
Web Crawling
Introduction to Information Retrieval
Informatics 141 / CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

• Introduction

• URL Frontier

• Robust Crawling

• DNS

Overview

Web Crawling Outline

The Web

Web Spider

Indices Ad Indices

flickr:crankyT

Indexer

The User

Search Results

Introduction

The basic crawl algorithm

• Initialize a queue of URLs (“seed” URLs)

• Repeat

• Remove a URL from the queue

• Fetch associated page

• Parse and analyze page

• Store representation of page

• Extract URLs from page and add to queue

Introduction

Crawling the web

Introduction

Seed Pages

Web Spider

Crawled Pages

URL Frontier

The Rest of the Web

Basic Algorithm is not reality...

• Real web crawling requires multiple machines

• All steps distributed on different computers

• Even Non-Adversarial pages pose problems

• Latency and bandwidth to remote servers vary

• Webmasters have opinions about crawling their turf

• How “deep” in a URL should you go?

• Site mirrors and duplicate pages

• Politeness

• Don’t hit a server too often

Introduction

Basic Algorithm is not reality...

• Adversarial Web Pages

• Spam Pages

• Spider Traps

Introduction

Minimum Characteristics for a Web Crawler

• Be Polite:

• Respect implicit and explicit terms on website

• Crawl pages you’re allowed to

• Respect “robots.txt” (more on this coming up)

• Be Robust

• Handle traps and spam gracefully

Introduction

Desired Characteristics for a Web Crawler

• Be a distributed systems

• Run on multiple machines

• Be scalable

• Adding more machines allows you to crawl faster

• Be Efficient

• Fully utilize available processing and bandwidth

• Focus on “Quality” Pages

• Crawl good information first

Introduction

Desired Characteristics for a Web Crawler

• Support Continuous Operation

• Fetch fresh copies of previously crawled pages

• Be Extensible

• Be able to adapt to new data formats, protocols, etc.

• Today it’s AJAX, tomorrow it’s SilverLight, then....

Introduction

Updated Crawling picture

URL Frontier

Seed Pages

Spider
Thread

Crawled Pages

URL Frontier
"Priority Queue" The Rest of the Web

• Frontier Queue might have multiple pages from the same host

• These need to be load balanced (“politeness”)

• All crawl threads should be kept busy

URL Frontier

Politeness?

• It is easy enough for a website to block a crawler

• Explicit Politeness

• “Robots Exclusion Standard”

• Defined by a “robots.txt” file maintained by a webmaster

• What portions of the site can be crawled.

• Irrelevant, private or other data excluded.

• Voluntary compliance by crawlers.

• Based on regular expression matching

URL Frontier

Politeness?

• Explicit Politeness

• “Sitemaps”

• Introduced by Google, but open standard

• XML based

• Allows webmasters to specify:

• Location of pages (URL islands)

• Importance of pages

• Update frequency of pages

• Sitemap location listed in robots.txt

URL Frontier

Politeness?

• Implicit Politeness

• Even without specification avoid hitting any site too often

• It costs bandwidth and computing resources for host.

URL Frontier

Politeness?

URL Frontier

Politeness?

URL Frontier

Robots.txt - Exclusion

URL Frontier

• Protocol for giving spiders (“robots”) limited access to a

website

• Source: http://www.robotstxt.org/wc/norobots.html

• Website announces what is okay and not okay to crawl:

• Located at http://www.myurl.com/robots.txt

• This file holds the restrictions

Robots.txt Example

URL Frontier

• http://www.ics.uci.edu/robots.txt

Sitemaps - Inclusion

URL Frontier

• https://www.google.com/webmasters/tools/docs/en/protocol.html#sitemapXMLExample

• Introduction

• URL Frontier

• Robust Crawling

• DNS

Overview

Web Crawling Outline

A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Processing Steps in Crawling

Robust Crawling

• Pick a URL from the frontier (how to prioritize?)

• Fetch the document (DNS lookup)

• Parse the URL

• Extract Links

• Check for duplicate content

• If not add to index

• For each extracted link

• Make sure it passes filter (robots.txt)

• Make sure it isn’t in the URL frontier

Domain Name Server
DNS

• A lookup service on the internet

• Given a URL, retrieve its IP address

• www.djp3.net -> 69.17.116.124

• This service is provided by a distributed set of servers

• Latency can be high

• Even seconds

• Common OS implementations of DNS lookup are blocking

• One request at a time

• Solution:

• Caching

• Batch requests

DNS

Root Name
Server

.net
Name
Server

djp3.net
Name
Server

Where is www.djp3.net?

Ask 192.5.6.30

?.root-servers.net =
198.41.0.4

?.GTLD-SERVERS.net =
192.5.6.30

Ask 72.1.140.145

ns?.speakeasy.net =
72.1.140.145

Use 69.17.116.124

Give me a web page

dig +trace www.djp3.net

DNS What really happens

Give me a web page

flickr:crankyT

The User

Firefox DNS
cache

OS DNS
Resolver

OS DNS
Cache

ISP DNS Server

ISP DNS
Cache

Root Name
Server

.net
Name
Server

djp3.net
Name
Server

Where is www.djp3.net?

Ask 192.5.6.30

?.root-servers.net =
198.41.0.4

?.GTLD-SERVERS.net =
192.5.6.30

Ask 72.1.140.145

ns?.speakeasy.net =
72.1.140.145

Use 69.17.116.124

Give me a web page

Class Exercise

DNS

• Calculate how long it would take to completely fill a DNS

cache.

• How many active hosts are there?

• What is an average lookup time?

• Do the math.

http://www.!ickr.com/photos/lurie/298967218/

A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Parsing: URL normalization

Parsing

• When a fetched document is parsed

• some outlink URLs are relative

• For example:

• http://en.wikipedia.org/wiki/Main_Page

• has a link to “/wiki/Special:Statistics”

• which is the same as

• http://en.wikipedia.org/wiki/Special:Statistics

• Parsing involves normalizing (expanding) relative URLs

A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Content Seen?

Duplication

• Duplication is widespread on the web

• If a page just fetched is already in the index, don’t process it

any further

• This can be done by using document fingerprints/shingles

• A type of hashing scheme

A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Compliance with webmasters wishes...

Filters

• Robots.txt

• Filters is a regular expression for a URL to be excluded

• How often do you check robots.txt?

• Cache to avoid using bandwidth and loading web server

• Sitemaps

• A mechanism to better manage the URL frontier

A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Duplicate Elimination

• For a one-time crawl

• Test to see if an extracted,parsed, filtered URL

• has already been sent to the frontier.

• has already been indexed.

• For a continuous crawl

• See full frontier implementation:

• Update the URL’s priority

• Based on staleness

• Based on quality

• Based on politeness

Distributing the crawl

• The key goal for the architecture of a distributed crawl is

cache locality

• We want multiple crawl threads in multiple processes at

multiple nodes for robustness

• Geographically distributed for speed

• Partition the hosts being crawled across nodes

• Hash typically used for partition

• How do the nodes communicate?

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Host
Splitter

To Other Nodes

From Other
Nodes

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

URL Frontier

• Freshness

• Crawl some pages more often than others

• Keep track of change rate of sites

• Incorporate sitemap info

• Quality

• High quality pages should be prioritized

• Based on link-analysis, popularity, heuristics on content

• Politeness

• When was the last time you hit a server?

URL Frontier

• Freshness, Quality and Politeness

• These goals will conflict with eachother

• A simple priority queue will fail because links are bursty

• Many sites have lots of links pointing to themselves

creating bursty references

• Time influences the priority

• Politeness Challenges

• Even if only one thread is assigned to hit a particular host it

can hit it repeatedly

• Heuristic : insert a time gap between successive requests

Magnitude of the crawl

• To fetch 1,000,000,000 pages in one month...

• a small fraction of the web

• we need to fetch 400 pages per second !

• Since many fetches will be duplicates, unfetchable, filtered,

etc. 400 pages per second isn’t fast enough

• Introduction

• URL Frontier

• Robust Crawling

• DNS

• Various parts of architecture

• URL Frontier

• Index

• Distributed Indices

• Connectivity Servers

Overview

Web Crawling Outline

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Host
Splitter

To Other Nodes

From Other
Nodes

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

URL Frontier Implementation - Mercator

• URLs flow from top to bottom

• Front queues manage priority

• Back queue manage politeness

• Each queue is FIFO

Prioritizer

F "Front"
Queues

1 2 F

B "Back"
Queues

Front Queue Selector

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

URL Frontier Implementation - Mercator

• Prioritizer takes URLS and assigns a

priority

• Integer between 1 and F

• Appends URL to appropriate queue

• Priority

• Based on rate of change

• Based on quality (spam)

• Based on application

Prioritizer

F "Front"

Queues

1 2 F

Front Queue Selector

Front queues

URL Frontier Implementation - Mercator

• Selection from front queues is

initiated from back queues

• Pick a front queue, how?

• Round robin

• Randomly

• Monte Carlo

• Biased toward high priority

Back queues

B "Back"
Queues

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

URL Frontier Implementation - Mercator

• Each back queue is non-empty

while crawling

• Each back queue has URLs from

one host only

• Maintain a table of URL to back

queues (mapping) to help

Back queues

B "Back"
Queues

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

URL Frontier Implementation - Mercator

• Timing Heap

• One entry per queue

• Has earliest time that a host can

be hit again

• Earliest time based on

• Last access to that host

• Plus any appropriate heuristic

Back queues

B "Back"
Queues

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

URL Frontier Implementation - Mercator

• A crawler thread needs a URL

• It gets the timing heap root

• It gets the next eligible queue

based on time, b.

• It gets a URL from b

• If b is empty

• Pull a URL v from front queue

• If back queue for v exists place

it in that queue, repeat.

• Else add v to b - update heap.

Back queues

B "Back"
Queues

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

URL Frontier Implementation - Mercator

• How many queues?

• Keep all threads busy

• ~3 times as many back queues

as crawler threads

• Web-scale issues

• This won’t fit in memory

• Solution

• Keep queues on disk and

keep a portion in memory.

Back queues

B "Back"
Queues

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• Introduction

• URL Frontier

• Robust Crawling

• DNS

• Various parts of architecture

• URL Frontier

• Index

• Distributed Indices

• Connectivity Servers

Overview

Web Crawling Outline

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector

space model)

• Links

• Where does a document link to?

• Who links to a document?

The index

Indices

The index has a list of vector space models
 1 1998
 1 Every
 1 Her
 1 I
 1 I'm
 1 Jensen's
 2 Julie
 1 Letter
 1 Most
 1 all
 1 allegedly
 1 back
 1 before
 1 brings
 2 brothers
 1 could
 1 days
 1 dead
 1 death
 1 everything
 1 for
 1 from
 1 full
 1 happens
 1 haunts

 1 have
 1 hear
 3 her
 1 husband
 1 if
 1 it
 1 killing
 1 letter
 1 nothing
 1 now
 1 of
 1 pray
 1 read,
 1 saved
 1 sister
 1 stands
 1 story
 1 the
 2 they
 1 time
 1 trial
 1 wonder
 1 wrong
 1 wrote

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

Indices

Our index is a 2-D array or Matrix

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

A Column for Each Word (or “Term”)

A
 R

o
w

 F
o

r
E
a

c
h

 W
e

b
 P

a
g

e
 (

o
r

“
D

o
c
u

m
e

n
t”

)

..
..

..
..

..
.

1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 2

0 0 0 1 1 4 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 2

Indices

“Term-Document Matrix” Capture Keywords

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

A Column for Each Word (or “Term”)

A
 R

o
w

 F
o

r
E
a

c
h

 W
e

b
 P

a
g

e
 (

o
r

“
D

o
c
u

m
e

n
t”

)

..
..

..
..

..
.

1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 2

0 0 0 1 1 4 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 2

Indices

• Is really big at a web scale

• It must be split up into pieces

• An effect way to split it up is to split up the same way as the

crawling

• Equivalent to taking horizontal slices of the T-D Matrix

• Helps with cache hits during crawl

• Later we will see that it needs to be rejoined for calculations

across all documents

The Term-Document Matrix

Indices - Connectivity Server

• Other part of reason for crawling

• Supports fast queries on the web graph

• Which URLS point to a given URL (in-links)?

• Which URLS does a given URL point to (out-links)?

• Applications

• Crawl control

• Web Graph Analysis (see Assignment #03)

• Link Analysis (aka PageRank)

• Provides input to “quality” for URL frontier

Connectivity Server

Indices - Connectivity Server

Adjacency Matrix - Conceptual Idea
A B

C

A

B

C

A B C

0 1 1

0 0 0

0 0 1

Indices - Connectivity Server

• What about Adjacency Lists instead?

• Set of neighbors of a node

• Assume each URL represented by an integer

• i.e. 4 billion web pages need 32 bits per URL

• Naive implementation requires 64 bits per link

• 32 bits to 32 bits

Connectivity Server in practice

Indices - Connectivity Server

• What about Adjacency Lists instead?

• Non-naive approach is to exploit compression

• Similarity between lists of links

• Locality (many links go to “nearby” links)

• Use gap encodings in sorted lists

• Leverage the distribution of gap values

Connectivity Server in practice

Indices - Connectivity Server

• Current state of the art is Boldi and Vigna

• http://www2004.org/proceedings/docs/1p595.pdf

• They are able to reduce a URL to URL edge

• From 64 bits to an average of 3 bits

• For a 118 million node web graph

• How?

Connectivity Server in practice

Indices - Connectivity Server

• Consider a lexicographically ordered list of all URLS, e.g:

• http://www.ics.uci.edu/computerscience/index.php

• http://www.ics.uci.edu/dept/index.php

• http://www.ics.uci.edu/index.php

• http://www.ics.uci.edu/informatics/index.php

• http://www.ics.uci.edu/statistics/index.php

Connectivity Server in practice

Indices - Connectivity Server

• Each of these URLs has an adjacency list

• Main idea: because of templates, the adjacency list of a node

is similar to one of the 7 preceding URLs in the lexicographic

ordering.

• So, express adjacency list in terms of a template

Connectivity Server in practice

Indices - Connectivity Server

• Consider these adjacency lists

• 1, 2, 4, 8, 16, 32, 64

• 1, 4, 9, 16, 25, 36, 49, 64

• 1, 2, 3, 5, 6, 13, 21, 34, 55, 89, 144

• 1, 4, 8, 16, 25, 36, 49, 64

• Encode this as row(-2), -URL(9), +URL(8)

• Very similar to tricks done in assembly code

Connectivity Server in practice

Indices - Connectivity Server

• The web is enormous

• A naive adjacency matrix would be several billion URLS on a

side

• Overall goal is to keep the adjacency matrix in memory

• Webgraph is a set of algorithms and a java implementation

for examining the web graph

• It exploits the power law distribution to compress the

adjacency matrix very tightly

• http://webgraph.dsi.unimi.it/

Connectivity Server in practice summary

End of Chapter 20

