User Interaction: Intro to Location

Asst. Professor Donald J. Patterson
INF 133 Fall 2011
Global Location GPS
Global Location GPS

- Current GPS
 - Fully operational
 - accurate, continuous, global 3-D position and velocity
 - also distributes universal coordinated time
- 24 original satellites
- 6 orbital places
- 4 satellites per plane
- not geosynchronous
- world-wide monitoring stations
Global Location GPS
Global Location GPS

• Current GPS

• Based on

 • Time Of Arrival (TOA) of radio signal
 • knowledge of satellite orbits

• Satellites have atomic clocks on board

• 2 frequencies

 • L1 1575.42 MHz
 • L2 1227.6 MHz
Global Location GPS
Global Location GPS

• Current GPS

• Broadcasts
 • Time of transmission
 • Ephemeris: Precise satellite orbital info
 • Almanac: System health info, rough orbital info for all satellites
Intro to Location

Global Location GPS
Global Location GPS

- Current GPS
- Receiver requirements
 - Must have local clock
 - 3-D position requires four satellites
 - four unknowns (what are they?)
 - time or height reduces this
Intro to Location

Global Location GPS
Global Location GPS

- Basic concept is based on the foghorn paradigm
- but in 3-D
Global Location GPS
Global Location GPS

• Basic concept is based on a foghorn paradigm
• but in 3-D
Intro to Location

Global Location GPS
Intro to Location

Global Location GPS

1 sec

Flickr: mafleen, greenstorm, templarion
Global Location GPS
Global Location GPS

1 sec

1.5 sec

2 sec

Intro to Location
Global Location GPS
Global Location GPS

- Basic concept is based on the foghorn paradigm
- but in 3-D
Global Location GPS

- What are the implications of this design on
 - scalability of the system?
 - privacy of users?
 - security of users?
 - reliability?
 - implications on device?
Global Location GPS

- GPS accuracy
 - 13 m 95% of the time horizontal
 - 22 m 95% of the time vertical system
 - 40 ns 95% of the time
- How do you design for this?
Global Location GPS

• GPS accuracy
 • 13 m 95% of the time horizontal
 • 22 m 95% of the time vertical system
 • 40 ns 95% of the time

• How do you design for this?

• Urban canyons
 • What are they?

• Japanese response, European response
Global Location GPS

Latitude Longitude

Frequency Count

Wednesday, October 19, 11
Global Location GPS
Global Location GPS

- The current and future of GPS
 - WAAS
 - Additional satellites in geosynchronous orbit
 - DGPS assistance from a land based receiver
 - Galileo
 - European competitor
 - GPS compatible
 - GLONASS
 - Russian competitor
Global Location GPS
Global Location GPS

• The current and future of GPS

• BeiDou
 • Chinese competitor
 • centralized system
Bei-dou

Time of arrival

Eureka!
(lat, long)

Wednesday, October 19, 11
Bei-dou

Eureka!
(lat, long)

Position

Wednesday, October 19, 11
Bei-dou Position

Wednesday, October 19, 11
• What are the implications of this design on
 • scalability of the system?
 • privacy of users?
 • security of users?
 • reliability?
 • implications on device?
Global Location GPS

http://en.wikipedia.org/wiki/File:Qzss-45-0.09.jpg
Global Location GPS

- The current and future of GPS
- Japanese Quasi-Zenith System
Global Location GPS

- The current and future of GPS
- Japanese Quasi-Zenith System
Global Location GPS

- The current and future of GPS
- Japanese Quasi-Zenith System
Localization beyond satellite systems
Two things seem particularly interesting about Google’s approach. First, it relies on very detailed maps of the roads and terrain, something that Urmson said is essential to determine accurately where the car is. Using GPS-based techniques alone, he said, the location could be off by several meters.