1. Suppose you are given an unsorted array \(A[1..n] \), which contains all but one of the \(n + 1 \) integers in the range \(0, \ldots, n \) (so exactly one of these elements is missing from \(A \)). To simplify the problem somewhat, we will assume that \(n = 2^k - 1 \) for some integer \(k \). Hence each array element has a binary representation using \(k \) bits.

You want to determine the missing integer. You are not allowed to access an entire integer in \(A \) with a single operation. The only way to access the elements of \(A \) is by calling the function \(\text{bitvalue}(i, j) \), which returns the value of the \(j \)th bit of \(A[i] \).

Give a divide-and-conquer algorithm that finds the missing integer and makes only \(O(n) \) calls to the function \(\text{bitvalue}() \).

Note: There are \((n - 1) \log n \) bits, so you cannot afford to look at every bit.

2. Give asymptotic solutions (using \(\Theta() \) notation) for each of the following recurrence equations.

 (a) \(T(n) = 6T(n/4) + n \log n \)
 (b) \(T(n) = 2T(n/4) + \sqrt{n} \)
 (c) \(T(n) = 6T(n/3) + n^2 \)