
Clari!cation of TF-IDF score

Correction!!!

• Some of the slides show this formula:

• Precisely it should be:

• The difference is just the special case when tf = 0

tfidf(t, d) = (1 + log(tft,d)) ∗ log

(
|corpus|

dft,d

)

tfidf(t, d) = WTF (t, d) ∗ log

(
|corpus|

dft,d

)

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))



Queries in the vector space model

Vector Space Scoring

• Central idea: the query is a vector

• We regard the query as a short document

• We return the documents ranked by the closeness of 

their vectors to the query (also a vector)

• Note that q is very sparse!

sim(q, di) =
!V (q) · !V (di)
|!V (q)||!V (di)|



Cosine Similarity Score

Vector Space Scoring

• Also called cosine similarity

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

!V (d1) · !V (d2) =
|!V (d1)||!V (d2)|

cos(θ)

cos(θ) =
!V (d1) · !V (d2)
|!V (d1)||!V (d2)|

sim(d1, d2) =
!V (d1) · !V (d2)
|!V (d1)||!V (d2)|



Cosine Similarity Score

Vector Space Scoring

• Define: dot product

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

!V (d1) · !V (d2) =
tn∑

i=t1

(!V (d1)i
!V (d2)i)

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

!V (d1) · !V (d2) = (13.1 ∗ 11.4) + (3.0 ∗ 8.3) + (2.3 ∗ 2.3) + (0 ∗ 11.2) + (17.7 ∗ 0) + (0.5 ∗ 0) + (1.2 ∗ 0)

= 179.53



Cosine Similarity Score

Vector Space Scoring

• Define: Euclidean Length

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

|!V (d1)| =

√√√√
tn∑

i=t1

(!V (d1)i
!V (d1)i)

|!V (d1)| =
√

(13.1 ∗ 13.1) + (3.0 ∗ 3.0) + (2.3 ∗ 2.3) + (17.7 ∗ 17.7) + (0.5 ∗ 0.5) + (1.2 ∗ 1.2)
= 22.38



Cosine Similarity Score

Vector Space Scoring

• Define: Euclidean Length

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

|!V (d1)| =

√√√√
tn∑

i=t1

(!V (d1)i
!V (d1)i)

|!V (d1)| =
√

(11.4 ∗ 11.4) + (8.3 ∗ 8.3) + (2.3 ∗ 2.3) + (11.2 ∗ 11.2)
= 18.15



Cosine Similarity Score

Vector Space Scoring

• Example

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

sim(d1, d2) =
!V (d1) · !V (d2)
|!V (d1)||!V (d2)|

=
179.53

22.38 ∗ 18.15
= 0.442



Exercise

Vector Space Scoring

• Rank the following by decreasing cosine similarity.

• Assume tf-idf weighting:

• Two docs that have only frequent words in common

• (the, a , an, of)

• Two docs that have no words in common

• Two docs that have many rare words in common

• (mocha, volatile, organic, shade-grown)



Spamming indices

Vector Space Scoring

• This was invented before spam

• Consider:

• Indexing a sensible passive document collection

• vs.

• Indexing an active document collection, where people, 

companies, bots are shaping documents to maximize 

scores

• Vector space scoring may not be as useful in this context.



Interaction: vectors and phrases

Vector Space Scoring

• Scoring phrases doesn’t naturally fit into the vector space 

world:

• How do we get beyond the “bag of words”?

• “dark roast” and “pot roast”

• There is no information on “dark roast” as a phrase in 

our indices.

• Biword index can treat some phrases as terms

• postings for phrases

• document wide statistics for phrases



Interaction: vectors and phrases

Vector Space Scoring

• Theoretical problem:

• Axes of our term space are now correlated

• There is a lot of shared information in “light roast” 

and “dark roast” rows of our index

• End-user problem:

• A user doesn’t know which phrases are indexed and 

can more effectively discriminate results.



Multiple queries for phrases and vectors

Vector Space Scoring

• Query: “rising interest rates”

• Iterative refinement:

• Run the phrase query vector with 3 words as a term.

• If not enough results, run 2-phrase queries and fold into 

results: “rising interest” “interest rates”

• If still not enough results run query with three words as 

separate terms.



Vectors and Boolean queries

Vector Space Scoring

• Ranked queries and Boolean queries don’t work very 

well together

• In term space

• ranked queries select based on sector containment - 

cosine similarity

• boolean queries select based on rectangle unions 

and intersections

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

!V (d1) !V (d2)

!V (d3)

X ∩ Y



Vectors and wild cards

Vector Space Scoring

• How could we work with the query, “quick* print*” ?

• Can we view this as a bag of words?

• What about expanding each wild-card into the 

matching set of dictionary terms?

• Danger: Unlike the boolean case, we now have tfs and 

idfs to deal with

• Overall, not a great idea



Vectors and other operators

Vector Space Scoring

• Vector space queries are good for no-syntax, bag-of-

words queries

• Nice mathematical formalism

• Clear metaphor for similar document queries

• Doesn’t work well with Boolean, wild-card or positional 

query operators

• But ...



Query language vs. Scoring

Vector Space Scoring

• Interfaces to the rescue

• Free text queries are often separated from operator 

query language

• Default is free text query

• Advanced query operators are available in “advanced 

query” section of interface

• Or embedded in free text query with special syntax

• aka -term -”terma termb”



Alternatives to tf-idf

Vector Space Scoring

• Sublinear tf scaling

• 20 occurrences of “mole” does not indicate 20 times 

the relevance

• This motivated the WTF score.

• There are other variants for reducing the impact of 

repeated terms

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))



TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document

• alpha is a smoothing term from (0 - 1.0 ) ~0.4 in 

practice

• This addresses a length bias.

• Take one document, repeat it, WTF goes up

ntft,d = α + (1− α)
tft,d

tfmax(d)



TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document

• a change in the stop word list can change wieghts 

drastically - hard to tune

• still based on bag of words model

• one outlier word, repeated many times might 

throw off the algorithmic understanding of the 

content

ntft,d = α + (1− α)
tft,d

tfmax(d)



Laundry List

Vector Space Scoring : Alternatives to tf-idf

Term Frequency Document Frequency Normalization
(n)atural tft,d (n)o 1 (n)one 1
(l)ogarithm 1 + log(tft,d) (t)idf log |corpus|

dft
(c)osine 1√

w12+w22+...+wm
2

(a)ugmented α + (1− α) tft,d

tfmax(d) (p)robidf max{0, log( |corpus|−dft
dft

) (u)pivoted 1/u

(b)oolean tft,d > 0?1 : 0 (b)yte 1/CharLengthα,α < 1
(L)ogaverage 1+log(tft,d)

1+log(avet∈d(tft,d))

• SMART system of describing your IR vector algorithm

• ddd.qqq (ddd = document weighting) (qqq = query 

weighting)

• first is term weighting, second is document, then 

normalization

• lnc.ltc is what?


