(1)} \cdot d_0^{(2)} + 2d_{00} \le 0$

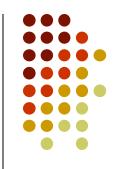
Experiments





Citation Information Extraction MLN

- Contribution
 - Inference time (search space) is no worse than our AISTATS'14 approach
 - Applicable to any 'normal' MLN
 - Provides a framework to plug-in any newly discovered lifting rule



Questions?

