1. Suppose we have a hash table of size N and are using linear probing. Assume that our hash function satisfies the idealized assumption of uniform independent hashing: If we hash any sequence of K distinct keys $< k_1, \ldots, k_K >$ each of the possible N^K values of the k-tuple $< h(k_1), \ldots, h(k_K) >$ is equally likely.

If we start with an empty hash table and insert 2 elements in the hash table, what is the probability that cells 0 and 1 are occupied immediately after the two insertions?

2. In class we described a way of preventing infinite loops in the set algorithm of cuckoo hashing, by counting steps and stopping when the count gets too large. This method has a problem: you need to know the constant factor to use in the $\Theta(\log n)$ bound on the number of steps. Describe an alternative method of preventing infinite loops, without counting, by detecting a loop whenever it happens. Ideally, your solution should

 • Use a constant amount of additional memory
 • Only perform a constant amount of additional work per step of the set algorithm
 • Not use a step counter
 • Detect any loop within a number of steps proportional to the number of keys involved in the loop
 • Only report that there is a loop when the set algorithm really has an infinite loop

(Hint: consider what happens to the key given as the original argument to the set algorithm during a loop.)

3. In the notes, we introduced an undirected graph visualizing the data for cuckoo hashing (nodes represent cells in the two tables, edges represent keys). We showed that if this graph has two cycles in the same connected component, then it is not possible to add all the data to the cuckoo hash data structure.

Give an example showing that the requirement that the two cycles be in the same connected component is necessary. In other words, give a set of keys and two hash functions h_0 and h_1 such that:

 • The undirected graph has two different cycles
 • It is still possible to add all the keys to the cuckoo hash structure.

4. Suppose you have two Bloom filters F_A and F_B, each with the same number of cells and the same hash functions, representing the two sets A and B. Let $F_C = F_A \& F_B$ be the Bloom filter formed by computing the bitwise Boolean and of F_A and F_B.

 (a) F_C may not always be the same as the Bloom filter that would be constructed by adding the elements of the set $A \cap B$ one at a time. Explain why not.
(b) Does $F C$ correctly represent the set $A \cap B$, in the sense that it always gives a positive answer for membership queries of all elements in this set? Explain why or why not.

5. (Note: the purpose of this problem is to make sure that you understand the mechanics of the various hash-based structures listed below. If you are convinced you understand how they work you can skip this problem, but be aware that you might get some version of this problem on the midterm and/or the final exam.)

Choose a small prime number p. Generate some random integers k in the range $[0, p^3]$. For each of the following hash-based structures, insert the numbers you generated. Use the hash functions $h_1(x) = x \mod p$, $h_2(x) = x/p \mod p$, $h_3(x) = x/p^2 \mod p$. (If you only need one hash function use h_1, if you only need two hash functions use h_1 and h_2.)

(a) Hash table using chaining
(b) Hash table using linear probing
(c) Cuckoo hashing structure
(d) Bloom filter
(e) Cuckoo filter

6. (Note: this problem extends problem 1, above. Suppose we have a hash table of size N and are using linear probing. Assume that our hash function satisfies the idealized assumption of uniform independent hashing: If we hash any sequence of K distinct keys $< k_1, \ldots, k_K >$ each of the possible N^K values of the k-tuple $< h(k_1), \ldots, h(k_K) >$ is equally likely.

(a) If we start with an empty hash table and insert 3 elements in the hash table, what is the probability that cells 0 and 1 are occupied immediately after the three insertions?
(b) If we start with an empty hash table and insert 3 elements in the hash table, what is the probability that cells 0, 1 and 2 are all occupied immediately after the three insertions?

7. In a cuckoo hashing data structure with two hash functions $g(x)$ and $h(x)$, the hash table may still operate successfully if two elements x and y are inserted with $g(x) = g(y)$ and $h(x) = h(y)$. However, it will fail if it is given three elements x, y, and z with $g(x) = g(y) = g(z)$ and $h(x) = h(y) = h(z)$.

(a) If a cuckoo hashing data structure has n slots in each table and the hash functions are uniformly random, what is the probability that some particular triple (x, y, z) collides in this way?
(b) If n elements are inserted into the structure, what is the expected number of triples that collide in this way?
(c) Use Markov’s inequality (http://en.wikipedia.org/wiki/Markov%27s_inequality) together with your answer to part (b) to get a bound on the probability that there is at least one triple collision.
8. Prove that tabulation hashing is not 4-independent by finding a set of four keys for which all 4-tuples of indexes are not equally likely.

It is fine to solve the following two problems either mathematically (i.e., by finding a closed-form solution) or computationally (i.e., by writing a computer program that finds the solution.)

9. Suppose that we want to store a set \(S \) of \(n = 25 \) elements, drawn from a universe of \(U = 10000 \) possible keys, in a Bloom filter of exactly \(N = 120 \) cells. Suppose that we care only about the accuracy of the Bloom filter and not its speed. For this problem size, what is the best choice of the number of cells per key (the parameter \(k \) in the lecture)? (In other words, what value of \(k \) gives the smallest possible probability that a key not in \(S \) is a false positive?) What is the probability of a false positive for this choice of \(k \)?

10. Note: This problem extends the previous problem.

Suppose that we want to store a large set in a Bloom filter. As in the earlier problem, suppose we care only about the accuracy of the Bloom filter and not its speed. Suppose that we want the probability of a false positive to be no larger than 1%. What is the largest ratio \(n/N \) that we can have and still achieve this (by choosing \(k \) appropriately)? If the ratio \(n/N \) is near this maximum value, what is the appropriate choice for \(k \)?