The web as a directed graph

- Pages are nodes
- Links are directed edges
 - <a href="<u>http://www.ics.uci.edu</u>">ICS
 - ...this links my page to the ICS home page
- LinkAnalysis/PageRank has its origins in bibliometrics
 - "Measurement of influence among publications based on citations"
 - Just as citing a paper confers authority upon it, linking to a

page confers authority to it.

Bibliometrics

- Two ways of measuring similarity of scientific articles:
 - Cocitation similarity: The two articles are cited by the same articles
 - Bibliographic coupling similarity: The two articles site the same articles

Bibliographic coupling similarity

Bibliometrics

- Citation frequency can be used to measure impact
 - Each article gets one vote
 - Not a very accurate measure
- Better measure: weighted citation frequency/ citation rank
 - An article's vote is weighted according to its citation impact.
 - Sounds circular, but can be formalized in a well-defined way
 - This is basically PageRank
 - Invited for citation analysis in the 1960's by Pinsker and Narin

Key Observation

• A citation in scientific literature is like a link on the web

Link based query processing

- First retrieve all pages meeting the query
- First generation:
 - Then order them by their link popularity
 - citation frequency
 - Easy to spam. Why?
- Second generation:
 - Order them by their weighted link popularity
 - PageRank

Link based query processing

- First retrieve all pages meeting the query
- First generation:
 - Then order them by their link popularity
 - citation frequency
 - Easy to spam. Why?
- Second generation:
 - Order them by their weighted link popularity
 - PageRank

Link based query processing

- A full search engine balances many different scores
 - cosine similarity
 - term proximity
 - zone scoring
 - PageRank
 - contextual relevance (implicit queries)

PageRank

- Every webpage gets a score
 - between 0 and 1
 - it's PageRank
- The random walk
 - Start at a random page
 - Follow an out edge with equal probability
- In the long run each page has a

long-term visit rate.

PageRank

• PageRank is a page's long-term steady state visit rate based

Visit Rate not quite enough

- The web is full of dead-ends
 - A random walk can get stuck in dead-ends
 - Makes no sense to talk about
 - long-term visit rates

Teleporting

- At a dead end, jump to a random web page
 - at any non-dead end, with probability 10% jump to a random web page anyway
 - the other 90% choose a random out link
 - "10%" is a tunable parameter

Teleporting

- Now we cannot get stuck locally
- There is a long-term visit rate at which any page is visited.
- How do we computer the visit rate?
 - aka How do we compute
 PageRank?
- (By the way this is a Markov Model)

Teleporting

- Now we cannot get stuck locally
- There is a long-term visit rate at which any page is visited.
- How do we computer the visit rate?
 - aka How do we compute
 PageRank?
- (By the way this is a Markov Model)

Markov Chains

• A Markov Chain is a mathematical

"game"

- It consists of n states
 - corresponds to web pages
- And a transition probability matrix
 - corresponds to links
 - it is like an adjacency matrix

is $P(i \rightarrow j)$

Markov Chains

- At any moment in the game we are in one of the states
- In the next step we move to a new state
- We use the transition matrix to decide which state to move into.
- If you are in state "i" then the probability of moving into state "j"

Exercise

 Compute the parameters of the Markov Chain for this graphical model

