Visualizing LSA

Demo

• Create a fake TFIDF matrix with a strong concept
• Plot the matrix on a two term axis
• Perform SVD decomposition
• Plot the new axes
• Reduce the dimensionality of SVD
• Plot the new axes
Demo

- Create a fake TFIDF matrix with a strong concept
- Plot the matrix on a two term axis

```matlab
>> x = [1:100];
>> y = random('norm',0,5,1,100);
>> y = x + y;
>> y(70:85) = [70:85];
>> plot(x,y,'ro')

>> size(x)
ans =
    1     100

>> size(y)
ans =
    1     100
```
Visualizing LSA

Demo

• Perform SVD decomposition

```matlab
>> C = [x;y];
>> size(C)
ans =
    2    100
>> [U S V] = svd(C);
>> size(U)
ans =
    2    2
>> S(1:2,1:2)
ans =
     822.6330    0
     0   30.2548
>> size(V)
ans =
    2    2
>> size(M)
ans =
    2    2
>> size(Cc)
ans =
    2    100
```
Demo

- Plot the new axes

```matlab
>> plot(Cc(1,:), Cc(2,:), 'g*')
```
Demo

- Calculate the TFIDF score
- Plot the documents on a two term axis
- Perform SVD decomposition
 - Validate decomposition
- Reduce rank of system
- Show “M”
 - Demonstrate what SVD is capturing
- Execute a query
Using MATLAB For LSA

Demo

• Calculate the TFIDF score

<table>
<thead>
<tr>
<th></th>
<th>wiki: baseball/bat</th>
<th>wiki: bat</th>
<th>wiki: coffee</th>
<th>dj3 paper</th>
<th>starbucks</th>
<th>wiki: starbucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ball</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>baseball</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bat</td>
<td>24</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>California</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>coffee</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>company</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>encyclopedia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Irvine</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>run</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>species</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>starbucks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>stores</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>university</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>users</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>df</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Demo

- Calculate the TFIDF score

```
>> !more computeTFIDF.m

% Compute TFIDF scores

c = 6;
psi = load('tf.txt','-ASCII');
df = load('df.txt','-ASCII');

tfidf = zeros(size(psi));

for i = 1:size(psi,1)
    for j = 1:size(psi,2)
        if psi(i,j) == 0
            tfidf(i,j) = (0) * log2(c/df(i));
        else
            tfidf(i,j) = (1 + log2(psi(i,j))) * log2(c/df(i));
        end
    end
end
```
Using MATLAB For LSA

Demo

• Calculate the TFIDF score

<table>
<thead>
<tr>
<th>wiki: baseball</th>
<th>wiki: bat</th>
<th>wiki: coffee</th>
<th>dip3 paper</th>
<th>starbucks</th>
<th>wiki: starbucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2670</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11.1720</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.8520</td>
<td>5.2651</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>8.5466</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.2670</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>8.5466</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.2670</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>8.5466</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.2670</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>8.5466</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.2670</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>8.5466</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Demo

- Perform SVD decomposition
- Validate decomposition

```
>> [U S V] = svd(tfidf);
>> size(U)
ans =
    14    14

>> size(S)
ans =
    14     6

>> size(V)
ans =
     6     6

>> U*S*V'
ans =
     9.2670 -0.0000  0.0000  0.0000  0.0000 -0.0000
     11.1720 -0.0000  0.0000  0.0000  0.0000  0.0000
     8.8520  5.2651 -0.0000 -0.0000 -0.0000 -0.0000
    -0.0000  0.0000  0.0000  9.2670 -0.0000 -0.0000
     0.0000 -0.0000  8.5466 -0.0000  0.0000  6.8501
     0.0000 -0.0000 -0.0000 -0.0000  0.0000 10.3399
     0.5850  0.5850  0.5850 -0.0000  0.0000  0.5850
    -0.0000  0.0000  0.0000  9.2670 -0.0000 -0.0000
     8.5871 -0.0000  0.0000  0.0000  0.0000  0.0000
    -0.0000  4.0971  3.1699  0.0000  0.0000 -0.0000
     0.0000 -0.0000 -0.0000  0.0000  4.7549  7.6195
     0.0000 -0.0000 -0.0000 -0.0000  0.0000  9.8419
    -0.0000  0.0000  0.0000  9.2670 -0.0000 -0.0000
    -0.0000  0.0000  0.0000  8.5871 -0.0000 -0.0000
```
Using MATLAB For LSA

Demo

- Reduce rank of system

```
>> S_k = S(1:3,1:3)

S_k =

    19.2339         0         0
    0    18.2035         0
    0         0    18.1004

>> U_k = U(:,1:3)

U_k =

  -0.4767    -0.0000     0.0116
  -0.5747    -0.0000     0.0140
  -0.4946     0.0000     0.0086
   0.0000    -0.5091     0.0000
  -0.0119     0.0000    -0.4755
  -0.0102     0.0000    -0.5514
  -0.0354     0.0000    -0.0383
   0.0000    -0.5091     0.0000
  -0.4417     0.0000     0.0107
  -0.0325     0.0000    -0.0427
  -0.0080     0.0000    -0.4365
  -0.0097     0.0000    -0.5249
   0.0000    -0.5091     0.0000
   0.0000    -0.4717     0.0000
```
Demo

- Show "M"

```matlab
>> M = inv(Sk)*Uk';

M =

Columns 1 through 10

-0.0248  -0.0299  -0.0257  0.0000  -0.0006  -0.0005  -0.0018  0.0000  -0.0230  -0.0017
-0.0000  -0.0000  0.0000  -0.0280  0.0000  0.0000  0.0000  -0.0280  -0.0000  -0.0000
 0.0006  0.0008  0.0005  0.0000  -0.0263  -0.0305  -0.0021  0.0000  0.0006  -0.0024

Columns 11 through 14

-0.0004  -0.0005  0.0000  0.0000
-0.0000  0.0000  -0.0280  -0.0259
-0.0241  -0.0290  0.0000  0.0000
```
Demo

• Demonstrate what SVD is capturing

• 1st concept (1st row of M)

First concept is selecting for wikipedia?
Using MATLAB For LSA

Demo

- Demonstrate what SVD is capturing
- 2nd concept (2nd row of M)

First concept is selecting for Wikipedia?

Second concept is selecting for UCI?
Demo

- Demonstrate what SVD is capturing

- 3rd concept (3rd row of M)

![Graph showing the 3rd concept for SVD with terms like ball, baseball, bat, California, coffee, company, encyclopedia, Irvine, run, species, Starbucks, stores, university, users.]

First concept is selecting for wikipedia?

Third concept is selecting for coffee?