User Interaction: The Human

Asst. Professor Donald J. Patterson
INF 133 Fall 2010
Learning Objective:
To appreciate the limitations of the human and implications for U/I design
Memory

- Three types of memory which build on each other
 - Sensory Memory
 - Short-Term or Working Memory
 - Long-Term Memory
Sensory Memory

- Buffers for stimuli received through senses
 - iconic memory: visual stimuli
 - echoic memory: aural stimuli
 - haptic memory: tactile stimuli
- Examples
 - non cognitive recall
 - Continuously overwritten
Short-Term Memory

- Scratch-pad for temporary recall
 - rapid access ~ 70ms
 - rapid decay ~ 200ms
 - limited capacity - 7± 2 chunks
Long-Term Memory

- Repository for all our knowledge
 - slow access ~ 1/10 second
 - slow decay, if any
 - huge or unlimited capacity
- Two types
 - episodic – serial memory of events
 - semantic – structured memory of facts, concepts, skills
 - semantic LTM derived from episodic LTM
Thinking

- Reasoning
 - Deduction
 - Induction
 - Abduction
- Problem Solving
Thinking

- **Reasoning**
 - **Deduction**
 - derive logically necessary conclusion from given premises.
 - **Induction**
 - generalize from cases seen to cases unseen
 - **Abduction**
 - reasoning from event to cause
 - Sam drives fast when drunk.
 - If I see Sam driving fast, assume drunk.
Thinking

- Problem Solving
 - Process of finding solution to unfamiliar task using knowledge.
 - Many theories of this process
Individuals vary in their abilities

- long term
 - gender, physical and intellectual abilities
- short term
 - effect of stress or fatigue
- changing
 - age
Will a particular design decision exclude a section of your user population?
Will a particular design decision exclude a section of your user population?

Font Size
Will a particular design decision exclude a section of your user population?

Screen Real Estate
Will a particular design decision exclude a section of your user population?

Color Choice
Will a particular design decision exclude a section of your user population?

Embedded Video
What are strategies for including more users?
Addressing different skills and environments

• “Plasticity”

• Adapting to different environments easily.

• What environments?
Movement

- Time taken to respond to stimulus
 - reaction time + movement time
- Reaction time depends on stimulus
 - visual: ~200ms
 - auditory ~150ms
 - pain ~700ms
- Movement time depends on physiology
\[M_t = a + b \cdot \log_2 \left(\frac{\text{distance}}{\text{size}} + 1 \right) \]

Movement - Fitts’ Law

- Implications
 -
\[M_t = a + b \cdot \log_2 \left(\frac{\text{distance}}{\text{size}} + 1 \right) \]

Movement - Fitts’ Law

- Implications
 - Putting frequently used items at the top of a list
\[M_t = a + b \cdot \log_2 \left(\frac{\text{distance}}{\text{size}} + 1 \right) \]

Movement - Fitts’ Law

- Implications
 - Putting frequently used items at the top of a list
 - Pie menus are better than drop down menus

\[M_t = a + b \cdot \log_2 \left(\frac{\text{distance}}{\text{size}} + 1 \right) \]

Movement - Fitts’ Law

- Implications
 - Putting frequently used items at the top of a list
 - Pie menus are better than drop down menus
 - Exposé style interfaces are very efficient
\[M_t = a + b \cdot \log_2 \left(\frac{\text{distance}}{\text{size}} + 1 \right) \]

Movement - Fitts’ Law

- Implications
 - Putting frequently used items at the top of a list
 - Pie menus are better than drop down menus
 - Exposé style interfaces are very efficient
 - Bubble Cursors are more efficient
 - Also help with dexterity issues