Matrix Decomposition and Latent Semantic Indexing (LSI)

Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson

Last Lecture

5

6

7

8

Efficient Cosine Ranking

- Find the k docs in the corpus "nearest" to the query
 - the k largest query-doc cosines

 $\operatorname{COSINESCORE}(q)$

- 1 INITIALIZE($Scores[d \in D]$)
- 2 INITIALIZE($Magnitude[d \in D]$)
- 3 for each $term(t \in q)$

```
4 do p \leftarrow \text{FetchPostingsList}(t)
```

```
df_t \leftarrow \text{GetCorpusWideStats}(p)
```

```
\alpha_{t,q} \leftarrow \text{WeightInQuery}(t,q,df_t)
```

```
for each \{d, tf_{t,d}\} \in p
```

```
do Scores[d] + = \alpha_{t,q} \cdot WEIGHTINDOCUMENT(t, q, df_t)
```

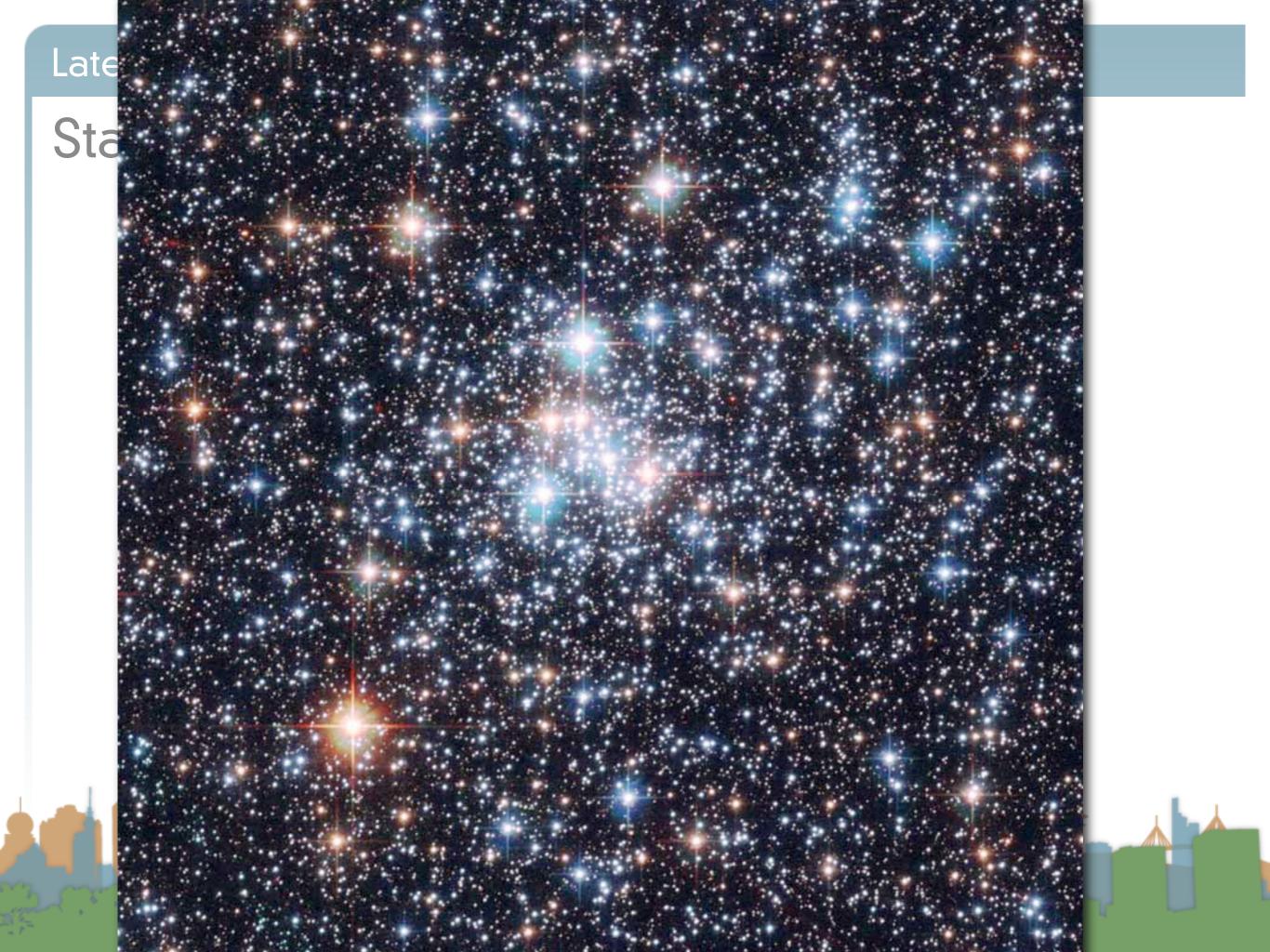
9 for $d \in Scores$

- 10 **do** NORMALIZE(Scores[d], Magnitude[d])
- 11 return top $K \in Scores$

Latent Semantic Indexing

Outline

- Introduction
- Linear Algebra Refresher



Star Cluster NGC 290 - ESA & NASA

- A picture of the sky is two dimensional
- The stars are not in two dimensions
- When we take a photo of stars we are projecting them into 2-D
 - projecting can be defined mathematically
- When we see two stars that are close..
 - They may not be close in space
- When we see two stars that are far...
 - They may not far in space

Star Cluster NGC 290 - ESA & NASA

- When we see two stars that are close in a photo
 - They really are close for some applications
 - For example pointing a big telescope at them
 - Large shared telescopes order their views according to

how "close" they are.

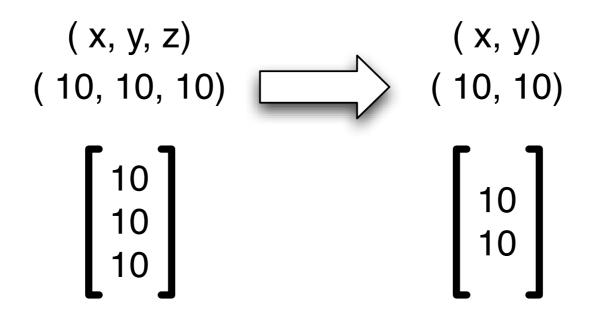
Overhead projector example

Overhead projector example

- Depending on where we put the light (and the wall) we can make things in three dimensions appear close or far away in two dimensions.
- Even though the "real" position of the 3-d objects never moved.

Mathematically speaking

• This is taking a 3-D point and projecting it into 2-D



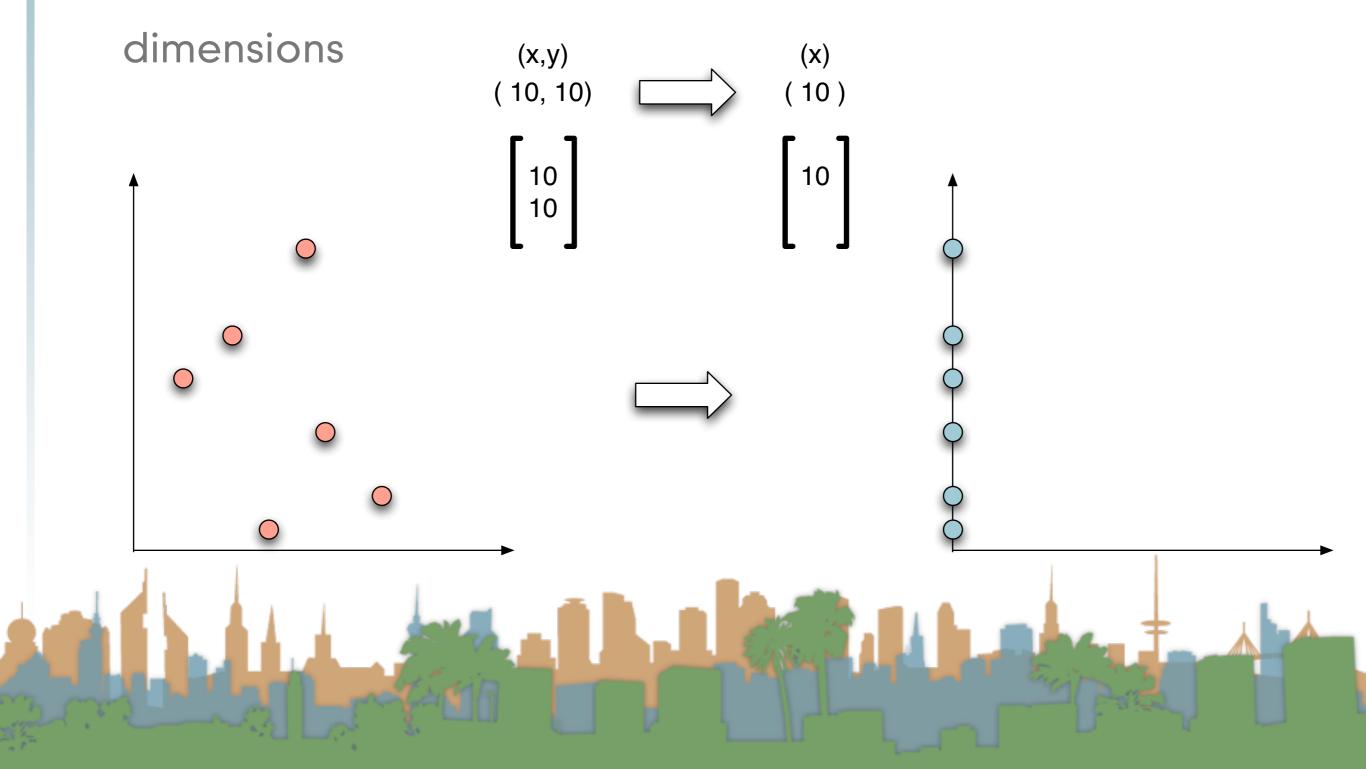
• The arrow in this picture acts like the overhead projector

Mathematically speaking

- We can project from any number of dimensions into any other number of dimensions.
- Increasing dimensions adds redundant information
 - But sometimes useful
 - Support Vector Machines (kernel methods) do this effectively
- Latent Semantic Indexing always reduces the number of dimensions

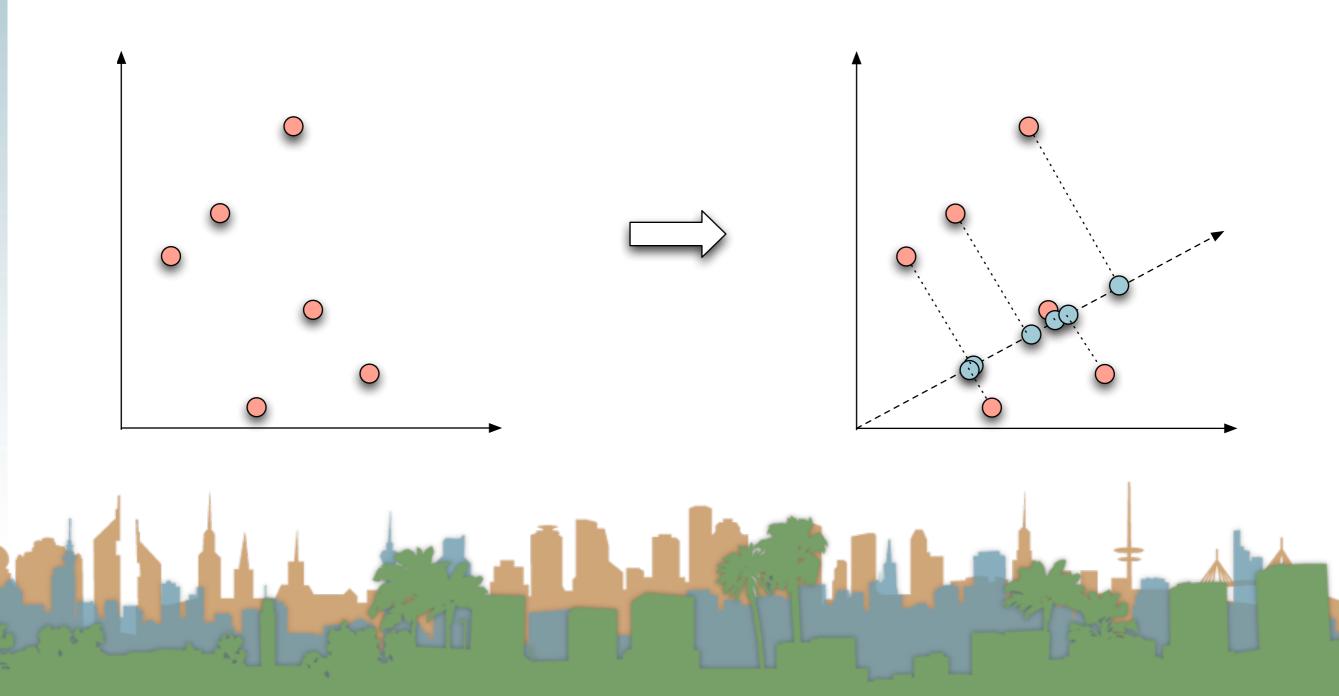
Mathematically speaking

• Latent Semantic Indexing always reduces the number of



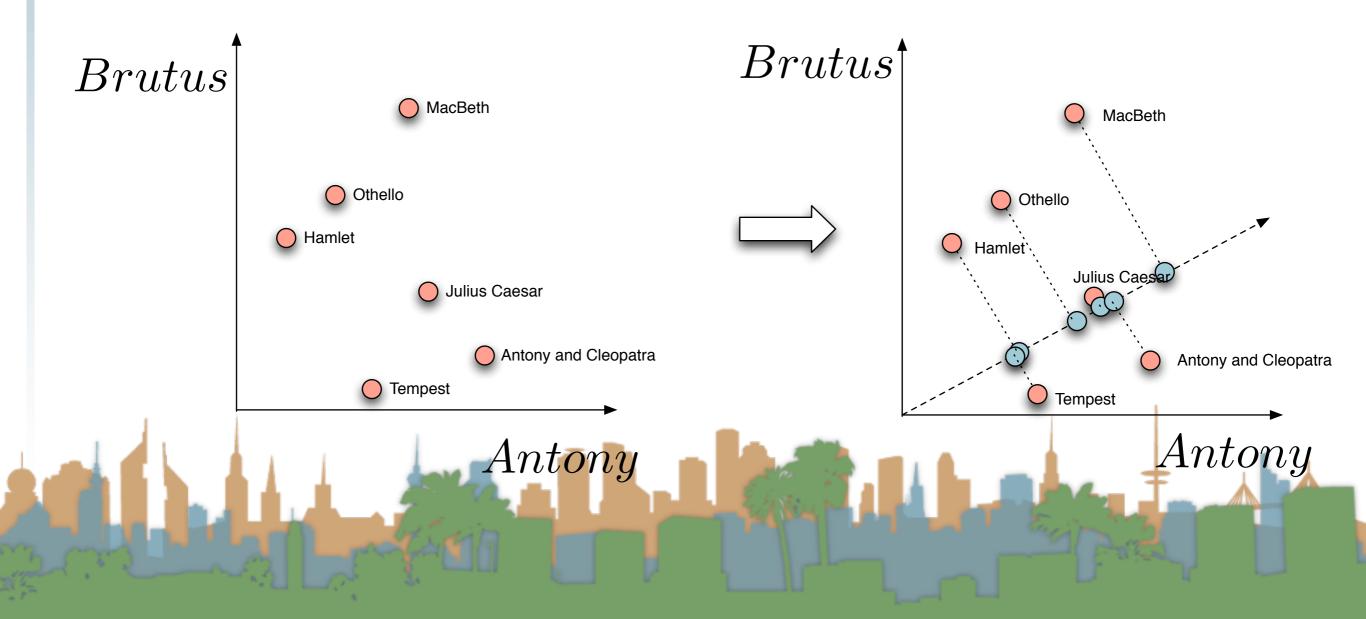
Mathematically speaking

• Latent Semantic Indexing can project on an arbitrary axis, not just a principal axis



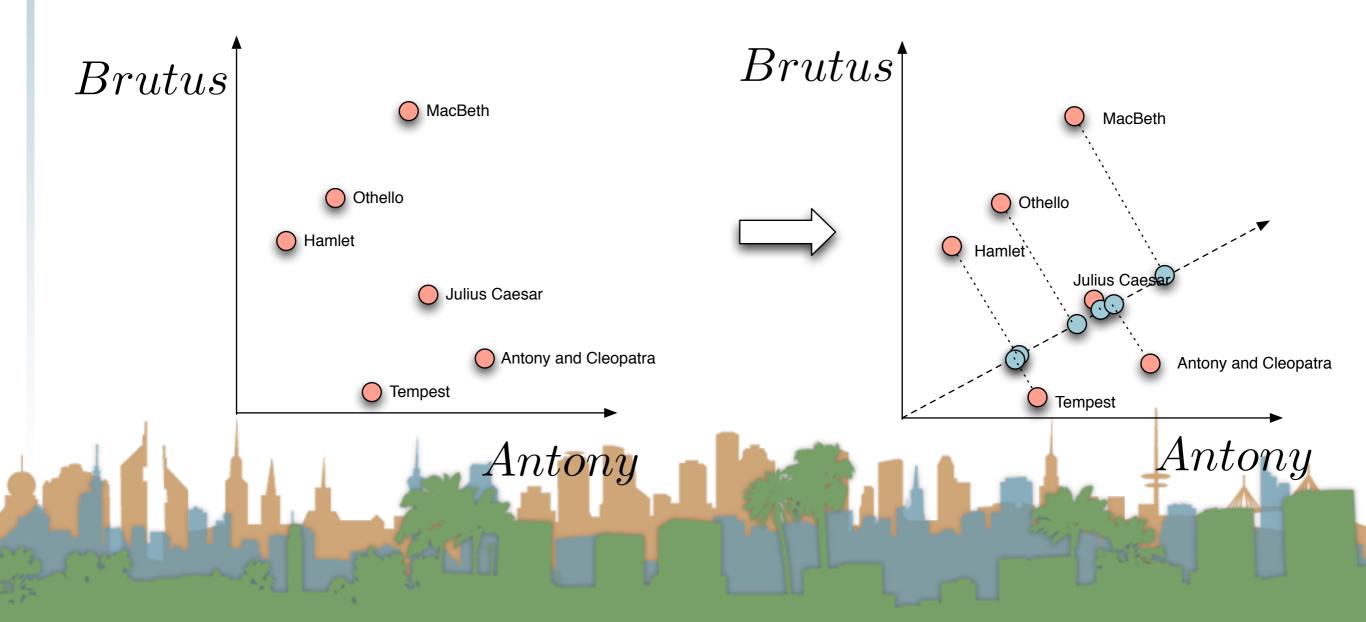
Mathematically speaking

- Our documents were just points in an N-dimensional term space
- We can project them also



Mathematically speaking

• Latent Semantic Indexing makes the claim that these new axes represent semantics - deeper meaning than just a term



Mathematically speaking

- A term vector that is projected on new vectors may uncover deeper meanings
 - For example
 - Transforming the 3 axes of a term matrix from "ball"

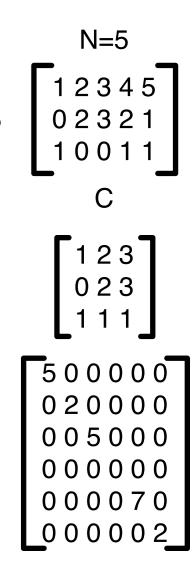
"bat" and "cave" to

- An axis that merges "ball" and "bat"
- An axis that merges "bat" and "cave"
- Should be able to separate differences in meaning of the term "bat"

Bonus: less dimensions is faster

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries $_{M=3}$
 - for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones on the main diagnoal



100000

010000

001000

000100

000010

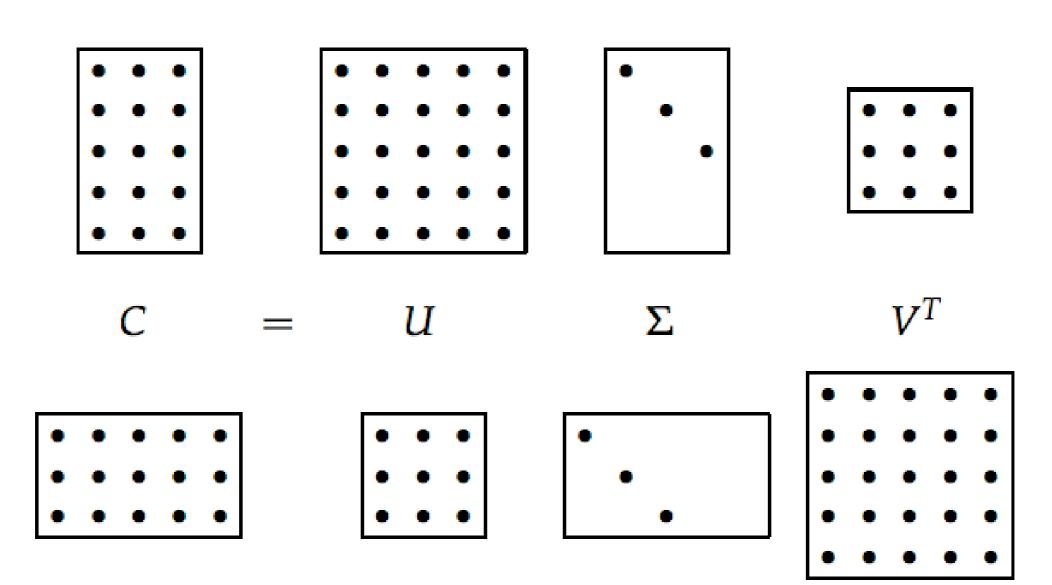
000001

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If
 - then
 - and
 - and

- $U \Sigma V^{T}$ $C = U\Sigma V^{T}$ C is (M by N)U is (M by M) $\Sigma is (M by N)$ $V^{T} is (N by N)$
- also Sigma is almost a diagonal matrix

Matrix Decomposition



Matrix Decomposition

- Singular Value Decomposition
 - Is a technique that splits a matrix into three components with these properties.
 - They also have some other properties which are relevant to latent semantic indexing