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The basic crawl algorithm

• Initialize a queue of URLs (“seed” URLs)

• Repeat

• Remove a URL from the queue

• Fetch associated page

• Parse and analyze page

• Store representation of page

• Extract URLs from page and add to queue
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Basic Algorithm is not reality...

• Real web crawling requires multiple machines

• All steps distributed on different computers

• Even Non-Adversarial pages pose problems

• Latency and bandwidth to remote servers vary

• Webmasters have opinions about crawling their turf

• How “deep” in a URL should you go?

• Site mirrors and duplicate pages

• Politeness

• Don’t hit a server too often

Introduction



Basic Algorithm is not reality...

• Adversarial Web Pages

• Spam Pages

• Spider Traps

Introduction



Minimum Characteristics for a Web Crawler

• Be Polite:

• Respect implicit and explicit terms on website

• Crawl pages you’re allowed to

• Respect “robots.txt” (more on this coming up)

• Be Robust

• Handle traps and spam gracefully

Introduction



Desired Characteristics for a Web Crawler

• Be a distributed systems

• Run on multiple machines

• Be scalable

• Adding more machines allows you to crawl faster

• Be Efficient

• Fully utilize available processing and bandwidth

• Focus on “Quality” Pages

• Crawl good information first

Introduction



Desired Characteristics for a Web Crawler

• Support Continuous Operation

• Fetch fresh copies of previously crawled pages

• Be Extensible

• Be able to adapt to new data formats, protocols, etc.

• Today it’s AJAX, tomorrow it’s SilverLight, then....

Introduction
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• Frontier Queue might have multiple pages from the same host

• These need to be load balanced (“politeness”)

• All crawl threads should be kept busy

URL Frontier



Politeness?

• It is easy enough for a website to block a crawler

• Explicit Politeness

• “Robots Exclusion Standard”

• Defined by a “robots.txt” file maintained by a webmaster

• What portions of the site can be crawled.

• Irrelevant, private or other data excluded.

• Voluntary compliance by crawlers.

• Based on regular expression matching

URL Frontier



Politeness?

• Explicit Politeness

• “Sitemaps”

• Introduced by Google, but open standard

• XML based

• Allows webmasters to specify:

• Location of pages (URL islands)

• Importance of pages

• Update frequency of pages

• Sitemap location listed in robots.txt

URL Frontier



Politeness?

• Implicit Politeness

• Even without specification avoid hitting any site too often

• It costs bandwidth and computing resources for host.

URL Frontier



Politeness?

URL Frontier



Politeness?

URL Frontier



Robots.txt - Exclusion

URL Frontier

• Protocol for giving spiders (“robots”) limited access to a 

website

• Source: http://www.robotstxt.org/wc/norobots.html

• Website announces what is okay and not okay to crawl:

• Located at http://www.myurl.com/robots.txt

• This file holds the restrictions



Robots.txt Example

URL Frontier

• http://www.ics.uci.edu/robots.txt



Sitemaps - Inclusion

URL Frontier

• https://www.google.com/webmasters/tools/docs/en/protocol.html#sitemapXMLExample
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Processing Steps in Crawling

Robust Crawling

• Pick a URL from the frontier (how to prioritize?)

• Fetch the document (DNS lookup)

• Parse the URL

• Extract Links

• Check for duplicate content

• If not add to index

• For each extracted link

• Make sure it passes filter (robots.txt)

• Make sure it isn’t in the URL frontier



Domain Name Server
DNS

• A lookup service on the internet

• Given a URL, retrieve its IP address

• www.djp3.net -> 69.17.116.124

• This service is provided by a distributed set of servers

• Latency can be high

• Even seconds

• Common OS implementations of DNS lookup are blocking

• One request at a time

• Solution:

• Caching

• Batch requests



DNS

Root Name 
Server

.net
Name 
Server

djp3.net
Name 
Server

Where is www.djp3.net?

Ask 192.5.6.30

?.root-servers.net =
198.41.0.4

?.GTLD-SERVERS.net =
192.5.6.30

Ask 72.1.140.145

ns?.speakeasy.net =
72.1.140.145

Use 69.17.116.124

Give me a web page

dig +trace www.djp3.net



DNS What really happens

Give me a web page
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198.41.0.4

?.GTLD-SERVERS.net =
192.5.6.30

Ask 72.1.140.145

ns?.speakeasy.net =
72.1.140.145

Use 69.17.116.124

Give me a web page



Class Exercise

DNS

• Calculate how long it would take to completely fill a DNS 

cache.

• How many active hosts are there?

• What is an average lookup time?

• Do the math.

http://www.!ickr.com/photos/lurie/298967218/



A Robust Crawl Architecture
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Parsing: URL normalization

Parsing

• When a fetched document is parsed

• some outlink URLs are relative

• For example:

• http://en.wikipedia.org/wiki/Main_Page

• has a link to “/wiki/Special:Statistics”

• which is the same as

• http://en.wikipedia.org/wiki/Special:Statistics

• Parsing involves normalizing (expanding) relative URLs
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Content Seen?

Duplication

• Duplication is widespread on the web

• If a page just fetched is already in the index, don’t process it 

any further

• This can be done by using document fingerprints/shingles

• A type of hashing scheme



A Robust Crawl Architecture
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Compliance with webmasters wishes...

Filters 

• Robots.txt

• Filters is a regular expression for a URL to be excluded

• How often do you check robots.txt?

• Cache to avoid using bandwidth and loading web server

• Sitemaps

• A mechanism to better manage the URL frontier



A Robust Crawl Architecture
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Duplicate Elimination 

• For a one-time crawl

• Test to see if an extracted,parsed, filtered URL

• has already been sent to the frontier.

• has already been indexed.

• For a continuous crawl

• See full frontier implementation:

• Update the URL’s priority

• Based on staleness

• Based on quality

• Based on politeness



Distributing the crawl

• The key goal for the architecture of a distributed crawl is 

cache locality

• We want multiple crawl threads in multiple processes at 

multiple nodes for robustness

• Geographically distributed for speed

• Partition the hosts being crawled across nodes

• Hash typically used for partition

• How do the nodes communicate?
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URL Frontier

• Freshness

• Crawl some pages more often than others

• Keep track of change rate of sites

• Incorporate sitemap info

• Quality

• High quality pages should be prioritized

• Based on link-analysis, popularity, heuristics on content

• Politeness

• When was the last time you hit a server?



URL Frontier

• Freshness, Quality and Politeness

• These goals will conflict with eachother

• A simple priority queue will fail because links are bursty

• Many sites have lots of links pointing to themselves 

creating bursty references

• Time influences the priority

• Politeness Challenges

• Even if only one thread is assigned to hit a particular host it 

can hit it repeatedly

• Heuristic : insert a time gap between successive requests



Magnitude of the crawl

• To fetch 1,000,000,000 pages in one month...

• a small fraction of the web

• we need to fetch 400 pages per second !

• Since many fetches will be duplicates, unfetchable, filtered, 

etc. 400 pages per second isn’t fast enough
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URL Frontier Implementation - Mercator 

• URLs flow from top to bottom

• Front queues manage priority

• Back queue manage politeness

• Each queue is FIFO

Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf



URL Frontier Implementation - Mercator

• Prioritizer takes URLS and assigns a 

priority

• Integer between 1 and F

• Appends URL to appropriate queue

• Priority

• Based on rate of change

• Based on quality (spam)

• Based on application

Prioritizer

F "Front" 

Queues

1 2 F

Front Queue Selector

Front queues



URL Frontier Implementation - Mercator

• Selection from front queues is 

initiated from back queues

• Pick a front queue, how?

• Round robin

• Randomly

• Monte Carlo

• Biased toward high priority

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Each back queue is non-empty 

while crawling

• Each back queue has URLs from 

one host only

• Maintain a table of URL to back 

queues (mapping) to help

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Timing Heap

• One entry per queue

• Has earliest time that a host can 

be hit again

• Earliest time based on

• Last access to that host

• Plus any appropriate heuristic

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• A crawler thread needs a URL

• It gets the timing heap root

• It gets the next eligible queue 

based on time, b.

• It gets a URL from b

• If b is empty

• Pull a URL v from front queue

• If back queue for v exists place 

it in that queue, repeat.

• Else add v to b - update heap.

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• How many queues?

• Keep all threads busy

• ~3 times as many back queues 

as crawler threads

• Web-scale issues

• This won’t fit in memory

• Solution

• Keep queues on disk and 

keep a portion in memory.

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap
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Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector 

space model)

• Links

• Where does a document link to?

• Who links to a document?

The index



Indices

The index has a list of vector space models
      1 1998
      1 Every
      1 Her
      1 I
      1 I'm
      1 Jensen's
      2 Julie
      1 Letter
      1 Most
      1 all
      1 allegedly
      1 back
      1 before
      1 brings
      2 brothers
      1 could
      1 days
      1 dead
      1 death
      1 everything
      1 for
      1 from
      1 full
      1 happens
      1 haunts
    
      

      1 have
      1 hear
      3 her
      1 husband
      1 if
      1 it
      1 killing
      1 letter
      1 nothing
      1 now
      1 of
      1 pray
      1 read,
      1 saved
      1 sister
      1 stands
      1 story
      1 the
      2 they
      1 time
      1 trial
      1 wonder
      1 wrong
      1 wrote

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1



Indices

Our index is a 2-D array or Matrix
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Indices

“Term-Document Matrix” Capture Keywords

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
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Indices

• Is really big at a web scale

• It must be split up into pieces

• An effect way to split it up is to split up the same way as the 

crawling

• Equivalent to taking horizontal slices of the T-D Matrix

• Helps with cache hits during crawl

• Later we will see that it needs to be rejoined for calculations 

across all documents

The Term-Document Matrix



Indices - Connectivity Server

• Other part of reason for crawling

• Supports fast queries on the web graph

• Which URLS point to a given URL (in-links)?

• Which URLS does a given URL point to (out-links)?

• Applications

• Crawl control

• Web Graph Analysis (see Assignment #03)

• Link Analysis (aka PageRank)

• Provides input to “quality” for URL frontier

Connectivity Server



Indices - Connectivity Server

Adjacency Matrix - Conceptual Idea
A B

C

A

B

C

A B C

0 1 1

0 0 0

0 0 1



Indices - Connectivity Server

• What about Adjacency Lists instead?

• Set of neighbors of a node

• Assume each URL represented by an integer

• i.e. 4 billion web pages need 32 bits per URL

• Naive implementation requires 64 bits per link

• 32 bits to 32 bits

Connectivity Server in practice



Indices - Connectivity Server

• What about Adjacency Lists instead?

• Non-naive approach is to exploit compression

• Similarity between lists of links

• Locality (many links go to “nearby” links)

• Use gap encodings in sorted lists

• Leverage the distribution of gap values

Connectivity Server in practice



Indices - Connectivity Server

• Current state of the art is Boldi and Vigna

• http://www2004.org/proceedings/docs/1p595.pdf

• They are able to reduce a URL to URL edge

• From 64 bits to an average of 3 bits

• For a 118 million node web graph

• How?

Connectivity Server in practice



Indices - Connectivity Server

• Consider a lexicographically ordered list of all URLS, e.g:

• http://www.ics.uci.edu/computerscience/index.php

• http://www.ics.uci.edu/dept/index.php

• http://www.ics.uci.edu/index.php

• http://www.ics.uci.edu/informatics/index.php

• http://www.ics.uci.edu/statistics/index.php

Connectivity Server in practice



Indices - Connectivity Server

• Each of these URLs has an adjacency list

• Main idea: because of templates, the adjacency list of a node 

is similar to one of the 7 preceding URLs in the lexicographic 

ordering.

• So, express adjacency list in terms of a template

Connectivity Server in practice



Indices - Connectivity Server

• Consider these adjacency lists

• 1, 2, 4, 8, 16, 32, 64

• 1, 4, 9, 16, 25, 36, 49, 64

• 1, 2, 3, 5, 6, 13, 21, 34, 55, 89, 144

• 1, 4, 8, 16, 25, 36, 49, 64

• Encode this as row(-2), -URL(9), +URL(8)

• Very similar to tricks done in assembly code

Connectivity Server in practice



Indices - Connectivity Server

• The web is enormous

• A naive adjacency matrix would be several billion URLS on a 

side

• Overall goal is to keep the adjacency matrix in memory 

• Webgraph is a set of algorithms and a java implementation 

for examining the web graph

• It exploits the power law distribution to compress the 

adjacency matrix very tightly

• http://webgraph.dsi.unimi.it/

Connectivity Server in practice summary



End of Chapter 20


