Lecture 9

GLMs for Binary Data
Statistics 211 - Statistical Methods II

Presented February 20, 2018
GLMs for binary outcomes

Consider the case of a binary outcome variable Y which takes on the values 0 or 1

- Heart disease (yes/no)
- Voting result (Democrat/Republican)
- Faculty promotion (yes/no)

In this case, the random variable Y follows a Bernoulli distribution with mean μ and variance $\mu(1 - \mu)$

\[
E[Y] = \Pr[Y = 1] = \mu \\
\text{Var}[Y] = \mu(1 - \mu)
\]
GLMs for binary outcomes

- Goal: Model the probability of a success as a function of some explanatory variable X (only assume one covariate for now)

- Thus we will consider a model of the form:

$$g(\mu) = \beta_0 + \beta_1 X$$
GLMs for binary outcomes

Specification of components of the GLM

1. Systematic component (Done)
2. Random component (Done)
3. Link function (Need to decide)
‘Common’ link functions for binary data

Identity link function

- Linear (identity) link function
 - Identity link so that
 \[\mu = \beta_0 + \beta_1 X \]
 - Interpretation: \(\beta_1 \) is the difference in the response probability comparing two populations differing by 1-unit in \(X \)
 - Modeling the risk difference (RD)
 - Potential Problem: Model assumes the outcome is unbounded even though we are modeling a probability (potential sacrifice of model fit over interpretability)
Log link function

- **Log link function**

 - Log link so that

 \[\log(\mu) = \beta_0 + \beta_1 X \]

 - **Interpretation**: \(e^{\beta_1} \) is the relative difference in the response probability comparing two populations differing by 1-unit in \(X \)

 - Modeling the *risk ratio* (RR)

- **Potential Problem**: Model assumes the outcome is unbounded even though we are modeling a log-probability with support between \(-\infty\) and 0 (potential sacrifice of model fit over interpretability)
‘Common’ link functions for binary data

Logit link function

- Logit link function
 - Logit link so that
 \[
 \text{logit}(\mu) = \log\left(\frac{\mu}{1 - \mu}\right) = \beta_0 + \beta_1 X
 \]
 - This is the simple logistic regression model
 - Interpretation: \(e^{\beta_1}\) is the relative difference in the odds of ‘success’ comparing two populations differing by 1-unit in \(X\)
 - Modeling the odds ratio (OR)
 - Nice property: The log-odds has support between \(-\infty\) and \(\infty\)
‘Common’ link functions for binary data

Logit link function

- Probability response curve as a function of X for the logit model
 - Under the simple logistic model, $\mu = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$
 - Note: The function $f(x) = e^x/(1 + e^x)$ is called the expit

- $\beta_1 > 0$ implies that the probability of a ‘success’ increases with X
- $\beta_1 < 0$ implies that the probability of a ‘success’ decreases with X
‘Common’ link functions for binary data

Logit link function

▶ Example: \(\text{logit}(\mu) = \log \left(\frac{\mu}{1-\mu} \right) = 1 + 0.2X \)
‘Common’ link functions for binary data

Logit link function

Example: \(\text{logit}(\mu) = \log \left(\frac{\mu}{1-\mu} \right) = 1 - 0.2X \)
‘Common’ link functions for binary data

Probit link function

Probit link function

Recall that the cumulative distribution function (CDF) of a random variable X is given by

$$F(x) = \Pr[X \leq x]$$

The S-shaped probability response curve ($\beta_1 > 0$) for the logistic model corresponds to the CDF for the logistic distribution.

This motivates the use of another class of link functions by taking $\mu(x) = F(x)$ for some CDF.
‘Common’ link functions for binary data

Probit link function

- The most popular choice of F is that corresponding to the standard normal distribution

- Denote the CDF corresponding to the standard normal distribution as $\Phi(\cdot)$ so that

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{\frac{1}{2}x^2} dx$$
‘Common’ link functions for binary data

Probit link function

Then we can consider a model of the mean given by

$$\mu = \Phi(\beta_0 + \beta_1 X)$$

or equivalently,

$$\Phi^{-1}(\mu) = \beta_0 + \beta_1 X$$

The link function $\Phi^{-1}(\cdot)$ is called the *probit* link
‘Common’ link functions for binary data

Comparison of fitted response probabilities

- Over mid-range values of the linear predictor \(z = \beta_0 + \beta_1 X \)
 (or \(\mu \)), the linear, probit, and logit models agree

- This is because

\[
\text{expit}(z) \approx \Phi \left(\frac{\sqrt{2\pi}z}{4} \right) \approx \frac{1}{2} + \frac{z}{4}, \quad \text{for } -2 \leq z \leq 2
\]

- The main reason that logits are often preferred to probits is because coefficients from the logistic model are interpretable (odds ratios)

- If prediction of probabilities is the focus, then either model can be considered
‘Common’ link functions for binary data

Logit link function

- Compare the response curves for each of the (appropriately scaled) linear predictors:
Example - Modeling the probability of CHD in the Framingham Study

Background on the Framingham study

- 5209 subjects identified in 1948 in a small Massachusetts town
- Biennial exams for blood pressure, serum cholesterol, and relative weight
- 30 year followup data available from course website
- Major endpoints include the occurrence of coronary heart disease (CHD) and deaths from
 - CHD or MI
 - Cerebrovascular accident (CVA or stroke)
 - Cancer
 - Other causes

Scientific goal

- Quantify the prevalence of CHD at the followup exam among males age 30+
Example - Modeling the probability of CHD in the Framingham Study

> framingham <- read.table("http://www.ics.uci.edu/~dgillen/STAT211/Data/Framingham.txt", header=TRUE)

> framingham[1:5,]

<table>
<thead>
<tr>
<th>sex</th>
<th>sbp</th>
<th>dbp</th>
<th>scl</th>
<th>chdfate</th>
<th>followup</th>
<th>age</th>
<th>bmi</th>
<th>month</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1120</td>
<td>80</td>
<td>267</td>
<td>1</td>
<td>18</td>
<td>55</td>
<td>25.0</td>
<td>8</td>
<td>2642</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
<td>78</td>
<td>192</td>
<td>1</td>
<td>35</td>
<td>53</td>
<td>28.4</td>
<td>12</td>
<td>4627</td>
</tr>
<tr>
<td>3</td>
<td>144</td>
<td>90</td>
<td>207</td>
<td>1</td>
<td>109</td>
<td>61</td>
<td>25.1</td>
<td>8</td>
<td>2568</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>66</td>
<td>231</td>
<td>1</td>
<td>147</td>
<td>48</td>
<td>26.2</td>
<td>11</td>
<td>4192</td>
</tr>
<tr>
<td>5</td>
<td>162</td>
<td>98</td>
<td>271</td>
<td>1</td>
<td>169</td>
<td>39</td>
<td>28.4</td>
<td>11</td>
<td>3977</td>
</tr>
</tbody>
</table>

> summary(framingham)

> # Recode sex to something obvious (sex=1 -> female)
> framingham$sex <- framingham$sex - 1
> names(framingham)[1] <- "female"
Fitting GLMs in R is done with the `glm` function

```r
> help( glm )
```

Description

`glm()` is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

Usage

```r
glm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart,
    offset, control = glm.control(...), model = TRUE,
    method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)
```

Arguments

- **formula**: a symbolic description of the model to be fit. The details of model specification are given below.
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)
- **data**: an optional data frame containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `glm` is called.
- **weights**: an optional vector of weights to be used in the fitting process.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **na.action**: a function which indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset. The "factory-fresh" default is `na.omit`.

Binomial Regression
Logistic model to estimate the association between SBP and the odds of CHD

```R
> ##
> ###### Logistic model
> ##
> ##
> fit.logit <- glm( chdfate ~ sbp, data=framingham, family=binomial(link="logit") )
> fit.logit

Call: glm(formula = chdfate ~ sbp, family = binomial(link = "logit"),
          data = framingham)

Coefficients:
(Intercept) sbp
     -3.00881  0.01659

Degrees of Freedom: 4698 Total (i.e. Null); 4697 Residual
Null Deviance: 5844 Residual Deviance: 5696 AIC: 5700
```
Logistic model to estimate the association between SBP and the odds of CHD

> summary(fit.logit)

Call:
glm(formula = chdfate ~ sbp, family = binomial(link = "logit"),
 data = framingham)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.8320 -0.8668 -0.7634 1.3676 1.8368

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.00881 0.18982 -15.850 < 2e-16 ***
sbp 0.01659 0.00138 11.980 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 5844.1 on 4698 degrees of freedom
Residual deviance: 5695.7 on 4697 degrees of freedom
AIC: 5699.7

Number of Fisher Scoring iterations: 4

Interpretation:
Logistic model to estimate the association between SBP and the odds of CHD

```
> ##
> #### Refit the model, scaling sbp per 10 mmHg
> ##
> fit.logit <- glm( chdfate ~ I(sbp/10), data=framingham,
>                   family=binomial(link="logit") )
```

```
> ##
> #### Use glmCI() function on course webpage to exponential coefficients and form CI’s
> ##
> glmCI( fit.logistic )

|             | exp(Est) | ci95.lo | ci95.hi | z.value | Pr(>|z|) |
|-------------|----------|---------|---------|---------|----------|
| (Intercept) | 0.04935042 | 0.03401885 | 0.0715916 | -15.85123 | 1.378551e-56 |
| I(sbp/10)   | 1.18049490 | 1.14887319 | 1.2129870 | 11.97785 | 4.642017e-33 |
```

Interpretation: The odds of CHD are estimated to be 18.1% higher when comparing two populations, one of which has systolic blood pressure 10 mmHg higher than the other (95% CI: 14.9%, 21.3%).
Probit model to estimate the association between SBP and the odds of CHD

```r
> ##
> ###### Probit model
> ##
> > fit.probit <- glm( chdfate ~ I(sbp/10), data=framingham, 
> family=binomial(link="probit") )
> summary( fit.probit )

Call:
glm(formula = chdfate ~ I(sbp/10), family = binomial(link = "probit"),
    data = framingham)

Deviance Residuals:
     Min       1Q   Median       3Q      Max
-1.8426  -0.8680  -0.7618   1.3660   1.8506

Coefficients:
                        Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.852951    0.114407  -16.20   <2e-16 ***
I(sbp/10)     0.102093     0.008407   12.14   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 5844.1  on 4698  degrees of freedom
  Residual deviance: 5694.3  on 4697  degrees of freedom
AIC: 5698.3

Number of Fisher Scoring iterations: 4
```
Example - Modeling the probability of CHD in the Framingham Study

Comparison of logit and probit models

- Interpretation of the probit model:
 - Assumes each individual has a latent continuous measure of CHD that follows a standard normal distribution
 - Slope coefficient in the probit model is the expected difference in this latent measure (a standard normal quantile) comparing two populations differing by 10mmHg in SBP
 - Hmmm... Maybe the fitted probabilities differ between the two models.
Comparison of fitted probabilities from the two models

> #
> ###### Probit model
> #
> fit.probit <- glm(chdfate ~ I(sbp/10), data=framingham,
> family=binomial(link="probit"))

> summary(fit.probit)

> plot(sort(framingham$sbp), sort(fitted(fit.logit)),
> type="l", col="red", ylab="Estimated probability of CHD",
> xlab="Systolic BP (mmHg)")
> lines(sort(framingham$sbp), sort(fitted(fit.probit)), lty=2)
> table(sort(framingham$sbp), sort(fitted(fit.logit)))

<table>
<thead>
<tr>
<th>(80,114]</th>
<th>(114,124]</th>
<th>(124,134]</th>
<th>(134,148]</th>
<th>(148,270]</th>
</tr>
</thead>
<tbody>
<tr>
<td>976</td>
<td>964</td>
<td>931</td>
<td>900</td>
<td>925</td>
</tr>
</tbody>
</table>

> sbpgrp <- cut(framingham$sbp, quantile(framingham$sbp, seq(0,1,.2)))
> empirical.p <- table(framingham$chdfate, sbpgrp)[2,] / table(sbpgrp)
> points(unlist(lapply(split(framingham$sbp, sbpgrp), mean)), empirical.p)
Comparison of fitted probabilities from the two models

![Graph showing comparison of fitted probabilities from logit and probit models](image-url)
Comparison of coefficients from the two models

Comparison of coefficients

- The coefficients should roughly match up if we ‘standardize’ them

```r
> logitbeta <- fit.logit$coef
> logitbeta

(Intercept)    I(sbp/10)
-3.0088090   0.1659338

> probitbeta <- fit.probit$coef
> probitbeta

(Intercept)    I(sbp/10)
-1.8529512   0.1020929

> probitbeta / (sqrt(2*pi)/4)

(Intercept)    I(sbp/10)
-2.9568663   0.1629168
```

Note: The coefficients would not be so close if the probability of CHD were near 0 or 1
Binary vs. Binomial Regression

Binomial Data

- If data are inherently grouped (all categorical predictors) then it can be advantageous to store and analyze the data in a *collapsed* form
 - More efficient use of memory
 - Better for performing goodness-of-fit tests (later)
Binary vs. Binomial Regression

Example: Framingham Data

- Suppose that we were only interested in categorical exposure covariates:

```r
> ##
> ###### Comparison of Binary vs Binomial Regression
> ##
> sbpgrp <- cut( framingham$sbp, c(0,100,125,150,175,200,225,275) )
> agegrp <- cut( framingham$age, c(0,40,50,70) )
> bmigrp <- cut( framingham$bmi, c(0,20,25,30,60) )
> framgrp <- as.data.frame( cbind( framingham$female, agegrp, bmigrp,
>                                 sbpgrp, framingham$chdfate ) )
> names( framgrp ) <- c("female", "agegrp", "bmigrp", "sbpgrp", "chdfate" )

> framgrp[1:5,]
female agegrp bmigrp sbpgrp chdfate
1 0 3 2 2 1
2 0 3 3 3 1
3 0 3 3 3 1
4 0 2 3 1 1
5 0 1 3 4 1
```
Binary vs. Binomial Regression

Fit binary regression using `glm()`

- The dataset now contains a total of 4690 observations (1 record per individual)

- One possibility is to keep the data in this fashion and analyze each individual separately representing a Bernoulli outcome (CHD: yes/no)

```r
> dim( framgrp )
[1] 4690 5

> fit.binary <- glm( chdfate ~ female + factor(agegrp) + factor(bmigrp) + factor(sbpgrp), data=framgrp, family=binomial )

> glmCI( fit.binary )

|            | exp( Est ) | ci95.lo | ci95.hi | z value | Pr(>|z|) |
|------------|------------|---------|---------|---------|----------|
| (Intercept)| 0.1004836  | 0.05330377 | 0.1894227 | -7.103503 | 1.216340e-12 |
| female     | 0.4765312  | 0.41754381 | 0.5438518 | -10.993856 | 4.090664e-28 |
| factor(agegrp)2 | 1.3746793 | 1.16519485 | 1.6218258 | 3.772410 | 1.616780e-04 |
| factor(agegrp)3 | 1.6830038 | 1.41697893 | 1.9989724 | 5.930254 | 3.024668e-09 |
| factor(bmigrp)2 | 1.8568520 | 1.27238784 | 2.7097865 | 3.209070 | 1.331651e-03 |
| factor(bmigrp)3 | 2.3725291 | 1.62290512 | 3.4684064 | 4.459181 | 8.227335e-06 |
| factor(bmigrp)4 | 2.9383140 | 1.95860473 | 4.4080815 | 5.208335 | 1.905422e-07 |
| factor(sbpgrp)2 | 1.8327248 | 1.06314550 | 3.1593797 | 2.180343 | 2.923201e-02 |
| factor(sbpgrp)3 | 2.5992414 | 1.50735752 | 4.4820527 | 3.436095 | 5.901632e-04 |
| factor(sbpgrp)4 | 3.1702936 | 1.80037476 | 5.5825942 | 3.996706 | 6.422986e-05 |
| factor(sbpgrp)5 | 3.4503162 | 1.85585038 | 6.4146776 | 3.914303 | 9.066589e-05 |
| factor(sbpgrp)6 | 7.3262683 | 3.32039231 | 16.1650199 | 4.932126 | 8.133952e-07 |
| factor(sbpgrp)7 | 11.9961057 | 3.22609969 | 44.606764 | 3.707958 | 2.089374e-04 |
```
Binary vs. Binomial Regression

Collapse the data for binomial regression

- Now, collapse the data, removing repeated patterns of covariate values
 - Keep track of the frequency of each combination of chdfate, sbpgrp, agegrp, bmigrp, and female values

```r
> collapse <- function( data, outcome ){
+   index <- (1:length(names(data)))[ names(data)==outcome ]
+   y <- data[,index]
+   data <- data[-index]
+   rslt <- aggregate( y, data, FUN=length)
+   rslt <- as.data.frame( cbind( rslt, aggregate(y, data, FUN=sum)[dim(rslt)[2]] )
+   names( rslt ) <- c( names(data), "n", paste("n.", outcome, sep=""))
+   rslt}
>
> framgrp <- collapse( framgrp, "chdfate" )
> dim( framgrp )
[1] 129 6

> framgrp[1:10,]
  female agegrp bmigrp sbpgrp n n.chdfate
1   0     1     1     1  1  1
2   1     1     1     1 15  1
3   0     2     1     1  4  0
4   1     2     1     1  6  0
5   0     3     1     1  1  0
6   1     3     1     1  3  0
7   0     1     2     1  8  1
8   1     1     2     1 37  1
9   0     2     2     1  7  1
10  1     2     2     1 16  1
```
Binary vs. Binomial Regression

Collapse the data for binomial regression

- Now we can use the (frequency) weights options in glm to analyze the data

- The effect of using frequency weights is the same as expanding the dataset, creating identical records whose multiplicity is specified by weights

- Expanding only takes place at analysis time, behind the scenes

```r
> fit.binom <- glm( n.chdfate/n ~ female + factor( agegrp ) +
                   factor( bmgirp ) + factor( sbpgrp ), data=framgrp,
                   weights=n, family=binomial )

> glmCI( fit.binom )

                      exp( Est )  ci95.lo  ci95.hi  z value  Pr(>|z|)
(Intercept)         0.1004836 0.05330196 0.1894291 -7.103124 1.219676e-12
female              0.4765312 0.41754372 0.5438519 -10.993840 4.091388e-28
factor(agegrp)2     1.3746793 1.16519446 1.6218264  3.772403 1.616830e-04
factor(agegrp)3     1.6830038 1.41697854 1.9989729  5.930244 3.024845e-09
factor(bmgirp)2     1.8568520 1.27237820 2.7098071  3.209006 1.331949e-03
factor(bmgirp)3     2.3725291 1.62289310 3.4684321  4.459094 8.230675e-06
factor(bmgirp)4     2.9383140 1.95859114 4.4081121  4.408112 5.208246e-07
factor(sbpgrp)2     1.8327249 1.06310984 3.1594858  2.180209 2.924196e-02
factor(sbpgrp)3     2.5992144 1.50730715 4.4822026  3.435885 5.906226e-04
factor(sbpgrp)4     3.1702937 1.80031685 5.5827739  3.996479 6.429152e-05
factor(sbpgrp)5     3.4503163 1.85579585 6.4148663  3.914117 9.073561e-05
factor(sbpgrp)6     7.3262684 3.32031596 16.1653920  4.931982 8.139924e-07
factor(sbpgrp)7     11.9961059 3.22605069 44.6076551  4.091388 2.089728e-04
```