
Reuters collection example (approximate #’s)

• 800,000 documents from the Reuters news feed

• 200 terms per document

• 400,000 unique terms

• number of postings 100,000,000

BSBI

Reuters collection example (approximate #’s)

• Sorting 100,000,000 records on disk is too slow because of

disk seek time.

• Parse and build posting entries one at a time

• Sort posting entries by term

• Then by document in each term

• Doing this with random disk seeks is too slow

• e.g. If every comparison takes 2 disk seeks and N items

need to be sorted with N log2(N) comparisons?

• 306ish days?

BSBI

Reuters collection example (approximate #’s)

• 100,000,000 records

• Nlog2(N) is = 2,657,542,475.91 comparisons

• 2 disk seeks per comparison = 13,287,712.38 seconds x 2

• = 26,575,424.76 seconds

• = 442,923.75 minutes

• = 7,382.06 hours

• = 307.59 days

• = 84% of a year

• = 1% of your life

BSBI

Different way to sort index

• 12-byte records (term, doc, meta-data)

• Need to sort T= 100,000,000 such 12-byte records by term

• Define a block to have 1,600,000 such records

• can easily fit a couple blocks in memory

• we will be working with 64 such blocks

• Accumulate postings for each block (real blocks are bigger)

• Sort each block

• Write to disk

• Then merge

BSBI - Block sort-based indexing

Different way to sort index

BSBI - Block sort-based indexing

(1998,www.cnn.com)
(Every,www.cnn.com)

(Her,news.google.com)
(I'm,news.bbc.co.uk)

Block

(1998,news.google.com)
(Her,news.bbc.co.uk)

(I,www.cnn.com)
(Jensen's,www.cnn.com)

Block

(1998,www.cnn.com)
(1998,news.google.com)

(Every,www.cnn.com)
(Her,news.bbc.co.uk)

(Her,news.google.com)
(I,www.cnn.com)

(I'm,news.bbc.co.uk)
(Jensen's,www.cnn.com)

Merged Postings

Disk

BlockSortBasedIndexConstruction

BSBI - Block sort-based indexing

BlockSortBasedIndexConstruction()
1 n← 0
2 while (all documents not processed)
3 do block ← ParseNextBlock()
4 BSBI-Invert(block)
5 WriteBlockToDisk(block, fn)
6 MergeBlocks(f1, f2..., fn, fmerged)

Block merge indexing

• Parse documents into (TermID, DocID) pairs until “block” is

full

• Invert the block

• Sort the (TermID,DocID) pairs

• Compile into TermID posting lists

• Write the block to disk

• Then merge all blocks into one large postings file

• Need 2 copies of the data on disk (input then output)

BSBI - Block sort-based indexing

Analysis of BSBI

• The dominant term is O(TlogT)

• T is the number of TermID,DocID pairs

• But in practice ParseNextBlock takes the most time

• Then MergingBlocks

• Again, disk seeks times versus memory access times

BSBI - Block sort-based indexing

Analysis of BSBI

• 12-byte records (term, doc, meta-data)

• Need to sort T= 100,000,000 such 12-byte records by term

• Define a block to have 1,600,000 such records

• can easily fit a couple blocks in memory

• we will be working with 64 such blocks

• 64 blocks * 1,600,000 records * 12 bytes = 1,228,800,000 bytes

• Nlog2N comparisons is 5,584,577,250.93

• 2 touches per comparison at memory speeds (10e-6 sec) =

• 55,845.77 seconds = 930.76 min = 15.5 hours

BSBI - Block sort-based indexing

• Introduction

• Hardware

• BSBI - Block sort-based indexing

• SPIMI - Single Pass in-memory indexing

• Distributed indexing

• Dynamic indexing

• Miscellaneous topics

Overview

Index Construction

SPIMI

• BSBI is good but,

• it needs a data structure for mapping terms to termIDs

• this won’t fit in memory for big corpora

• Straightforward solution

• dynamically create dictionaries

• store the dictionaries with the blocks

Single-Pass In-Memory Indexing

SPIMI

• BSBI is good but,

• it needs a data structure for mapping terms to termIDs

• this won’t fit in memory for big corpora

• Straightforward solution

• dynamically create dictionaries

• store the dictionaries with the blocks

Single-Pass In-Memory Indexing

Single-Pass In-Memory Indexing

SPIMI-Invert(tokenStream)
1 outputF ile← NewFile()
2 dictionary ← NewHash()
3 while (free memory available)
4 do token← next(tokenStream)
5 if term(token) /∈ dictionary
6 then postingsList← AddToDictionary(dictionary, term(token))
7 else postingsList← GetPostingsList(dictionary, term(token))
8 if full(postingsList)
9 then postingsList← DoublePostingsList(dictionary, term(token))

10 AddToPostingsList(postingsList, docID(token))
11 sortedTerms← SortTerms(dictionary)
12 WriteBlockToDisk(sortedTerms, dictionary, outputF ile)
13 return outputF ile

• So what is different here?

• SPIMI adds postings directly to a posting list.

• BSBI first collected (TermID,DocID pairs)

• then sorted them

• then aggregated the postings

• Each posting list is dynamic so there is no posting list

sorting

• Saves memory because a term is only stored once

• Complexity is more like O(T)

• Compression enables bigger effective blocks

Single-Pass In-Memory Indexing

Large Scale Indexing

• Key decision in block merge indexing is block size

• In practice, spidering often interlaced with indexing

• Spidering bottlenecked by WAN speed and other factors

Single-Pass In-Memory Indexing

