
• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

Building up our query technology

Querying

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• How would it apply to

• http://www.rhymezone.com/shakespeare/

Building up our query technology

Querying

Boolean Model vs. Ranked Retrieval Methods

Querying

* Appeared with www

* uses “free-text” queries

* system decides relevance

* works with enormous corpora

* “no guarantees” in queries

* Only game for 30 years

* uses precise queries

* user decides relevance

* stayed current with proximity

queries

* precise controlled queries

* transparent queries

* controlled queries

• Westlaw

• Largest commercial (paying subscribers) legal search service

(started in 1975, ranking added in 1992)

• Tens of terabytes of data

• 700,000 users

• Majority of users still use boolean queries (default in 2005)

• Example:

• What is the status of limitations in cases involving

federal tort claims act?

• LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

• /3 = within 3 words. /S same sentence

Querying - Boolean Search Example

• Westlaw

• Example:

• Requirements for disabled people to be able to access a

workplace

• disabl! /p access! /s work-site work-place employment /3

place

• space is a disjunction not a conjunction

• long precise queries, proximity operators, incrementally

developed, not like web search

• preferred by professionals, but not necessarily better

Querying - Boolean Search Example

• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

Building up our query technology

Querying

• Rather than saying

• (query, document) matches or not (0,1)

• (“Capulet”,”Romeo and Juliet) = 1

• Now we are going to assign rankings

• (query, document) in {0,1}

• (“capulet”,”Romeo and Juliet”) = 0.7

Ranked Search

Querying

• Metadata = structured additional information about a

document.

• Examples:

• The author of a document

• The creation date of a document

• The title of a document

• The location where a document was created

• author, creation date, title, location are fields

• searching for “William Shakespeare” in a doc differs from

• searching for “William Shakespeare” in the author of a doc

Querying

• Parametric Search

• supports searching on meta-data explicitly

• a parametric search interface allows a mix of full-text query

and meta-data queries

• Example:

• www.carfinder.com

Querying

• Parametric Search

• Example:

• Result is a large table

• Columns are fields

• Searching for “2006” only applied to year field

• www.carfinder.com

Querying

• Parametric Search

• Example:

• www.ocrealestatefinder.com

Querying

• Parametric Search

• Example:

• www.ocrealestatefinder.com

Querying

• Parametric Search

• Example:

• www.ocrealestatefinder.com

• This one adds text search “charming”

Querying

• In these examples we select field values

• Values could be hierarchical

• USA -> California -> Orange County -> Newport Beach

• It is a paradigm for navigating through a corpus

• e.g, “Aerospace companies in Brazil” can be found by

combining “Geography” and “Industry”

• (“Capulet”,”Romeo and Juliet) = 1

• Approach:

• Filter for relevant documents

• Run text searches on subset

Parametric Search

• Index support for parametric search

• Must be able to support queries of the form:

• Find pdf documents that contain “UCI”

• Field selection and text query

• Field selection approach

• Use inverted index of field values

• (field value, docID)

• organized by field name

• Using same compression and sorting techniques

Parametric Search

• Now, we crawl the corpus

• We parse the document keeping track of terms, fields and

docIDs

• Instead of building just a (term, docID) pair

• We build (term, field, docID) triples

• These can then be combined into postings like this:

Parametric Search

William.author 2 4 8 16 32 64

William.title 1 2 3 5 8 13

William.abstract 1 3 5 7 9 11

• So are we just creating a database?

• Not really.

• Databases have more functionality

• Transactions

• Recovery

• Our index can be recreated. Not so with database.

• Text is never stored outside of indices

• We are focusing on optimized indices for text-oriented

queries not a full SQL engine

Parametric Search

• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

Building up our query technology

Querying

• A zone is an extension of a field

• A zone is an identified region of a document

• e.g., title, abstract, bibliography

• Generally identified by mark-up in a document

• <title>Romeo and Juliet</title>

• Contents of zone are free text

• Not a finite vocabulary

• Indices required for each zone to enable queries like:

• (instant in TITLE) AND (oatmeal in BODY)

• Doesn’t cover “all papers whose authors cite themselves”

• Why?

Zones

• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

Building up our query technology

Querying

• Boolean queries “match” or “don’t match”

• Good for experts with needs for precision and coverage

• knowledge of corpus

• need 1000’s of results

• Not good with non-expert users

• who don’t understand boolean operators

• or how they apply to search

• or who don’t want 1000’s of results

Scoring

• Boolean queries require careful crafting to get the right

number of results (Ferrari example)

• Ranked lists eliminate this concern

• Doesn’t matter how big the list is

• Scoring is the basis for ranking or sorting document that are

returned from a query.

• Ideally the score is high when the document is relevant

• WLOG we will assume scores are between 0 and 1 for

each doc.

Scoring

• First generation of scoring used a linear combination of

Booleans

• Explicit decision about importance of zone

• Each subquery is 0 or 1

• This example has a finite number of possible values

• What are they?

Scoring

Score = 0.6(instant ∈ TITLE) +
0.3(oatmeal ∈ BODY) +
0.1(health ∈ ABSTRACT)

• Subqueries could be *any* Boolean query

• Where do we get the weights? (e.g., 0.6,0.3,0.1)

• Rarely from the user

• Usually built into the query engine

• Where does the query engine get them from?

• Machine learning

Scoring

Score = 0.6(instant ∈ TITLE) +
0.3(oatmeal ∈ BODY) +
0.1(health ∈ ABSTRACT)

• Calculate the score for each document based on the

weightings 0.6, 0.3, 0.1

• For the query

• “bill” or “rights”

Scoring Exercise

bill.author 1 2

rights.author

bill.title 3 5 8

rights.title 3 5 9

bill.body 1 2 5 9

rights.body 3 5 8 9

