Computing PageRank With MapReduce

Introduction to Information Retrieval
CS 221
Donald J. Patterson

Content adapted from Michael Nielsen
http://michaelnielsen.org/blog/using-mapreduce-to-compute-pagerank/
PageRank with MapReduce

- PageRank is iterative
- MapReduce is not
- This solution describes how to do one iteration of PageRank using MapReduce
- Multiple iterations would be required to converge
PageRank with MapReduce

- Quick review of PageRank
 - PageRank determines which pages are well-connected
 - A connection is a social signal that a web page is important
 - A connection is a vote for importance
 - Connections take time to form
 - Not so good for real-time data
 - Mathematically this is a Markov Chain
PageRank with MapReduce

- Quick review of PageRank
- A Markov Chain
 - Has a starting probability
 - Has a set of states
 - Has transition probabilities
- The web forms a graph which can be treated like a Markov Chain
- If the Markov Chain is ergodic, then PageRank converges
PageRank with MapReduce

- Quick review of PageRank
- A Markov Chain
 - Has a starting probability P_0
 - Has a set of states N
 - Has transition probabilities A_{ij}
- The web forms a graph which can be treated like a Markov Chain
- If the Markov Chain is ergodic, then PageRank converges
\[P_1 = P_0 A \]

\[\text{PageRank} = \lim_{n \to \infty} (P_n) \]
• Assumptions
 • Initial probability is uniform
 • A transition is made up of
 • outlinks O
 • deadend teleports D
 • random teleports T
 • a mixing constant $0 \leq \alpha \leq 1$

$$A_{ij} = \alpha O + \alpha D + (1 - \alpha)T$$
PageRank with MapReduce

- Assumptions
 - Initial probability is uniform
 - A transition is made up of
 - outlinks O
 - deadend teleports D
 - random teleports T
 - a mixing constant $0 \leq \alpha \leq 1$

\[
A_{ij} = \alpha O + \alpha D + (1 - \alpha)T
\]
PageRank with MapReduce

• Map

• Input is
 • key: page id, i
 • value: $[p_i, \text{set of outlinked pages } O_i]$

• One output for every page $j \in (1..n)$
 • key: page id, j
 • value:
 • if $(O_i == \{\})$ $(\alpha f_D(i, j) + (1 - \alpha) f_T(i, j))p_i$
 • if $(j \in O_i)$ $(\alpha f_O(i, j) + (1 - \alpha) f_T(i, j))p_i$
 • if $(j \notin O_i)$ $(\alpha(0) + (1 - \alpha) f_T(i, j))p_i$
 $$p_i(\alpha \frac{1}{|O_i|} + (1 - \alpha) \frac{1}{n})$$
PageRank with MapReduce

- Outlink probability
 - uniform
- When you hit a deadend
 - jump to a random page uniformly
- When you teleport
 - teleport to a random page uniformly
- More sophisticated extensions are imaginable

\[f_O(i, j) = \frac{1}{|O_i|} \]

\[f_D(i, j) = \frac{1}{n} \]

\[f_T(i, j) = \frac{1}{n} \]
PageRank with MapReduce

- Reduce collects the probabilities and adds them
- Input is
 - key: page id, \(i \)
 - value: probability of \(j \rightarrow i \)
- Output is
 - key: page id, \(i \)
 - value: sum of all input probabilities

\[
p_i = \sum_j p_j A_{ji}
\]
PageRank with MapReduce

- **Summary**
 - Each step of PageRank computes one iteration of
 \[P_{n+1} = P_n A \]
 - Each Map job handles the probability mass of one page being split across many pages
 - Each Reduce job collects the probabilities of one page coming from many pages