
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

Building up our query technology

Querying

• Subqueries could be *any* Boolean query

• Where do we get the weights? (e.g., 0.6,0.3,0.1)

• Rarely from the user

• Usually built into the query engine

• Where does the query engine get them from?

• Machine learning

Scoring

Score = 0.6(instant ∈ TITLE) +
0.3(oatmeal ∈ BODY) +
0.1(health ∈ ABSTRACT)

• Calculate the score for each document based on the

weightings (0.1 author), (0.3 body), (0.6 title)

• For the query

• “bill” or “rights”

Scoring Exercise

bill.author 1 2

rights.author

bill.title 3 5 8

rights.title 3 5 9

bill.body 1 2 5 9

rights.body 3 5 8 9

• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

Building up our query technology

Querying

Zones combination index

Querying

bill.author 1 2

rights.author

bill.title 3 5 8

rights.title 3 5 9

bill.body 1 2 5 9

rights.body 3 5 8 9

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

• Encode the zone in the posting

• At query time accumulate the

contributions to the total score from

the various postings

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9
8: 0.9

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9
8: 0.9
9: 0.9

Zone scoring with zones combination index

Querying

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9
8: 0.9
9: 0.9

Results:
9,8,5,3,2,1

Zone scoring with zones combination index

Querying

• As we walk, we accumulate scores linearly

• Note: getting “bill” and “rights” in the title field didn’t

cause us to score any higher

• Should it?

• Where do the weights come from?

• Machine learning

• Given a corpus, test queries and “gold standard”

relevance scores, compute weights which come as

close as possible to “gold standard”

Full text queries

Querying

• Previous example was for “bill OR rights”

• Average user is likely to type “bill rights” or “bill of rights”

• How do we interpret such a query?

• No Boolean operators

• Some query terms might not be in the document

• Some query terms might not be in a zone

Full text queries

Querying

• To use zone combinations for free text queries, we need:

• A way of scoring = Score(full-text-query, zone)

• Zero query terms in zone -> zero score

• More query terms in a zone -> higher score

• Scores don’t have to be boolean (0 or 1) anymore

• Let’s look at the alternatives...

• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

• Term Frequency Matrices

Building up our query technology

Querying

Incidence Matrices

Querying

• Recall how a document, d, (or a zone) is a (0,1) column vector

• A query, q, is also a column vector. How so?

Incidence Matrices

Querying

• Using this formalism, score can be overlap measure:

|q ∩D|

Incidence Matrices

Querying

• Example:

• Query “ides of march”

• Shakespeare’s “Julius Caesar” has a score of 3

• Plays that contain “march” and “of” score 2

• Plays that contain “of” score 1

• Algorithm:

• Bitwise-And between q and matrix, D

• Column summation

• Sort

Incidence Matrices

Querying

• What is wrong with the overlap measure?

• It doesn’t consider:

• Term frequency in a document

• Term scarcity in corpus

• “ides” is much rarer than “of”

• Length of a document

• Length of queries

Toward better scoring

Querying

• Overlap Measure

• Normalizing queries

• Jaccard Coefficient

• Score is number of words that overlap

divided by total number of words

• What documents would score best?

• Cosine Measure

• Will the same documents score well?

|q ∩ d|
|q ∪ d|

|q ∩ d|√
|q||d|

|q ∩ d|

Toward Better Scoring

Querying

• Scores so far capture position (zone) and overlap

• Next step: a document which talks about a topic should

be a better match

• Even when there is a single term in the query

• Document is relevant if the term occurs a lot

• This brings us to term weighting

Bag of Words Model

Querying

• “Don fears the mole man” equals “The mole man fears Don”

• The incidence matrix for both looks the same

Don fears the mole man

Don
fears

the

mole

man

The mole man fears Don

Don
fears

the

mole

man

d1 d2

Don 1 1
fears 1 1
man 1 1
mole 1 1
mule 0 0
the 1 1
zoo 0 0

Term Frequency Matrix

Querying

• Bag of words

• Document is vector with integer elements

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Term Frequency - tf

Querying

• Long documents are favored because they are more

likely to contain query terms

• Reduce the impact by normalizing by document length

• Is raw term frequency the right number?

Weighting Term Frequency - WTF

Querying

• What is the relative importance of

• 0 vs. 1 occurrence of a word in a document?

• 1 vs. 2 occurences of a word in a document?

• 2 vs. 100 occurences of a word in a document?

• Answer is unclear:

• More is better, but not proportionally

• An alternative to raw tf: WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

Weighting Term Frequency - WTF

Querying

• The score for query, q, is

• Sum over terms, t

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

ScoreWTF (q, d) =
∑

t∈q

(WTF (t, d))

ScoreWTF (”bill rights”, declarationOfIndependence) =
WTF (”bill”, declarationOfIndependence) +

WTF (”rights”, declarationOfIndependence) =
0 + 1 + log(3) = 1.48

Weighting Term Frequency - WTF

Querying

ScoreWTF (q, d) =
∑

t∈q

(WTF (t, d))

ScoreWTF (”bill rights”, declarationOfIndependence) =
WTF (”bill”, declarationOfIndependence) +

WTF (”rights”, declarationOfIndependence) =
0 + 1 + log(3) = 1.48

ScoreWTF (”bill rights”, constitution) =
WTF (”bill”, constitution) +

WTF (”rights”, constitution) =
1 + log(10) + 1 + log(1) = 3

Weighting Term Frequency - WTF

Querying

• Can be zone combined:

• Note that you get 0 if there are no query terms in the

document.

• Is that really what you want?

• We will eventually address this

Score = 0.6(ScoreWTF (′′instant oatmeal health”, d.title) +
0.3(ScoreWTF (′′instant oatmeal health”, d.body) +
0.1(ScoreWTF (′′instant oatmeal health”, d.abstract)

Unsatis!ed with term weighting

Querying

• Which of these tells you more about a document?

• 10 occurrences of “mole”

• 10 occurrences of “man”

• 10 occurrences of “the”

• It would be nice if common words had less impact

• How do we decide what is common?

• Let’s use corpus-wide statistics

Corpus-wide statistics

Querying

• Collection Frequency, cf

• Define: The total number of occurences of the term in

the entire corpus

• Document Frequency, df

• Define: The total number of documents which contain

the term in the corpus

Corpus-wide statistics

Querying

• This suggests that df is better at discriminating between

documents

• How do we use df?

Word Collection Frequency Document Frequency

insurance 10440 3997
try 10422 8760

